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Abstract
Sickle cell disease is an inherited hemoglobinopathy leading 
to the synthesis of hemoglobin S. Hemoglobin S results in 
the formation of abnormal sickle-shaped erythrocytes that 
lead to hematologic abnormalities such as hemolytic ane-
mia and increased risks of thrombosis. Another particular 
problem encountered with the disease is pulmonary hyper-
tension. The objective of this narrative review is to discuss 
the prevalence, pathophysiology mechanisms, diagnostic 
techniques, treatment options, and prognostic indicators in 
the setting of sickle cell disease with pulmonary hyperten-
sion. Additionally, the review also highlights other advance-
ments that are being investigated. Considering the signifi-
cant morbidity, mortality, and prevalence of pulmonary hy-
pertension in patients with sickle cell disease, it is important 
to account for the aforementioned domains in the future 

guidelines to provide optimal and individualized care to the 
high-risk individuals as well as reduce the progression of dis-
ease, morbidity, and mortality rates. © 2021 S. Karger AG, Basel

Introduction

Sickle cell disease (SCD) is defined as an inherited he-
moglobinopathy associated with chronic hemolytic ane-
mia with characteristic findings of sickle-shaped erythro-
cytes caused by homozygous inheritance of hemoglobin 
S (HbS) as defined by the American Society of Hematol-
ogy [1]. SCD is associated with World Health Organiza-
tion (WHO) Group 5 pulmonary hypertension (PH) 
which is defined as a resting mean pulmonary arterial 
pressure (PAP) ≥25 mm Hg on invasive testing as stated 
by the American Thoracic Society [2]. A variety of patho-
logic processes can result in PH in SCD patients as illus-
trated in Figure 1 [3].
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Due to the multifaceted mechanisms involved, SCD 
can result in both precapillary and postcapillary PH with 
almost equal distribution reported in the population [2]. 
Right heart catheterization (RHC) is the gold standard 
test to diagnose PH and describe its subtypes. Different 
patterns of hemodynamics in each phenotype of SCD-
related PH are illustrated in Figure 2 [4].

PH in the setting of SCD increases mortality regardless 
of the severity of PH [2, 5]. Hydroxyurea is one such in-
tervention that has been associated with reduced mortal-
ity compared to untreated patients with SCD [6]. Despite 
these interventions, particular attention should be direct-
ed toward screening this patient population to implement 
timely treatment.
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Fig. 1. Various pathophysiological process-
es that can lead to PH in SCD are depicted. 
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Fig. 2. Summary of hemodynamic mea-
sures in different subtypes of SCD-related 
PH. PH, pulmonary hypertension
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Prevalence and Epidemiology

According to the Centers for Disease Control & Pre-
vention, SCD affects estimated 100,000 Americans. Cen-
ters for Disease Control & Prevention also reports that 
each year approximately 300,000 new cases of infants 
worldwide will be born with SCD with a risk of the rate of 
incidence increasing to 30% more by 2050 [7]. It is high-
ly prevalent in African American populations with every 
1 in 500 African American carrying an autosomal reces-
sive mutation [8]. An estimated 10–33% of patients with 
SCD are found to have PH on screening by adulthood, 
and up to 75% of patients with SCD have findings of PH 
seen on autopsies according to the Pulmonary Hyperten-
sion Association [2]. SCD-related PH confers 2–5% mor-
tality to this subset of patients [8].

Pathophysiology

SCD results from point mutations or deletions in the 
beta-globin gene leading to the production of HbS. The 
severity of the disease varies depending on different gen-
otypes of SCD, though it is directly proportional to the 
degree of production of HbS. Sickling of red blood cells 
results in multiorgan microvascular occlusion and in-
travascular hemolysis, releasing free hemoglobin (Hgb) 
and arginase in the circulation leading to deoxygenated 
states.

