Skip to main content
. 2022 Jan 6;19:1. doi: 10.1186/s12983-021-00448-3

Table 1.

Changes in genes, energetic parameters of mitochondria and proteins in chill susceptible/chill tolerant or freeze avoiding/tolerant insects after cold/freeze stress

Chill susceptible/Chill tolerant Freeze avoiding/Freeze tolerant
Genes Acclimated ATPase (A. colemani) [100]b ↑↓ COX (E. scudderiana) [35]c
↑↓ 12S rRNA (E. scudderiana) [35]c
HSP60 (D. antiqua) [103]c
HSP60 (L. decemlineata) [104]c
Non-acclimated COX (D. simulans) [51] HSP60 (B. antarctica) [53, 105]
↑↓ HSP60 (D. melanogaster) [106] HSP60 (F. occidentalis) [107]
HSP22 (D. melanogaster) [106] HSP60 (G. daurica) [108]
HSP23 (D. melanogaster) [106] HSP60 (M. alternatus) [109]
mt:ND4 (D. melanogaster) [52]
mt:ND5 (D. melanogaster) [52]
↑↓ mt:COXI (D. melanogaster) [52]
↑↓ mt:COXII (D. melanogaster) [52]
UCP4C (D. melanogaster) [54]
↑↓ HSP23 (D. melanogaster) [110]
HSP23 (S. crassipalpis) [111]
AccSCO2 (A. cerana) [112]
MUP2 (A. melifera) [55]
Energetic parameters Acclimated ATP (A. diaperinus) [41]b cyt. b (G. groenlandicai) [84]
TCA (A. colemani) [61] 3-hydroxyacyl-CoA dehydrogenase (E. solidaginis) [79]c
citrate (D. melanogaster) [77] thiolase (E. solidaginis) [79]c
aconitate (D. melanogaster) [77] cyt. c (G. groenlandicai) [44]
ketoglutarate (D. melanogaster) [77] CS (C. costata) [76]
succinate (D. melanogaster) [77] NAD-IDH (E. solidaginis) [47]c
fumarate (D. melanogaster) [77] ↓↑ state 4 (C. costata) [59]c
OCR (D. melanogaster) [60] ATP (C. costata) [59]c
ADP/O (D. melanogaster) [60]a 3-hydroxyacyl-CoA dehydrogenase (E. scudderiana) [79]c
↑↓ RCR (D. melanogaster) [60] thiolase (E. scudderiana) [79]c
ATP (D. melanogaster) [60]
ATP (S. crassipalpis) [44]b
Non-acclimated RCR (G. coquereliana) [89] NAD-IDH (E. solidaginis) [47]c
state 3 (G. coquereliana) [89] State 4 (C. costata) [59]c
OCR (D. melanogaster) [60] GDH (E. scudderiana) [47]c
↑↓ RCR (D. melanogaster) [60]
ATP (D. melanogaster) [60]
ATP (S. crassipalpis) [44]
Proteins, enzymes Acclimated Aconitase (A. colemani) [61] COX (E. solidaginis) [47]c
Fumarase (A. colemani) [61] HSP70 (E. solidaginis) [113]b,c
Malate dehydrogenase (A. colemani) [61] ↑↓ HSP70 (E. solidaginis) [113]c
COX (E. scudderiana) [35, 47]c
↑↓ SOD (E. solidaginis) [114]c
SOD (E. scudderiana) [114]c
Non-acclimated GSHt (A. diaperinus) [115]
UCP (G. coquereliana) [89]
HSP70 (G. coquereliana) [89, 116]
HSP70 (S. exigua) [117]
HSP60 (S. exigua) [117]
↓↑ procaspase-9-like (D. melanogaster) [58]
↓↑ caspase-3-like (D. melanogaster) [58]
Bcl-2 (D. melanogaster) [58]

The table is divided also into research on insects acclimated to low temperatures (acclimated) and insects not acclimated to low temperatures (non-acclimated). Empty cells in the table indicate that research in this direction has not been conducted and much is still to unravel. As each division would be artificial, we decided to rank insects into species in which cold-induced injury, and death occurs at temperatures above temperature causing extracellular freezing (Chill susceptible/Chill tolerant) and species in which injury is related to ice formation (Freeze avoiding/Freeze tolerant) (for review see Overgaard and MacMillan [27]). Arrows indicate: ↑ increase/up-regulation, ↓ decrease/down-regulation, ↑↓ no change

aCompared to non-acclimated counter partners

bFTR or freeze–thaw cycles were used in the studies and not cold-acclimation per se

cDiapausing insects