Skip to main content
. 2021 Dec 24;15:757790. doi: 10.3389/fnins.2021.757790

Table 2.

Description of the network model (continuation of Table 1).

Connectivity
• Connection probabilities CYX from population X to population Y with {X, Y} ∈ {L2/3, L4, L5, L6} × {E, I}. Values are given in (Potjans and Diesmann, 2014, Table 5).
• Self-connections (autapses) are prohibited; multiple connections between neurons (multapses) are allowed.
Fixed total number models Total number of synapses (Potjans and Diesmann, 2014, Equation 1):
SYX=log(1-CYX)log((NYNX-1)/(NYNX)) (1)

In- and out-degrees are binomially distributed.
Fixed in-degree models In-degree:
KYX=SYXNY (2)
Neuron and synapse model
Neuron Leaky integrate-and-fire neuron (LIF)
• Dynamics of membrane potential Vi(t) for neuron i:
   • Spike emission at times tsi with Vi(tsi)Vθ
   • Subthreshold dynamics with
τm=RmCm:τmV.i=-Vi+RmIi(t) ifs:t(tsi,tsi+τref] (3)

   • Reset + refractoriness: Vi(t)=Vresetifs:t(tsi,tsi+τref]
• Exact integration with temporal resolution h (Rotter and Diesmann, 1999)
Postsynaptic currents • Instantaneous onset, exponentially decaying postsynaptic currents
• Input current of neuron i from presynaptic neuron j:
Ii(t)=jJijse-(t-tsj-dij)/τsΘ(t-tsj-dij) (4)
Synaptic weights (reference distribution) • Normally distributed (clipped to preserve sign):
wij~N{w¯,YX,Δw,YX2},w¯,YX=gYX·w¯ (5)
Spike transmission delays • Normally distributed (left-clipped at h):
dij~N{d¯X,ΔdX2} (6)
Initial membrane potentials • Normally distributed:
Vij~N{V¯0,X,ΔV0,X2} (7)