The pathophysiology behind SCD and PH is consid-
ered to be multifactorial as there are multiple mechanisms 
proposed in the literature. Hemolytic anemia contributes 
to chronic organ injury and has been associated with PH 
in SCD patients. Breakdown of erythrocytes leading to 
disseminated intracellular pro-inflammatory molecules 
such as erythrocyte danger-associated molecular patterns 
(eDAMPs), adenosine deaminase (ADA), purine nucleo-
side phosphorylase (PNP), arginase 1, asymmetric di-
methylarginine (ADMA), and ROS (xanthine oxidase, 
nicotinamide adenine dinucleotide phosphate [NADPH], 
superoxide dismutases [SODs]) has been associated in 
SCD patients with PH [3]. Other mechanisms excluding 
hemolysis have also been linked in SCD patients with PH. 
These include upregulation of placental growth factor 
(PlGF) in response to hemolysis with subsequent elevated 
levels of endothelin-1 (ET-1), loss of peroxisome prolifer-
ator-activated receptor ɣ (PPARɣ), hyperhomocystein-
emia, decreased availability of nitric oxide leading to ele-
vated vascular cell adhesion molecule 1 (VCAM-1), inter-
cellular adhesion molecule 1 (ICAM-1), E-selectin, 
phosphatidylserine, plasma protein thorombospondin-1 
(TSP-1), decreased levels of Apo-A1, Factor-FX complex, 
asplenia, and polymorphisms in transforming growth fac-
tor (TGF) (Table 1 [3, 9–11], and online suppl. material 1; 
for all online suppl. material, see www.karger.com/
doi/10.1159/000519101 [12, 13]). Among these important 
pathways, arginase 1 and eDAMPs are being actively in-
vestigated because these molecules aim at reducing sterile 

Table 1. Hemolysis-related mechanisms in PH in SCD patients

eDAMPs Released during massive tissue injury associated with activation of innate immunity pathways via the toll-like receptors and the 
nucleotide-binding oligomerization domain-like receptors of the inflammasome leading to persistent intravascular hemolysis in 
PH

ADA and PNP Released after hemolysis leading to enzymatic action of decreased circulating levels of adenosine, inosine, and guanosine 
leading to decreased anti-occlusive effects and increasing vascular constriction

Arginase 1 Increased levels are seen in hemolytic activity. Its function consists of metabolizing L-arginine to ornithine, thereby reducing 
levels of L-Arginine. L-Arginine is required for de novo nitric oxide synthesis by eNOS enzyme; thereby, reductions of L-arginine 
lead to lower arginine: ornithine ratios. Increased ornithine levels are associated with smooth muscle cell proliferation, 
peribronchial, and perivascular collagen deposition. This is associated with the increased severity of PH and mortality [9, 10]

ADMA and 
hyperhomocysteinemia

Endogenous NOS inhibitor hydrolyzed by DDAH. Associated with hyperhomocysteinemia as homocysteine can inhibit DDAH 
activity leading to elevated plasma ADMA levels and decreased NO production. NO deficits have been associated with PH in 
SCD patients

ROS (xanthine oxidase, 
NADPH, SODs)

Generated during intravascular hemolysis. Can form ROS causing endothelial dysfunction activating downstream oxidases 
promoting vascular oxidative stress. Lower levels of SOD are seen in SCD due to higher tricuspid regurgitant velocity, thereby 
leading to increased oxidative stress [11]

PH, pulmonary hypertension; SCD, sickle cell disease; eDAMPs, erythrocyte danger-associated molecular patterns; ADA, adenosine deaminase; PNP, 
purine nucleoside phosphorylase; ADMA, asymmetric dimethylarginine; NADPH, nicotinamide adenine dinucleotide phosphate; SODs, superoxide dis-
mutases; eNOS, endothelial NO synthase; NOD, nucleotide-binding oligomerization domain; DDAH, dimethylarginine dimethylaminohydrolase.
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inflammation and oxidative stress [14]. Animal-based 
models have suggested that ADA and PNP can accelerate 
the development of PH by eliminating the protective ef-
fects of adenosine, inosine, and glutamine [15]. Similarly, 
arginase inhibition can increase levels of nitric oxide lead-
ing to an attenuated systemic and pulmonary vascular en-
dothelial dysfunction [16]. Although not directly in-
volved, decreased levels of NADPH can alter intracellular 
erythrocyte redox environment, resulting in sickling and 
remodeling that might contribute to PH [17].

Diagnosis

As per American Thoracic Society Clinical Practice 
Guidelines of 2014, RHC is the gold standard for diagnos-
ing PH in SCD. The use of imaging modalities such as 
transthoracic echocardiograms can be beneficial in clinical 
practice and, however, does not offer a definitive diagnosis 
[18]. Other useful laboratory tests include N-terminal pro-
hormone brain natriuretic peptide levels ≥160 pg/mL, el-
evated LDH above 475 U/L, reticulocyte counts above 
300,000 cells/mm3, serum ferritin levels above 1,000 ng/
mL, and elevated serum creatinine concentration above 1 
mg/dL for severe sickling phenotypes, above 1.4 mg/dL for 
mild sickling phenotypes [3, 19]. Recently, the use of 
Growth Differentiation Factor-15 (GDF-15) which is a 
multifactorial cytokine expressed in cardiomyocytes, vas-
cular smooth muscle cells, and endothelial cells is strongly 
upregulated in response to oxidative stress, inflammation, 
and tissue injury in SCD and has been investigated as a po-
tential biomarker for PH in SCD patients [20]. Another 
potential biomarker that is currently being investigated is 
the use of superoxide dismutase 2, which is a major mito-
chondrial antioxidant enzyme associated with hemolysis, 
oxidative stress, and SCD PH and cardiomyopathy which 
has been found to have decreased expression in SCD pa-
tients with PH [11]. Although future investigations might 
improve modalities available for diagnosing PH in SCD, 
RHC remains the gold standard diagnostic modality [2].

