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Biomarkers for sepsis: more than just fever 
and leukocytosis—a narrative review
Tatiana Barichello1,2*  , Jaqueline S. Generoso1, Mervyn Singer3 and Felipe Dal‑Pizzol1 

Abstract 

A biomarker describes a measurable indicator of a patient’s clinical condition that can be measured accurately and 
reproducibly. Biomarkers offer utility for diagnosis, prognosis, early disease recognition, risk stratification, appropriate 
treatment (theranostics), and trial enrichment for patients with sepsis or suspected sepsis. In this narrative review, 
we aim to answer the question, "Do biomarkers in patients with sepsis or septic shock predict mortality, multiple 
organ dysfunction syndrome (MODS), or organ dysfunction?" We also discuss the role of pro- and anti-inflammatory 
biomarkers and biomarkers associated with intestinal permeability, endothelial injury, organ dysfunction, blood–brain 
barrier (BBB) breakdown, brain injury, and short and long-term mortality. For sepsis, a range of biomarkers is identified, 
including fluid phase pattern recognition molecules (PRMs), complement system, cytokines, chemokines, damage-
associated molecular patterns (DAMPs), non-coding RNAs, miRNAs, cell membrane receptors, cell proteins, metabo‑
lites, and soluble receptors. We also provide an overview of immune response biomarkers that can help identify or 
differentiate between systemic inflammatory response syndrome (SIRS), sepsis, septic shock, and sepsis-associated 
encephalopathy. However, significant work is needed to identify the optimal combinations of biomarkers that can 
augment diagnosis, treatment, and good patient outcomes.
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Introduction
A biomarker describes a measurable indicator of biologi-
cal status in normal and pathogenic processes. It may be 
helpful as a theranostic for identifying suitable patients 
for therapeutic intervention and titrating the degree 
and/or duration of intervention. A biomarker should be 
accurate and reproducible. In the ideal scenario, the bio-
marker (or combination of biomarkers) should offer both 
high specificity and sensitivity for diagnosing a condition, 
but either alone may be adequate as a ’rule-in’ or ’rule-
out’ test.

Sepsis represents a dysregulated immune response 
to infection that leads to organ dysfunction [1]. Host 

response biomarkers play a critical role in diagnosis, 
early recognition of organ dysfunction, risk stratification, 
prognostication, and patient management, including 
antibiotic stewardship. Biomarkers may also be helpful 
for trial enrichment to identify suitable patients and/or 
risk categorization for an intervention. A wide range of 
biomarkers, measured by a host of different technolo-
gies, are being investigated to discriminate a systemic 
inflammatory response syndrome (SIRS) rapidly, which 
is an excessive defensive body’s response to a harmful 
stressor (for example, infection, trauma, surgery, acute 
inflammation, ischemia or reperfusion, or cancer) [2] 
or early identification of infection-triggered organ dys-
function (sepsis). Also, the quick sepsis related organ 
failure assessment (qSOFA) is intended to raise suspi-
cion of sepsis and encourage additional action; although, 
qSOFA is not a substitute for SIRS [3]. These biomark-
ers include measurement of acute-phase proteins, 

Open Access

*Correspondence:  Tatiana.Barichello@uth.tmc.edu
2 Faillace Department of Psychiatry and Behavioral Sciences, McGovern 
Medical School, The University of Texas Health Science Center at Houston 
(UTHealth), Houston, TX 77054, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7776-8454
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-021-03862-5&domain=pdf


Page 2 of 31Barichello et al. Critical Care           (2022) 26:14 

cytokines, chemokines, damage-associated molecular 
patterns (DAMPs), endothelial cell markers, leukocyte 
surface markers, non-coding RNAs, miRNA, and solu-
ble receptors, as well as metabolites and alterations in 
gene expression (transcriptomics). Biomarkers may help 
stratify septic patients into biological phenotypes, for 
example, hyperinflammatory versus immunosuppressive. 
Biomarkers can also be used to identify gut permeability, 
blood–brain barrier (BBB) permeability, probability of 
hospital readmission, and longer-term outcomes [4, 5].

The causative pathogen replicates and releases its 
constituents such as endo- and exotoxins, and DNA. 
These constituents are designated pathogen-associated 
molecular patterns (PAMPs) [6, 7]. PAMPs are recog-
nized by both pattern-recognition receptors (PRRs) 
and non-PRRs, which are essential components of the 
immune system [8, 9]. PRRs include several families, 
including Toll-like receptors (TLRs), nucleotide-bind-
ing oligomerization domain-like receptors (NOD)-like 
receptors (NLRs), a retinoic acid-inducible gene I (RIG-
I)-like receptors (RLRs), C-type lectin receptors (CLRs), 
and intracellular DNA-sensing molecules. Non-PRRs 
include receptors for advanced glycation end products 
(RAGE), triggering receptors expressed on myeloid cells 
(TREM), and G-protein-coupled receptors (GPCRs) [10]. 
The sensing of PAMPs by immune cell receptors trig-
gers a cascade of signaling pathways that activate multi-
ple transcription factors to promote the production and 
release of pro- and anti-inflammatory mediators such as 
acute-phase proteins, cytokines, chemokines, as well as 
antimicrobial peptides, which are needed to eliminate the 
invading pathogen [11].

The host immune response and pathogen virulence 
factors will both trigger cell injury and/or induce cell 
stress. These results in the release of endogenous mole-
cules (DAMPs), exacerbating the inflammatory response. 
DAMPs are recognized by the same immune receptors 
that recognize PAMPs [12, 13]. Many DAMPs have been 
identified, with some currently used as inflammatory 
biomarkers. Examples include proteins and cellular mol-
ecules related to nucleic acids, such as heat shock pro-
teins (HSPs), the high mobility group box 1 (HMGB-1), 
and members of the S100 family [12, 14, 15]. The immune 
response may induce vascular endothelial damage dis-
rupting tight junctions (T.J.), increasing gut permeabil-
ity, and potentially facilitating translocation of pathogens 
and/or their PAMPs from the gut to the bloodstream and 
lymphatics, thereby amplifying the systemic inflamma-
tory response [16]. In addition, an increase of BBB per-
meability allows circulating immune cells to enter the 
brain, triggering or exacerbating glial cell activation [17]. 
These events could trigger an intense and excessive host 
response activating coagulation and fibrinolytic systems, 

activating or suppressing hormonal, bioenergetic, and 
metabolic pathways, and inducing macro- and micro-
circulatory changes with a net result of multiple organ 
dysfunction. In the past few decades, researchers have 
studied each inflammatory response stage during SIRS, 
sepsis, and septic shock, metabolites associated with 
inflammatory cascades, and cellular components that 
could be used as biomarkers. These biomarkers could 
help identify endothelial damage, intestinal permeability, 
organ failure, BBB breakdown and predict rehospitaliza-
tion, short- and long-term mortality, and cognitive con-
sequences in survivors [18].

For this narrative review, we addressed the question, 
"Do biomarkers in patients with sepsis or septic shock 
predict mortality, MODS, or organ dysfunction?" Stud-
ies were identified by searching PubMed/MEDLINE 
(National Library of Medicine) databases for peer-
reviewed journal articles published until October 2021. 
The abovementioned databases were searched with the 
following combinations of keywords: ("inflammatory 
response syndrome" OR "SIRS" OR "sepsis" OR "septic 
shock" OR "sepsis-associated encephalopathy" OR "SAE") 
AND ("markers" OR "biomarkers" OR "biological mark-
ers" OR "biological measures" OR "molecular predictor"). 
We omitted review articles, in vitro studies, and animal 
studies.