Management

The proposed strategy for PH in patients with SCD 
involves SCD-specific therapy including hydroxyurea 
and/or chronic packed red blood cell transfusion in com-
bination with medications approved for PH. There are no 
established guidelines for the management of PH in SCD 
due to inadequate evidence in this patient population. 

Moreover, due to the complexity of these patients, it is 
recommended that they are referred to PH centers for 
better outcomes [21].

Sickle Cell Anemia Directed Therapy

Both hydroxyurea and chronic packed red blood cell 
transfusions reduce HbS in the blood and prevent sickling, 
which has been known to contribute to the pathogenesis of 
PH in patients with sickle cell anemia (SCA). Hydroxyurea 
is preferred as first-line therapy due to its safer profile com-
pared to chronic transfusions which are associated with 
multiple adverse effects including allergic reactions, iron 
overload, alloimmunization, and volume overload [22]. 
Guidelines from the American Thoracic Society strongly 
recommend the use of hydroxyurea as first-line therapy in 
all SCD patients with increased mortality risk, which is de-
fined as a tricuspid regurgitation velocity ≥2.5 m/s, an NT-
pro-BNP level ≥160 pg/mL, or RHC-confirmed PH [18]. 
The mechanism of action of hydroxyurea involves the in-
creased synthesis of fetal Hgb which decreases vaso-occlu-
sive episodes and hence ameliorates the clinical course of 
SCA [23]. However, the beneficial effects of hydroxyurea 
do not manifest until several months after initiation. A ran-
domized controlled trial followed patients taking hydroxy-
urea for 17.5 years to examine the risk and benefit of long-
term use. The trial showed that 47.5% of deaths in patients 
with SCA were due to pulmonary complications and 87.5% 
of these deaths were attributed to patients who never took 
hydroxyurea or used it for <5 years [24].

The American Thoracic Society recommends chronic 
transfusion therapy in patients that have an increased 
mortality risk and are unresponsive to hydroxyurea [18]. 
However, unlike hydroxyurea, there are no clinical trials 
as yet to support the use of chronic transfusions for PH 
in patients with SCD [25]. Chronic transfusion therapy is 
known to reduce strokes and acute coronary syndrome in 
patients with SCA and hypothetically should slow down 
the progression of PH by preventing clot formation in the 
pulmonary vasculature. To effectively prevent vaso-oc-
clusive episodes, the goal of the exchange transfusion is 
to maintain HbS at <30 percent of total Hgb and total Hgb 
of >9 g/dL. HbS, Hgb, and reticulocyte counts are moni-
tored with every transfusion to follow the trend and 
schedule subsequent transfusion [26]. Serum ferritin lev-
els must be obtained every 1–3 months to prevent iron 
overload. Generally, both hydroxyurea and chronic trans-
fusions are not administered simultaneously, as chronic 
transfusions can reduce the efficacy of hydroxyurea [21].
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Another treatment strategy that is often adopted in pa-
tients with SCA is long-term anticoagulation. SCA, despite 
being a pro-thrombotic state, has also been known to in-
crease the risk of intracerebral and retinal hemorrhage. 
Acute therapy for venous thromboembolism is recom-
mended. However, due to the paucity of evidence regard-
ing risk and benefit, long-term anticoagulation remains 
controversial. Guidelines recommend indefinite anticoag-
ulant therapy for patients with SCD with RHC-confirmed 
PH, only if they have a history of venous thromboembo-
lism and no additional risk factors for hemorrhage [18].