The humoral innate immune response, cytokines, 
and chemokines
The humoral innate immune response consists of 
multiple components, including fluid phase pattern 
recognition molecules (PRMs) and the complement 
system. PRMs include C-reactive protein (CRP), serum 
amyloid P component (SAP), and pentraxin 3 (PTX-
3) [19]. The rise in CRP level is primarily induced by 
interleukin (IL)-6 and IL-1β acting on the gene respon-
sible for CRP transcription during the acute phase of 
an inflammatory process. CRP is a pentameric acute-
phase reactant protein whose conformation facilitates 
the ability to trigger complement activation and acti-
vate platelets, monocytes, and endothelial cells [20]. 
Furthermore, CRP is one of the most widely used and 
investigated biomarkers [21]. A prospective multi-
center cohort study followed 483 adult patients who 
survived hospitalization for sepsis for up to one year. 
IL-6, high-sensitivity C reactive protein (hs-CRP), solu-
ble programmed death-ligand 1 (sPD-L1), E-selectin, 
and intercellular adhesion molecule 1 (ICAM-1) were 
evaluated at five-time points during and after hospi-
talization. A comparison was made between a pheno-
type with hyperinflammation (high levels of IL-6 and 
hs-CRP) and a phenotype of immunosuppression (high 
sPD-L1 levels). Compared with a normal phenotype, 
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both hyperinflammation and immunosuppression phe-
notypes had higher 6-month hospital readmission rates 
and 1-year mortality rates, both all-cause and attribut-
able to cardiovascular or cancer [22].

Pentraxin (PTX-3) is secreted by macrophages, den-
dritic cells, macrophages, fibroblasts, mesangial cells, 
and glial cells under pathogen or inflammatory stimuli 
[19]. Plasma PTX-3 was assessed on days 1, 2, and 7 in 
958 patients with sepsis or septic shock included in the 
Albumin Italian Outcome Sepsis (ALBIOS) study. The 
researchers assessed a possible association between 
PTX-3 levels and clinical severity, organ dysfunction, 
treatment, and mortality within 90  days. PTX-3 levels 
were elevated at the onset of sepsis and increased with 
illness severity and the number of organ dysfunctions. 
PTX-3 levels decreased between days 1 to 7, but this was 
less prominent in patients with septic shock [23]. In a 
prospective observational analysis, PTX-3, IL-6, procalci-
tonin (PCT), and lactate combined showed excellent per-
formance in predicting 28-day all-cause mortality among 
patients diagnosed with sepsis or septic shock and supe-
rior to the Sequential Organ Failure Assessment (SOFA) 
score [24].

In a prospective pilot study of markers of complement 
activation in sepsis, higher C4d (3.5-fold), factor Bb (6.1-
fold), C3 (0.8-fold), C3a (11.6-fold), and C5a (1.8-fold) 
levels were seen compared with healthy volunteer con-
trols [25]. In another study of 49 sepsis patients, 34 devel-
oped disseminated intravascular coagulation (DIC), and 
eight died. Patients with DIC had lower C3 levels and 
higher SC5b-9 levels. On stratifying by SC5b-9 quar-
tile (ng/mL: low: < 260, moderate: 260–342, high: 343–
501, highest: > 501), coagulation parameters were most 
deranged in the highest quartile with prolonged throm-
bocytopenia and higher mortality (33%) [26].

The activation of PRRs culminates in the stimula-
tion of transcription factors resulting in the expression 
and secretion of proinflammatory cytokines, including 
tumor necrosis factor-alpha (TNF-α), IL-1-β, IL-6, and 
interferons (IFNs). These inflammatory mediators are 
required for host defense against pathogens and activa-
tion of the adaptive immune response. A retrospective 
study evaluated a broad panel of cytokines and found 
IL-1β, IL-6, IL-8, MCP-1, IL-10, and plasminogen activa-
tor inhibitor 1 (PAI-1) levels were increased in the acute 
phase of sepsis in both critically and non-critically ill 
patients. In addition, levels of IL-10 (days 1, 2, and 4), 
IL-6 and PAI-1 (days 2 and 4), and IL-8 (day 4) increased 
in critically ill patients compared to non-critically ill 
[27]. In summary, hs-CRP, IL-6, and PAI-1 circulatory 
levels may have utility in stratifying a hyperinflamma-
tory patient phenotype.

DAMPs
DAMPs are endogenous danger molecules released from 
damaged or stressed cells. These molecules activate the 
innate immune system through interaction with PRRs. 
DAMPs contribute to the host defense but can also pro-
mote pathological inflammatory responses. Calprotectin, 
a protein found in the cytosol of neutrophils and mac-
rophages, is released under cell stress or damage. In a 
mixed population study, plasma calprotectin levels were 
higher in sepsis than in trauma patients and other medi-
cal conditions. Calprotectin levels were higher in patients 
who did not survive for 30 days. Plasma PCT did not dif-
fer between the groups or as a prognosticator of the out-
come. Receiver operating characteristic (ROC) analysis, 
used as a sepsis biomarker, had a higher area under the 
curve (AUC) value for calprotectin (AUC: 0.79) com-
pared to PCT (AUC: 0.49) [28].

A prospective study evaluated IL-6, HMGB-1, and 
neutrophil gelatinase-associated lipocalin (NGAL) in 14 
septic patients and 16 patients without sepsis admitted 
to the ICU. In patients with sepsis, IL-6 decreased levels 
were associated with ICU survival; NGAL levels rose in 
non-survivors, while HMGB-1 levels were unchanged in 
both survivors and non-survivors regardless of complica-
tions [29].

Endothelial cells and BBB markers
The first step in endothelial and BBB injury is the break-
down and destruction of proteins followed by release 
into the bloodstream. These proteins or peptides can be 
evaluated as a marker of endothelial cells and BBB integ-
rity [30]. Plasma levels of occludin (OCLN), claudin-5 
(CLDN-5), zonula-occludens 1 (ZO-1), PCT, and lactate 
were assessed in 51 septic patients. OCLN and ZO-1 
were elevated with disease severity and positively cor-
related with the Acute Physiology and Chronic Health 
Evaluation II (APACHE-II) and SOFA scores and lac-
tate levels. The predictive value for in-hospital mortal-
ity of ZO-1 was comparable to that of lactate levels, 
APACHE-II, and SOFA scores but superior to OCLN and 
PCT [31]. In a case series of brain autopsies from adults 
who died from sepsis, 38% had no OCLN expression in 
the endothelium of cerebral microvessels. BBB damage 
was associated with higher maximum SOFA scores and 
PCT levels > 10 μg/L. BBB damage in the cerebellum was 
more common with CRP values > 100  mg/L [32]. Solu-
ble fms-like tyrosine kinase 1 (sFlt-1), soluble E-selectin 
(sE-selectin), soluble intercellular adhesion molecule 1 
(sICAM-1), soluble vascular cell adhesion molecule 1 
(sVCAM-1), and PAI-1 were evaluated in another stud-
ies. All these evaluated endothelial biomarkers were 
associated with sepsis severity. sFlt-1 had the strongest 
association with the SOFA score, while sFlt-1 and PAI-1 
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had the highest area under the operating receiver charac-
teristic curve for mortality [33].

Syndecan-1 is a structural component of the endothe-
lium. Antithrombin, PAI-1, syndecan-1, VCAM-1, 
E-selectin, IL-1β, IL-6, IL-8, HMGB-1, and histone-H3 
were increased in septic patients compared with healthy 
controls. Non-survivors had a higher syndecan-1 level 
compared with survivors. On day one, an association was 
seen between syndecan-1 levels and APACHE-II, SOFA, 
DIC scores, hemostatic markers, IL-1β, IL-8, and PAI-1. 
Day 1 syndecan-1 levels were also significantly higher in 
patients with DIC and had reliable discriminative power 
to predict both DIC development and subsequent mor-
tality [34].

The serum biomarker, calcium-binding protein B 
(S100B), reflects BBB disruption, glial cell injury, and 
activation. S100B is used to evaluate brain injury sever-
ity and predict outcomes from stroke, traumatic brain 
injury, encephalopathy, and delirium [35]. A prospective 
cohort study demonstrated that day three values for pre-
dicting 180-day mortality were superior to day one (0.731 
vs. 0.611) [36]. Patients with sepsis-associated encepha-
lopathy also had elevated levels. In another observational 
study of 22 patients with septic shock, delirium was pre-
sent in ten. The odds ratio for the risk of developing delir-
ium with an S100B > 0.15  μg/L was 18.0. Patients with 
delirium had higher plasma levels of IL-6. S100B and 
IL-6 levels were positively correlated [37]. S100B, PAI-
1, angiopoietin (Ang)-2, ZO-1, and OCLN are the main 
biomarkers currently used to evaluate the vascular injury 
and BBB permeability.

Gut permeability markers
Critically ill patients show an increase in gut permeabil-
ity, which may trigger a systemic inflammatory response 
syndrome and multiple organ dysfunction syndromes 
(MODS) [38]. Plasma zonulin levels were higher in sep-
sis patients compared to a post-surgical control group or 
healthy volunteers [39]. In another study, serum levels of 
intestinal fatty acid-binding protein (I-FABP) were higher 
in patients with sepsis and higher still in those with septic 
shock. Serum D-lactic acid levels were also elevated with 
sepsis but did not differentiate severity. Neither I-FABP 
nor D-lactic acid could prognosticate [40].

Non‑coding RNAs and miRNA
A non-coding RNA (ncRNA) is an RNA molecule tran-
scribed from DNA but not translated into proteins. A 
microRNA is a small non-coding RNA molecule that 
functions in RNA silencing and post-transcriptional 
gene expression regulation. ncRNAs and mRNAs are 
being studied as sepsis biomarkers. For example, long 
non-coding metastasis-associated lung adenocarcinoma 

transcript 1 (lnc-MALAT1) and micro RNA (miR)-125a 
were increased in sepsis patients compared with healthy 
controls and positively correlated with APACHE-II score, 
SOFA score, serum creatinine, CRP, TNF-α, IL-1β, IL-6, 
and IL-8. The lnc-MALAT1/miR-125a axis was also 
a predictor of increased 28-day mortality risk [41]. In 
another study lnc-MALAT1 expression was increased 
in acute respiratory distress syndrome (ARDS) patients 
compared to non-ARDS patients (AUROC: 0.674). Non-
survivors compared to survivors (AUROC: 0.651) and 
positively correlated with APACHE-II and SOFA scores, 
CRP, PCT, TNF-α, IL-1β, IL-6, and IL-17 [42]. Long non-
coding RNA maternally expressed gene 3 (lnc-MEG3), 
and the lnc-MEG3/miR-21 axis were increased, while 
miR-21 expression was decreased in sepsis patients com-
pared with healthy controls. lnc-MEG3 (AUROC: 0.887) 
and the lnc-MEG3/miR-21 ratio (AUROC: 0.934) had 
high values for predicting elevated sepsis risk, while miR-
21 (AUROC: 0.801) gave excellent predictive value for a 
reduced sepsis risk [43]. A further study showed miR-
125a and miR-125b expressions were elevated in sepsis 
patients compared with healthy controls and were pre-
dictive of sepsis risk—miR-125a (AUROC: 0.749) and 
miR-125b (AUROC: 0.839). No correlation was seen 
between miR-125a and CRP, TNF-α, IL-6, IL-17, and 
IL-23 in however, miR-125b was positively associated 
with these cytokines. miR-125a failed to predict 28-day 
mortality risk (AUROC: 0.588) in sepsis patients, whereas 
miR-125b was superior (AUROC: 0.699) [44].

Membrane receptors, cell proteins, 
and metabolites
Cell surface receptors are receptors incorporated into 
the plasma membrane of cells and act on cell signaling 
by receiving or binding to extracellular molecules. After 
detecting such molecules, the production of metabolites 
occurs. In one study, the cluster of differentiation (CD)-
13, CD14, CD25, CD64, and human leukocyte antigen 
(HLA-DR) showed acceptable sensitivity and specific-
ity for mortality prediction (CD13 AUROC:0.824; CD64 
0.843; and HLA-DR 0.804) while CD14 and CD25 did not 
predict mortality [45]. nCD64 expression, in a further 
study, nCD64, PCT, CRP, and SOFA scores were higher 
in septic patients, with nCD64 having the highest AUC 
(0.879) for differentiating a positive microbial culture. 
This was superior to PCT (0.868), SOFA score (0.701), 
CRP (0.609), and white blood cell (WBC) count. In pre-
dicting 28-day mortality, the combination of nCD64 and 
SOFA score had an AUROC of 0.91 versus 0.882 for the 
combination of PCT and SOFA [46].

A meta-analysis of 19 studies enrolling 3012 patients 
evaluated the value of PCT (AUROC 0.84) and prese-
psin (0.87 AUROC) for diagnosing sepsis. The pooled 
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sensitivities and specificities were 0.80 and 0.75 for PCT 
and 0.84 and 0.73 for presepsin [47]. In one study, lev-
els of presepsin, PCT, CRP, and WBC were higher in 
sepsis patients than in a SIRS group with AUROC val-
ues of 0.954 (presepsin), 0.874 (PCT), 0.859 (CRP), and 
0.723 (WBC). The cut-off of presepsin for discriminating 
between sepsis and SIRS was 407 pg/ml, with sensitivity 
and specificity values of 98.6% and 82.6%, respectively 
[48]. In a study of septic children, TREM-1 levels were 
higher in septic shock patients [49].

Hormones and peptide precursors
Adrenomedullin (ADM) is synthesized in different tis-
sues, including the adrenal cortex, kidney, lung, blood 
vessels, and heart. It has biological properties, including 
vasodilating, inotropic, diuretic, natriuretic, and bron-
chodilating. In one study, mid-regional pro adrenomedul-
lin (MR-proADM) was an independent predictor of five 
different organ failures (respiratory, coagulation, cardio-
vascular, neurological, and renal), compared to lactate 
which predicted three (coagulation, cardiovascular and 
neurological), PCT two (cardiovascular and renal) and 
CRP (none) [50]. MR-proADM most accurately identified 
patients with a high likelihood of further disease progres-
sion compared to other biomarkers and clinical scores 
[51]. A total of 1089 individuals with either sepsis (142) 
or septic shock (977) were included in a randomized con-
trolled study. The MR-proADM level within the first 24 h 
after sepsis diagnosis was associated with 7-day mortal-
ity (AUROC 0.72 and p < 0.001) and 90-day mortality 
(AUROC 0.71 and p < 0.001). Patients with declining PCT 
levels but persistently high MR-proADM levels on day-1 
or day-4 had a substantially higher mortality risk of 19.1 
(8.0–45.9) and 43.1 (10.1–184.0), respectively [52]. Adult 
patients hospitalized to ICU had their bioactive-ADM 
levels measured in this retrospective observational study. 
This study comprised a total of 1867 patients, 632 sep-
tic patients, and 267 septic shock patients. The median 
bioactive-ADM was 74 pg/mL in sepsis patients, 107 pg/
mL in septic shock, and 29 pg/mL in non-septic patients. 
The association of elevated bioactive-ADM and mortal-
ity in sepsis patients and the ICU population resulted in 
O.R.s of 1.23 and 1.22, respectively [53]. In addition, the 
MR-proADM is potentially removal by continuous renal 
replacement therapy (CRRT) [54].

N-terminal (N.T.)-prohormone BNP (NT-proBNP) 
is a non-active prohormone produced by the heart and 
released in response to changes in intracardiac pres-
sure. Higher levels of NT-proBNP at 24  h after sepsis 
onset were associated with lower short physical perfor-
mance battery (SPPB) scores at 12  months and lower 
handgrip strength at 6-month and 12-month follow-up. 
NT-proBNP levels during the acute phase of sepsis may 

thus be a valuable indicator of a greater risk of long-term 
impairment in physical function and muscle strength in 
sepsis survivors [55]. In another study, NT-proBNP lev-
els on admission were higher in-hospital non-survivors 
(7908  pg/mL) compared with survivors (3479  pg/mL). 
AUROC curves of admission and 72-h NT-proBNP levels 
for hospital mortality were 0.631 and 0.648, respectively 
[56].

PCT is produced in the thyroid’s C cells and converted 
to calcitonin, with no PCT released into the blood-
stream. During inflammatory processes, PCT is pro-
duced directly by stimulating bacterial components or 
induced by various inflammatory mediators such as IL-6 
and TNF-α. PCT and presepsin had similar performance 
in predicting positive sepsis results with AUROC values 
of 0.75 and 0.73, respectively [57]. Another investiga-
tion gave AUROC values of 0.87 for PCT and 0.78 for 
presepsin in predicting bacteremia [58]. Plasma levels of 
presepsin and PCT were progressively higher in sepsis 
and septic shock than in non-septic patients. Presepsin 
was superior to PCT in diagnosing severe community-
acquired pneumonia [59], while PCT was marginally 
superior in another study of septic patients admitted to 
intensive care [60]. On the other hand, MR-proADM 
had a better predictive value for septic shock. This study 
concluded that PCT, MR-proADM, and presepsin are 
complementary biomarkers that could have utility in the 
management of septic patients. In an intention-to-treat 
study comparing PCT versus  no PCT guidance, there 
was no significant difference in 28-day mortality (25.6% 
PCT versus 28.2% no PCT, p = 0.34). The use of procal-
citonin did not impact investment decisions as measured 
by the frequency of therapeutic and diagnostic interven-
tions. [61].