Pulmonary Arterial Hypertension Directed Therapy

Finally, in select patients, targeted pulmonary arterial 
hypertension (PAH) therapy can be used. This usually in-
cludes endothelin receptor antagonists, phosphodiester-
ase-5 inhibitors, prostacyclin agonists, and guanylate cy-
clase stimulators (e.g., riociguat). However, in patients 
with concomitant SCA and PAH, phosphodiesterase-5 in-
hibitors are strongly discouraged due to adverse side ef-
fects that were first noticed in the Pulmonary Hyperten-
sion and Sickle Cell Disease with Sildenafil Therapy (Walk-
PHaSST) clinical trial [27]. The study was terminated due 
to an increase in serious adverse events in the sildenafil 
group, primarily hospitalization for a pain crisis. For symp-
tomatic patients with elevated pulmonary vascular resis-
tance confirmed with RHC and normal pulmonary artery 
wedge pressure, a trial of endothelin receptor antagonists 
(Ambrisentan) and prostacyclin agonists (Epoprostenol 
and Treprostinil) can be considered [22]. The trials for 
these medications had some limitations. However, due to 
their established benefit in group 1 PAH patients and 4 
case series of SCA patients showing positive results, the 
medications are recommended in the abovementioned pa-
tients [28]. The recommendation, nonetheless, remains 
weak because of the low quality of evidence [22]. Soluble 
guanylate cyclase stimulators have not been studied in 
SCD and have properties similar to phosphodiesterase-5 
inhibitor therapy; hence, their use remains uncertain.

Prognosis

PH and an elevated tricuspid regurgitant jet velocity 
are important prognostic factors for SCD patients. Tri-
cuspid regurgitant jet velocity of at least 2.5 m/s is associ-
ated with an increased risk of death (rate ratio, 10.1; 95 
percent confidence interval [CI], 2.2–47.0; p < 0.001) 

compared with a velocity of <2.5 m/s [29]. In a longitudi-
nal study, a total of 529 adults with SCD were screened by 
echocardiography between 2001 and 2010. After a 9-year 
follow-up, the following hemodynamic variables were as-
sociated with increased mortality: mean PAP (hazard ra-
tio [HR], 1.61; 95% CI, 1.05–2.45 per 10 mm Hg increase; 
p = 0.027), diastolic PAP (HR, 1.83; 95% CI, 1.09–3.08 per 
10 mm Hg increase; p = 0.022), diastolic PAP – pulmo-
nary capillary wedge pressure (HR, 2.19; 95% CI, 1.23–
3.89 per 10 mm Hg increase; p = 0.008), transpulmonary 
gradient (HR, 1.78; 95% CI, 1.14–2.79 per 10 mm Hg in-
crease; p = 0.011), and pulmonary vascular resistance 
(HR, 1.44; 95% CI, 1.09–1.89 per wood unit increase; p = 
0.009) as risk factors for mortality [30].

Future Advancements

A multidisciplinary approach which involves the de-
velopment of care pathways to educate the patients re-
garding their disease and mitigate various risk factors as-
sociated with PH is integral to better survival. Prompt 
identification and management of hypoxemia, venous 
thromboembolism, severe anemia, iron overload, restric-
tive lung disease, and LV diastolic dysfunction may pre-
vent the development of PH [5]. Markers such as lactate 
dehydrogenase, indirect bilirubin, elevated ferritin, NT-
proBNP, and forced expiratory volume in 1 s to vital ca-
pacity ratio <80 are associated with the development of 
PH. Hence, risk stratification models incorporating these 
variables should be devised and strategies to prolong RBC 
survival may decrease the risk of PH in SCD [31]. Hy-
droxycarbamide prolongs RBC survival, decreases endo-
thelial dysfunction, and increases HbF; hence, its roles in 
the prevention of PH should be investigated in prospec-
tive studies [6]. Cardiac MRI can identify early diastolic 
dysfunction and myocardial fibrosis; hence, its applica-
bility should be standardized early in the course of the 
disease [2]. Anemia in SCD-related PH is associated with 
increased mortality and exchange transfusion results in 
improvement of anemia. However, the mortality benefit 
of exchange transfusions in SCD-related PH needs to be 
studied in longitudinal studies [3]. Automated red cell 
exchange recently did show promising results in the re-
duction of symptoms of PH and improved echocardio-
graphic parameters in SCD-related PH [32]. It utilizes an 
apheresis system to replace patient’s red cells with donor 
cells resulting in a rapid reduction of HbS. Further studies 
should investigate its role in the long-term reduction of 
morbidity and mortality in SCD-related PH.
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Conclusion

PH is a common complication in patients with SCD. 
Considering the prevalence of the problem, there is an 
emerging need to develop targeted therapy to combat the 
proposed mechanisms in place. The management of these 
patients requires a multidisciplinary care team to ensure 
that the vicious cycle of disease exacerbation can be bro-
ken. However, all these aspects necessitate further studies 
that target specific management options, combine spe-
cialty approaches, and, possibly, predict the impact of 
these changes in mortality and morbidity rates. The end-
game is to utilize all the information from future clinical 
studies in a concise practice guideline for future manage-
ment. Furthermore, early screening should be considered 
with laboratory investigations, echocardiography, and 
RHC when needed, to initiate aggressive treatment to de-
lay the disease progression and reduce the mortality from 
PH.
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