Neutrophil‑related biomarkers
High levels of resistin collected on day 1 of ICU admis-
sion were associated with an increased likelihood of 
developing new organ failure, whereas high myeloper-
oxidase (MPO) levels on day one were associated with 
an increased risk of developing incident organ failure for 
clotting and kidney systems [62].

Soluble receptors
Soluble trigger receptor expressed in the myeloid cell-1 
(sTREM-1) is a TREM family member. This receptor offers 
excellent potential as a biomarker for infectious diseases 
as it can be measured in different biological fluids, includ-
ing serum, pleural fluid, sputum, and urine [63]. However, 
a meta-analysis of 2418 patients enrolled in 19 studies 
showed serum sTREM-1 had only moderate accuracy in 
diagnosing patients with suspected sepsis [63]. Combining 
sTREM-1 with clinical variables offered more significant 
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Table 1  Different roles of the biomarkers in sepsis

Biomarker Function References

Acute-phase proteins

CRP, hsCRP Response to infection and other inflammatory stimuli [4, 69, 70]

Predictive for increased 28-day mortality in patients with sepsis

Hyperinflammatory phenotype

Complement Prognosis of disease severity [25, 71]

Proteins C5a can be predictive for DIC

PTX-3 Discrimination of sepsis and septic shock [72, 73]

Diagnosis of sepsis and septic shock during the first week in the ICU

Prediction of septic shock

Cytokines and chemokines

IL-10 Hypoinflammatory phenotype [22, 71]

MCP-1 It differentiates patients with septic shock from patients with sepsis [73, 74]

Mortality prognosis at 30 days and six months

TNF-α, IL-1β, IL-6 IL-6 all-cause mortality prognosis at 30 days and six months [27, 74]

IL-1β and IL-6 acute phase of sepsis

It was increased in the hyperinflammatory phenotype

Organ dysfunction prognosis

DAMPs

Calprotectin PCT to distinguish between patients with sepsis and patients without sepsis in the ICU [28]

Predictive for 30-day mortality

HMGB-1 Worst prognosis and higher 28-day mortality [75, 76]

Endothelial cells and BBB markers

Syndecan-1 Increase related to sepsis severity [34]

Discriminative power for DIC and subsequent mortality

VLA-3 (a3β1) Indicative of sepsis [77, 78]

Discrimination of sepsis and SIRS

Ang-1 It stabilizes the endothelium and inhibits vascular leakage by constitutively activating 
the Tie-2 receptor

[79]

Ang-2/Ang-1, Ang-1/Tie-2 ratio has a prognosis for 90-day mortality in sepsis and 
septic shock in the ICU higher than the PCT and SOFA score

Independent and effective predictors of SOFA score changes

Ang-2 It can disrupt microvascular integrity by blocking the Tie-2 receptor, which results in 
vascular leakage

[73, 79]

Individuals with septic shock had higher levels of Ang-2 than those with sepsis

CLDN-5 The absence of CLDN-5 may indicate damage to endothelial cells during sepsis [31]

OCLN Increase related to sepsis severity and positive correlation with SOFA scores [31, 32]

Predictive of mortality

The absence of OCLN in the cerebral microvascular endothelium was related to more 
severe disease and intense inflammatory response

PAI-1 Sepsis severity prognosis [33, 34]

Predictor of mortality

An increase may indicate DIC

sICAM-1 Sepsis severity prognosis [33, 79]

Prognosis of 90-day mortality in patients with sepsis and septic shock in the ICU

S100B It is associated with delirium in septic shock [36, 37, 80]

Prognosis of severe organ dysfunction

Shortest survival in 180 days

Diagnosis of sepsis-associated encephalopathy

E-selectin Sepsis severity prognosis [33]

Predicts mortality
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Table 1  (continued)

Biomarker Function References

Increase related to SOFA and APACHE-II

sFlt-1 Prognosis of sepsis severity and SOFA score, [33]

The prognosis for morbidity and mortality

sVCAM-1 Prognosis of sepsis severity and 28-day mortality [33, 79, 81]

Prognosis of 90-day mortality in patients with severe sepsis and septic shock in the ICU

Risk of septic shock

ZO-1 Prognosis of sepsis severity and correlation with APACHE-II and SOFA scores [31, 32]

Predictor of mortality

Diagnostic capability for MODS

Gut permeability markers

Citrulline The decrease may indicate early acute bowel dysfunction [82, 83]

I-FABP Risk of septic shock [40]

Indicates early intestinal damage in patients with sepsis and septic shock

Zonulin Indicates intestinal permeability during sepsis and SIRS [39]

D-lactic acid Indicates early intestinal damage in patients with sepsis and septic shock [40]

Non-coding RNAs

Lnc-MALAT1 The distinction between septic and non-sepsis patients [41, 42]

Positive correlation with APACHE-II

Sepsis severity prognosis

High risk of ARDS

Predictive for high mortality

The increase can distinguish ARDS from non-ARDS

lnc-MEG3 The increase is predictive of sepsis [43]

28-day mortality risk

miRNA

miR-125a, miR-125b Prognosis of more significant disease severity [44, 84, 85]

Distinguishes patients with sepsis from patients without sepsis

miR-125b: increased risk of mortality in patients with sepsis

miR-125a: risk of sepsis and increased mortality

Membrane receptors, cell proteins, and metabolites

CD64 Prognosis of disease severity [46]

28-day mortality predictor

Early diagnosis of infection

CD68 Prognosis of disease severity [86]

Microglial activation

NFL Indicates risk and severity of sepsis-associated encephalopathy [87]

NFH Indicates risk and severity of sepsis-associated encephalopathy [87]

NSE Diagnosis of sepsis-associated encephalopathy [80, 88]

30-day mortality risk

Risk of delirium

Neuronal injury marker in sepsis

Presepsin Initial diagnosis and sepsis risk stratification [48]

Potential marker to distinguish Gram ( +) and Gram (-) bacterial infection

TREM-1 Sepsis indicator [89–91]

An early distinction between sepsis and SIRS

Predictive of septic shock

Peptide precursor of the hormone and hormone

MR-proADM Discrimination of survivors and non-survivors [92]

Organ dysfunction marker
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mortality discrimination compared to clinical variables 
alone [64]. In a multicenter prospective cohort study, sol-
uble tumor necrosis factor receptor type 1 (sTNFR1) lev-
els > 8861 pg/ml predicted 30-day mortality [65].

Patients with sepsis or septic shock displayed higher 
levels of the soluble form of the urokinase plasminogen 
activator receptor (suPAR), PCT, and lactate on days 1, 2, 
4, and 7 of admission, with lactate and suPAR being the 
best risk stratifies for suspected infection [66]. Levels of 

suPAR and PCT levels were higher in sepsis patients than 
in a SIRS group with AUROC values of 0.89 and 0.82, 
respectively [67]. Serum sPD-L1 levels were increased 
in non-survivors compared with survivors with similar 
prognostic accuracy for 28-day mortality as APACHE-
II and SOFA scores [68]. See Tables 1 and 2 for further 
information, as well as Fig. 1.

Table 1  (continued)

Biomarker Function References

PCT Diagnosis of sepsis [66, 90]

Predicts Bacterial Infection

NT-proBNP In the acute phase of sepsis it indicates a risk of long-term impairment of physical func‑
tion and muscle strength

[55]

Predict mortality risk [52]

Neutrophil, cells, and related biomarkers

Lactate Predictive of mortality [93]

Risk stratification of patients with suspected infection

MPO Increase in patients with DIC [94, 95]

Indicates organ dysfunction

Mortality predictor at 28 and 90 days

Risk of septic shock

NET generation

Resistin Sepsis indicator [96, 97]

Risk of septic shock

28-day mortality predictor

Soluble receptors

sPD-L1 Prognosis of disease severity [4, 68]

28-day mortality predictor

Indicates immunosuppression

suPAR Predictive mortality at 7 and 30 days [66]

Risk of patients with suspected infection

sTNFR-1 Prognosis of 28-day mortality [81, 98]

Risk of septic shock

Risk of delirium

Lipoproteins

LDL-C Protective effect against sepsis [99]

The decrease can cause a risk of sepsis and admission to the ICU

HDL Low levels: mortality prognosis and adverse clinical outcomes [100, 101]

Predictive for MODS

T-chol The decrease has a worse prognosis in sepsis [102]

Ang-1 angiopoietin-1, Ang-2 angiopoietin-2, APACHE-II acute physiology and chronic health evaluation II, ARDS acute respiratory distress syndrome, CD cluster of 
differentiation, CLDN-5 claudin-5, CRP C reactive protein, DAMPs damage-associated molecular patterns, DIC disseminated intravascular coagulation, HDL high-
density lipoprotein, HMGB1 high mobility group box 1, hsCRP high-sensitivity C reactive protein, ICU intensive care unit, I-FABP intestinal fatty acid binding protein, 
IL interleukin, LDL low-density lipoprotein, lnc-MALAT1 long non-coding metastasis-associated lung adenocarcinoma transcript 1, lnc-MEG3 long non-coding RNA 
maternally expressed gene 3, MCP-1 monocyte chemoattractant protein-1, miR-125a micro RNA-125a, miR-125b micro RNA-125b, MODS multiple organ dysfunction 
syndrome, MPO myeloperoxidase, MR-proADM mid-regional pro adrenomedullin, NFL neurofilament light, NFH neurofilament heavy, NSE neuron specific enolase, 
NT-proBNP N-terminal pro-brain natriuretic peptide, OCLN occludin, OR odds ratio, PAI-1 plasminogen activator inhibitor 1, PCT procalcitonin, PTX-3 pentraxin-3), S100B 
calcium-binding protein B, sFlt-1 soluble fms-like tyrosine kinase 1, sICAM-1 soluble intercellular adhesion molecule 1, SIRS systemic inflammatory response syndrome, 
SOFA sequential organ failure assessment, sPD-L1 soluble programmed death ligand 1, sTNFR1 soluble tumor necrosis factor receptor type 1, suPAR soluble form of 
the urokinase plasminogen activator receptor, sVCAM-1 soluble vascular cell adhesion molecule 1, T-chol total cholesterol, TNF-α tumour necrosis factor alpha, TREM-1 
triggering receptor expressed on myeloid cells-1, VLA-3/a3β1 integrin alpha 3 beta 1, ZO-1 zonula-occluden 1
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Table 2  Biomarkers for sepsis, septic shock, and sepsis-associated encephalopathy

Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Acute-phase proteins

CRP, hsCRP Plasma and serum Sepsis = 483 – – 15–20 mg/dl – – ↑ hsCRP hyperinflamma‑
tory phenotype

[22]

Mean age mean = 60.5 – – – – – ↑ hsCRP day 1 to 2, 
95.8%

♂ 54.9% – – – – – ↑ hsCRP, 23 patients 
(25.8%) at 3, 26 patients 
(30.2%) at 6, and 23 
patients (25.6%) at 
12 months

Plasma Sepsis = 43 – – – – 0.51, 0.56, 
and 0.48

CRP, day 1, 3, and 8 to 
predict 30-day mortality 
p = 0.836, p = 0.059, and 
p = 0.819, respectively

[74]

Septic shock n = 93

Age = 26 to 88

Plasma Sepsis = 17 61.54% 52.17% 9 mg/dl – 0.684 ↑ hsCRP sepsis versus 
control group, p = 0.008

[103]

Control = 19

Age = 52.18

♂ 63%

Serum Sepsis = 38 100% 88.40% 8.02 mg/l – 0.98 ↑ CRP in septic patients 
compared to control 
group, p = 0.001

[104]

Septic shock = 31 Con‑
trol = 40

Age = 37 to 95

♂ 57.89%

Serum Sepsis = 27 75.00% 78.00% 7.4 mg/dl – 0.825 ↑ hsCRP sepsis versus 
control group, p = 0.001

[105]

Septic shock = 23 – – – – 0.751 ↑ hsCRP septic shock 
versus sepsis, p = 0.002

Control = 20 – – – 0.686 – ↑ hs-CRP level versus 
SOFA, p < 0.001

Age = 85

♂57.89%

Blood Sepsis = 33 90.70% 98.60% 407 pg/ml - 0.859 ↑ CRP in sepsis patients 
compared in SIRS group, 
p < 0.05

[48]

Severe sepsis = 24

Septic shock = 15

SIRS = 23

Normal = 20

Mean age = 62.1

Serum Sepsis = 119 - - - - - ↑ CRP and SOFA score 
in the sepsis group 
compared to the control 
group, p < 0.05

[46]

Septic shock = 32  ↔ Septic shock group 
when compared with 
sepsis group, p = 0.086

Control = 20 – – – – –  ↔ Diagnosing positive 
infection culture in 
patients with sepsis, 
p = 0.071

– – – – 0.609

Serum Severe sepsis = 34 – – – – –  ↔ CRP did not differenti‑
ate septic shock and 
severe sepsis

[89]

Septic shock = 53

Age = 2 mo to 16 years
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Table 2  (continued)

Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Comple‑
ment

Plasma Sepsis = 20 – – – – – ↑ Sepsis (C4d 3.5-fold; 
Factor Bb 6.1-fold; C3 
0.8-fold; C3a 11.6-fold; 
and C5a 1.8-fold) versus 
control

[25]

Proteins Control = 10 ↑ C5a ↓ SOFA

Age = 85 – – – 0.18 –

♂57.89% –

PTX-3 Plasma Sepsis = 73 – – – 0.36 – ↑ PTX-3 versus APACHE-
II, and SOFA, p = 0.0001

[72]

Control = 77 – – 31.4 ng/ml – – Sepsis versus SIRS, 
p > 0.05

Septic Shock = 140 – – – – – Sepsis versus septic 
shock, p = 0.0001

Age = 26 to 88 – – – – – ↑Sepsis/septic shock 
versus control, p ≤ 0.001

♂57.89% – – – – 0.82 and 
0.73

Sepsis and septic shock 
discrimination on day 1

Plasma Sepsis = 17 – – – – – ↑ PTX-3 sepsis, septic 
shock, and post-surgery 
infection versus control 
group, p < 0.05

[73]

Septic shock = 26 ↑ PTX-3 sepsis shock 
versus sepsis, p < 0.0001

Post-surg. Inf. = 33 – – – – 0.798

Control = 25

Cytokines and chemokines

IL-10 Plasma Sepsis = 208 Con‑
trol = 210

– – – – − 0.161 ↑ miR-126 correlated 
negatively with IL-10, 
p = 0.020

[106]

Plasma Sepsis = 309 – – – – − 0.166 ↑ lncRNA ITSN1-2 cor‑
related negatively with 
IL-10, p = 0.003

[107]

Mean age = 57,3 ± 9,7

Control = 330

Mean age = 55,8 ± 9,7

MCP-1 Plasma Sepsis = 43 – – – – 0.64, 0.51, 
and 0.51

MCP-1, day 1, 3, and 8 to 
predict 30-day mortality, 
p = 0.004, p = 0.948, and 
p = 0.948, respectively

[74]

Septic shock n = 93

Age = 26 to 88

Plasma Sepsis = 17 – – – – – ↑ MCP-1 sepsis, septic 
shock and post-surgery 
infection versus control 
group, p < 0.05

[73]

Septic shock = 26 ↑ MCP-1 sepsis shock 
versus sepsis, p = 0.0059

Post-surg. Inf. = 33 – – – – 0.71

Control = 25

TNF-α, IL-1β, 
IL-6

Serum Sepsis = 288 – – – – – ↑ Sepsis TNF-α, IL-1β, IL-6, 
and IL-8 compared to the 
control group, p < 0.001

[70]

Mean age = 58.2 ± 11.2 ↑ TNF-α, IL-1β, IL-6, and 
IL-8 were negatively 
correlated with surviving 
sepsis patients, p < 0 .001

Control = 290 – – – – − 0.270,

Mean age = 56.8 ± 12.1 − 0.310,

− 0.254, 
and

− 0.256
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Table 2  (continued)

Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Plasma Sepsis = 483 – – 102 pg/dl – – ↑ IL-6, 72 patients 
(74.2%) at 3 months, 62 
(70.5%) at 6 months, and 
59 (66.3%) at 12 months

[22]

Age mean = 60.5

♂ 54.9%

Serum Sepsis = 43 – – – – 0.69, 0.70, 
and 0.68

↑ IL-6, day 1, 3, and 8 to 
predict 30-day mortality, 
p = 0.0001, p = 0.0001, 
and p = 0.012, respec‑
tively

[74]

Septic shock n = 93

Age = 26 to 88

Serum Sepsis = 39 – – 12,704—
111,372

– – ↑ IL-6 septic patients 
with DIC, p = 0.01

[34]

Control = 15 pg/ml

Age ≥ 18 years

DAMPs

Calprotectin Plasma Sepsis = 77 56% 81% 1.3 mg/l – – ↑ Calprotectin, sepsis 
versus trauma patients, 
p < 0.001

[28]

Trauma = 32 – – – – – ↑ Calprotectin at admis‑
sion was ↑ in non-survi‑
vors than in survivors at 
day 30, p < 0.01

HMGB-1 Serum Sepsis = 247 – – 3.6 ng/ml – – ↑ HMGB-1 sepsis versus 
control, p < 0.001

[75]

– – – – 0.51 and 
0.53

HMGB-1, day 0 and 3, 
survivor = non-survivor

– – – – – HMGB-1 does not 
have predictive value 
for organ failure and 
outcome

Endothelial cells and BBB markers

Syndecan-1 Serum Sepsis = 39 – – – – – ↑ Syndecan-1 in sepsis 
versus control, p < 0.0001

[34]

Control = 15 – – – – – ↑ Syndecan-1 non-
survivors on days 1, 2, 
and 4

Age – – – – 0.54 and 
0.59

↑ Syndecan-1 versus 
DIC on day 1 and 
2, p = 0.0004 and 
p = 0.0002, subsequently

Age ≥ 18 years – – 189–1301 ng/
ml

– – ↑ Syndecan-1 in septic 
patient with DIC, p < 0.01

VLA-3 (a3β1) Neutrophil SIRS = 9 – – – – – ↑ α3β1 (VLA-3, CD49c/
CD29) on neutrophils of 
septic patients, p < 0.05

[77]

Sepsis = 15

Control = 7

Sepsis = 6 – – – – – ↑ β1 (CD29), on neutro‑
phils of sepsis patients, 
p < 0.05

[78]

Control = 5

Ang-1 Serum Severe sepsis = 48 – – – – – ↑ Ang-1 severe sepsis 
compared with shock 
septic, p < 0.01

[79]

Septic shock = 54 ↓ Ang-1/Tie-2 in non-
survivors, p < 0.001

Age ≥ 18 years – – 3.81–16.1 ng/
ml

– –
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Table 2  (continued)

Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Plasma SIRS = 943 – – – – – ↑ Ang-1 was associated 
with a reduced risk of 
shock. OR: 0.77

[81]

Sepsis = 330 ↑ Ang-1 was higher in 
survivor versus non-
survivor, p < 0.001

Shock = 216 – – 5719 pg/ml – –

Pneumonia = 169

Others = 152

Age = 55.1 ± 16.1

♂ 63.9%

Ang-2 Serum Severe sepsis = 48 – – – – – ↑ Ang-2 severe sepsis 
compared with shock 
septic, p < 0.02

[79]

Septic shock = 54 ↓ Ang-2/Ang-1 in non-
survivors, p < 0.001

Age ≥ 18 years – – – – –

Plasma SIRS = 943 – – – – – ↑ Ang-2 was associated 
with an increased risk of 
shock, OR: 1.63

[81]

Sepsis = 330 – – 42.063 pg/ml – – ↑ Ang-2 non-survivor, 
p < 0.001

Shock = 216

Pneumonia = 169

Others = 152

Age = 55.1 ± 16.1

♂ 63.9%

CLDN-5 Serum Sepsis = 11 – – – – – ↑ CLDN-5 was not asso‑
ciated with MODS and 
the non-MODS group

[31]

Severe sepsis = 18 – – – – 0.157 and 
0.087

↑ CLDN-5 was not 
correlated with SOFA or 
APACHE score, p = 0.270, 
p = 0.542

Septic shock = 22 – – – – – Did not predict mortality

Serum Sepsis = 11 – – – – – CLDN-5 was absent from 
the endothelium

[32]

Severe sepsis = 18

Septic shock = 22

OCLN Serum Sepsis = 11 – – – – – ↑ OCLN in severe sepsis 
and septic shock than in 
sepsis, p < 0.05

[31]

Severe sepsis = 18 – – – – – ↑ OCLN in non-survivors 
compared with survivors, 
p < 0.01

Septic shock = 22 – – – – 0.337 ↑ OCLN positively 
correlated with SOFA, 
p < 0.016

– – – – 0.224  ↔ OCLN levels were 
not correlated with the 
APACHE-II, p < 0.085
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Table 2  (continued)

Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Brain tissue 
autopsies

Sepsis = 47 – – – – – ↓ OCLN, cerebellar 
endothelium damage, ↑ 
CRP ≥ 100 mg/l

[32]

– – – – – 38% of patients (18/47) 
had no expression of 
OCLN in the BMVECs

– – – – – 34% of patients (16/47) 
had MOFs

– – – – – 74.5% of patients (35/47) 
had septic shock

– – – – – The deceased with BBB 
damage had SOFA scores 
six versus 14, p = 0.04

PAI-1 Plasma Sepsis = 63 – – – – 0.85 ↑ PAI-1 to predict mortal‑
ity, p < 0.05

[33]

Severe sepsis = 61 – – – 0.45 – ↑ PAI-1 correlated with 
the SOFA score at 24 h, 
p < 0.0001

Septic shock = 42 – – – 0.58 – ↑ PAI-1 correlation 
with APACHE-II score, 
p < 0.0001

Age = 60 ± 17 – – – – – ↑ Severe sepsis ↑ sFlt-1, 
p < 0.0001

Serum Sepsis = 39 – – 15.5–49.9 – – ↑ PAI-1 in patients with 
DIC, p = 0.016

[34]

Control = 15 ng/ml

Age ≥ 18 years

sICAM-1 Plasma Sepsis = 63 – – – – – ↑ Severe sepsis ↑ sICAM-
1, p < 0.001

[33]

Severe sepsis = 61 – – – 0.15 – ↑ sICAM-1 correlated 
with SOFA score at 24 h, 
p < 0.03

Septic shock = 42 – ↑ sICAM-1 correlate with 
APACHE-II score, p < 0.05

Age = 60 ± 17 – – – 0.17 –

Serum Severe sepsis = 48 – – 1.297–
1787 ng/ml

- – ↑ sICAM-1 in non-
survivors, p < 0.001

[79]

Septic shock = 54 – – – – – ↑ sICAM-1, predictor 
of 90 day-mortality, 
p < 0.0001

Age ≥ 18 years – – – – – ↑ sICAM-1, septic shock 
compared to severe 
sepsis p < 0.01

S100B Serum Septic shock = 22 – –  > 0.15 μg/l – – ↑ Delirium was present 
in 10/22 of the patients 
(45.5%)

[37]

– – – – – OR: 18.0, for risk of 
developing delirium 
S-100β > 0.15 μg/l

– – – – 0.489 ↑ S100 β correlate 
positively with and IL-6 
p = 0.021
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Table 2  (continued)

Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Serum Sepsis = 104 80.0% and 66.1 and 0.226 and – – ↑ S100B cut-of value for 
day 1 and 3

[36]

Sepsis-associated 
encephalopathy = 59

84.44% 69.49% 0.144 μg/l – – ↑ S100B in sepsis-asso‑
ciated encephalopathy 
day 1 to day 3 compared 
with non- sepsis-asso‑
ciated encephalopathy, 
p < 0.001

non- sepsis-associated 
encephalopathy = 45

– – – – 0.728 and 
0.819

↑ S100B on days 1 and 3 
to predict sepsis-associ‑
ated encephalopathy

– – – – 0.61 ↑ S100B on day 1 to pre‑
dict 180 day-mortality

84.44% 69.49% 0.529 μg/l – 0.731 ↑ S100B on day 3 to pre‑
dict 180 day-mortality

93.33% 50.00% 0.266 μg/l

Serum Sepsis = 21 – – – – 0.082, 
0.082,

↑ S100B did not correlate 
with GCS, EEG pattern, or 
SOFA scores

[108]

Age = 68.7 and 0.124

E-selectin Plasma Sepsis = 63 – – – – 0.77 ↑ Predict mortality [33]

Severe sepsis = 61 – – – – – ↑ Severe sepsis ↑ sE-
selectin, p < 0.001

Septic shock = 42 – – – 0.27 – ↑ sE-selectin correlated 
with SOFA score at 24 h, 
p < 0.0001

Age = 60 ± 17 – – – 0.31 – ↑ sE-selectin correlated 
with APACHE-II score, 
p < 0.0001

sFlt-1 Plasma Sepsis = 63 – – – - 0.85 ↑ sFlt-1 to predict mor‑
tality, p < 0.05

[33]

Severe sepsis = 61 – – – 0.36 – ↑ sFlt-1 associated with 
organ dysfunction

Septic shock = 42 – – – 0.63 – ↑ sFlt-1 correlation with 
↑ IL-6, p < 0.0001

Age = 60 ± 17 – – – 0.6 – ↑ sFlt-1 correlated with 
SOFA score at 24 h, 
p < 0.0001

– – – 0.64 – ↑ sFlt-1 correlated 
with APACHE-II score, 
p < 0.0001

sVCAM-1 Plasma Sepsis = 63 – – – – 0.78 ↑ Predict mortality [33]

Severe sepsis = 61 – – – – – ↑ Severe sepsis ↑ 
sVCAM-1, p < 0.002

Septic shock = 42 – – – 0.45 – ↑ sE-selectin correlated 
with SOFA at 24 h, 
p < 0.0001

Age = 60 ± 17 – – – 0.38 – ↑ sVCAM-1 correlated 
with APACHE-II s, 
p < 0.0001

Serum Severe sepsis = 48 – – 369–467 µg/l – – ↑ sVCAM in non-survi‑
vors, p < 0.001

[79]

Septic shock = 54 – – – – – ↑ sVCAM, predictor 
of 90 day-mortality, 
p < 0.0001

Age ≥ 18 years – – – – – ↑ sVCAM, septic shock 
compared to severe 
sepsis, p < 0.01
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Table 2  (continued)

Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Plasma SIRS = 943 – – – – – ↑ s-VCAM was associated 
with an increased risk of 
shock. OR: 1.63

[81]

Sepsis = 330 ↑ sVCAM-1 non-survivor, 
p < 0.001

Shock = 216 – – 819 pg/ml – –

Pneumonia = 169

Others = 152

Age = 55.1 ± 16.1

♂ 63.9%

ZO-1 Serum Sepsis = 11 – – – – – ↑ ZO-1 in severe sepsis 
and septic shock com‑
pared to sepsis, p < 0.05

[31]

Severe sepsis = 18 – – – – – ↑ ZO-1 in non-survivors 
compared with survivors, 
p < 0.01

Septic shock = 22 – – – – – ↑ ZO-1 in MODs group

– – – – 0.502 and 
0.380

↑ ZO-1 was positively 
correlated with SOFA 
and APACHE-II scores, 
p < 0.001 and p < 0.006

Brain tissue 
autopsies

Sepsis = 47 – – – – – ZO-1 is absent from 
the endothelial cells 
in the cerebrum and 
endothelium

[32]

Gut permeability markers

Citrulline Plasma Septic shock = 16 – – – – – Citrulline was positively 
correlated with plasma 
arginine (r2 = 0.85) and 
glutamine (r2 = 0.90) 
concentrations in both 
groups, and significantly 
inversely correlated with 
CRP (r2 = 0.10)

[109]

(Survivors = 8 ↓ Citrulline in patients 
with digestive bacterial 
translocation

Age = 60 ± 16.5

Non-survivor = 8

Age = 62.9 ± 18.5 – – – – –

Plasma Sepsis/ARDS = 44 – – – – – ↓ Citrulline in all patients [83]

Sepsis/NO ARDS = 91 – – 6 and 10.1 uM – – ↓ ARDS compared to 
the no ARDS group, 
p = 0.002

Age = 55 ± 16 – – – – – Citrulline levels were 
associated with ARDS

I-FABP Serum Sepsis = 30 – – 27.46 and 
36.95 μg/l

– – ↑ I-FABP sepsis and sep‑
tic shock group, p < 0.01

[40]

Septic shock = 30 – ↑ I-FABP no difference 
between survivors and 
non-survivors

Control = 20 – – – –
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Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Zonulin Plasma Sepsis = 25 – – 6.61 ng/ml – – ↑ Zonulin sepsis com‑
pared to post-surgical 
and control groups, 
p = 0.008

[39]

Post-surgical = 18 – – – – – No difference between 
survivors and non-
survivors, p = 0.305

Control = 20 – – – – 0.01, 
− 0.46, − 
0.19, and 
0.10

↑ Zonulin, no correlation 
with CRP, APACHE-II, 
SAPSII, SOFA, p = 0.997, 
p = 0.077, p = 0.491, and 
p = 0.671, subsequently

D-lactic acid Serum Sepsis = 30 – – 15.32 and 
27.95 mg/l

– – ↑ D-lactic acid sepsis 
and septic shock groups, 
p < 0.01

[40]

Septic shock = 30 – – – – ↑ D-lactic acid is no dif‑
ferent between survivors 
and non-survivors

Control = 20

Non-coding RNAs

Lnc-MALAT1 Plasma Sepsis = 196 – – – – 0.866 ↑ Lnc‐MALAT1/miR‐125a 
axis in sepsis patients

[41]

Age = 58.2 ± 11.2 – – – – – ↑ Lnc‐MALAT1 relative 
expression in sepsis 
patients

Control = 196 – – – – – Lnc-MALAT1/miRNA-
125a axis discriminates 
sepsis patients from 
healthy controls and 
exhibits a positive 
association with general 
disease severity, organ 
injury, inflammation 
level, and mortality in 
sepsis patients

Age = 57.1 ± 12.1

Plasma Sepsis = 152 68.50% 65.90% – – 0,674 
(ARDS

↑ lnc-MALAT1 correlates 
with raised ARDS risk, 
disease severity, and 
increased mortality in 
septic patients

[42]

Age = 59.7 ± 11.2 38.30% 88.60% – – 0.651 High mortality in sepsis 
patients

– – – – – Lnc-MALAT1 expression 
was positively correlated 
with inflammatory factor 
levels (CRP, PCT, TNF-α, 
IL-1β, IL-6, and IL-17) in 
septic patients

Plasma Sepsis = 120 – – – – 0.91 ↑ lnc-MALAT1 in septic 
patients, distinguishing 
patients with sepsis from 
control

[110]

Control = 60 – – – – 0.836 Septic shock patients 
compared to patients 
without septic shock

– – – – 0.886 Non-survivors compared 
to surviving patients

– – – – – ↑ Lnc-MALAT1 expres‑
sion was an independent 
risk factor for sepsis, 
septic shock, and poor 
prognosis
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Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

lnc-MEG3 Plasma Sepsis = 219 – – – – 0,887 ↑ lnc‐MEG3 expression 
predicting elevated 
sepsis risk

[43]

Control = 219 – – – – 0.934 lnc-MEG3/miR-21 axis 
predicting elevated 
sepsis risk

Age = 56.5 ± 10.3 – – – – 0.801 miR-21 was predicting 
reduced sepsis risk

– – – – 0.704 lnc‐MEG3 predicting 
28‐day mortality risk

– – – – 0.669 lnc‐MEG3/miR‐21 axis 
predicting 28‐day mor‑
tality risk

– – – – – ↑ lnc-MEG3/miR-21 axis, 
while ↓ miR-21 expres‑
sion was decreased in 
sepsis patients

- lnc-MEG3 expression 
and lnc‐MEG3/miR‐21 
axis positively cor‑
related, whereas miR‐21 
expression negatively 
correlated with APACHE-
II, SOFA, and inflamma‑
tory molecules in sepsis 
patients

↑ lnc‐MEG3 rela‑
tive expression and 
lnc‐MEG3/miR‐21 axis 
in deaths than that in 
survivor

miRNA

miR-125a, 
miR-125b

Plasma Sepsis = 120 – – – – 0.557  ↔ miR‐125a expression 
between groups of 
patients and not dif‑
ferentiate sepsis patients 
from controls

[84]

Control = 120 – – – – 0.658 ↑ miR-125b in sepsis 
patients and can dis‑
tinguish sepsis patients 
from control healths

59.1 ± 12.1 – – – – – Positive correlation 
between miR‐125a 
and miR‐125b in sepsis 
patients and controls

– – – – – miR-125a was not cor‑
related with APACHE-II 
or SOFA score, while 
miR-125b was positively 
associated with both 
scores

– – – – – ↓ miR-125b in survivors 
compared with non‐
survivors

– – – – – ↑ miR-125b, but not miR‐
125a, is correlated with ↑ 
disease severity, inflam‑
mation, and ↑ mortality 
in sepsis patients
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Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Plasma Sepsis = 126 – – – – 0.817 ↓ miR-125a good predic‑
tive values for sepsis risk

[85]

Control = 125 – – – – 0.843 ↑ lnc‐ANRIL/miR‐125a 
axis for sepsis risk

Age = 56.6 ± 13 – – – – 0.745 ↓ miR‐125a expression 
in deaths than those in 
survivors

– – – – 0.785 ↑ lnc‐ANRIL/miR‐125a 
differentiating deaths 
from survivors

– – – – – lnc-ANRIL/miR-125a axis 
positively correlated, and 
miR-125a was negatively 
associated with disease 
severity and inflamma‑
tion in sepsis patients

Plasma Sepsis = 150 – – – – 0.749 and 
0.839

↑ miR-125a and miR-
125b distinguish sepsis 
patients from controls

[111]

Age = 56.9 ± 10.3 – – – – 0.588 miR-125a to predict 
28-day mortality risk

Control = 150 – – – – 0.699 miR-125b had a potential 
value in predicting 
elevated 28-day mortal‑
ity risk

Age = 55.1 ± 11.4 – – – – – miR-125a failed to pre‑
dict the 28-day mortality 
risk in sepsis patients

– – – – – 1. The predictive value of 
miR‐125b for sepsis risk

– – – –

miR‐125a and miR‐125b 
relative expressions were 
positively associated 
with disease severity in 
sepsis patients

Plasma Sepsis = 196 – – – – – ↑ lnc‐MALAT1/miR‐125a 
axis in sepsis patients, 
p < 0.001

[41]

Age = 58.2 ± 11.2 – – – – 0.931 lnc-MALAT1/miRNA-125a 
axis discriminates sepsis 
patients from control

Control = 196 – – – – 0.866 lnc-MALAT1 discrimi‑
nates sepsis patients 
from control

Age = 57.1 ± 12.1
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Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Membrane receptors, cell proteins, and metabolites

CD64 Blood Sepsis = 119 – – – – – ↑ nCD64 and SOFA score 
in the sepsis compared 
to control p < 0.05

[46]

Septic shock = 32 – – 4.1, 9, and 2.2 
MFI

– – ↑ Sepsis and septic 
shock compared to 
control p < 0.001

Control = 20 – – – – 0.879 nCD64 in bacterial 
infection

– – – – 0.888 ↑ AUC of nCD64 
combined with SOFA 
than that of any other 
parameter alone or in 
combination

– – – – 0.85 CD64 for predicting 
death

– – – – 0.916 Combination of nCD64 
and SOFA score

– – 4.1 versus 8.9 
MFI

– – ↑ nCD64 survivors versus 
non-survivors p < 0.001

Blood Sepsis = 20 0.82, 0.67 
and 0.67

0.67, 0.76, 
and 0.76

 < 90.40, < 3.01, 
and < 0.825

– 0.843, 
0.824, and 
0.804

↑ CD64, ↓CD13, and 
↓HLA-DR predict mortal‑
ity in septic patients

[45]

Age = 54.35 ± 17.97

Control = 20

Age = 51.55 ± 13.37

CD68 Brain Septic shock = 16 – – – – – ↑CD68 in the hippocam‑
pus (1.5 fold), putamen 
(2.2 fold), and cerebellum 
(2.5 fold) in patients 
with sepsis than control 
patients

[86]

Age = 8.9–71.7

Control = 15

Age = 65.2–87.4

NFL CSF and plasma Sepsis = 20 – – 1723.4, 1905.2 – – Day 1 – sepsis versus 
control p > 0.05

[87]

Age = 66.7 ± 14.0 – – 2753.1, 2208.0 – – Day 3 – sepsis versus 
control p > 0.05

Control = 5 – – 5309.6, 
3701.3 pg/ml

– – Day 7 – sepsis versus 
control p > 0.05

Age = 61.2 ± 24.7 – – – – – ↑ NFL in patient septic 
compared to control 
from day 1 p = 0.0063

– – – – – ↑ NFL patients with sep‑
sis-associated encepha‑
lopathy p = 0.011

– – – – – ↑ NFL correlated with 
the severity of sepsis-
associated encephalopa‑
thy p = 0.022

– – – – ↑ NFL at CSF in non-
survivors compared to 
survivors p = 0.012

NFH CSF and plasma Sepsis = 20 – – 17.6, 100.3 - - Day 1 – sepsis versus 
control p > 0.05

[87]

Age = 66.7 ± 14 – – 18.9, 163.1 – – Day 3 – sepsis versus 
control p > 0.05

Control = 5 – – 164.3, 519.9 – – Day 7 – sepsis versus 
control p = 0.016

Age = 61.2 ± 24.7 – – ng/ml – – ↑ NFH from day 1 in sep‑
tic patients p = 0.043
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Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

NSE Serum Sepsis/ sepsis-associated 
encephalopathy = 48

– – 24.87 and 
15.49 ng/ml

– – ↑ NSE in sepsis-associ‑
ated encephalopathy 
group versus no- sepsis-
associated encephalopa‑
thy group p = 0.003

[80]

Age = 56 ± 16 Sepsis/
non- sepsis-associated 
encephalopathy = 64

24.15 ng/ml Diagnostic of sepsis-
associated encepha‑
lopathy

Age = 52 ± 17 82.80% 54.20% – – 0.664  ↔ NSE, sepsis-survivors 
versus sepsis-non-survi‑
vors p = 0.108

– – – –

Plasma Sepsis = 124 – –  > 12.5 ug/l – – 23.3%, increased risk 
of 30-day mortality, 
p = 0.006, and a 29.3% 
increased risk of delirium 
p = 0.005

[88]

Mean age = 52–71 – – – – – ↑ NSE is associated with 
mortality p = 0.003, and 
delirium in critically ill 
septic patients p < 0.001

CSF and plasma Sepsis/ sepsis-associated 
encephalopathy = 12

– – Eight versus 
3.8 ng/ml

– – ↑ CSF NSE in sepsis 
group compared to 
controls p < 0.05

[112]

Control = 21  ↔ Plasma NSE sepsis 
group versus control 
group

Mean age = 67.8 ± 1 2.1 – – – – –

Presepsin Blood Sepsis = 33 90.70% 98.60% 407 pg/ml – 0.954 ↑ Presepsin in sepsis 
patients compared to 
SIRS group p < 0.05

[48]

Severe sepsis = 24 ↑ Presepsin and  
APACHE-II score in severe 
sepsis group than sepsis 
group p < 0.05

Septic shock = 15 – – – – – ↑ Presepsin 
and  APACHE-II score in 
septic shock group com‑
pared to severe sepsis 
group p < 0.05

SIRS = 23

Normal = 20 – – – – –

Mean age = 62.1

TREM-1 Serum Severe sepsis = 34 – – 129 pg/ml 
versus 105 pg/
ml

– – ↑ TREM-1 levels in septic 
shock compared to 
severe sepsis

[89]

Septic shock = 53 – – – – –  ↔ TREM-1 did not differ‑
entiate between septic 
shock and severe sepsis

Age = 2 mo to 16 years 56% 60% 116.47 pg/ml – 0.62 Predict septic shock

52% 71% 116.47 pg/ml – 0.63 Predict mortality

– – – – –  ↔ TREM-1 non-survivors 
versus survivors

Serum SIRS = 38 73.30% 71.10%  ≥ 133 pg/ml – – sTREM-1 cut-off for sepsis [113]

Sepsis = 52 – – – – – ↑ sTREM-1 in sepsis 
group p = 0.001

Age = 20 to 92 – – – – – ↑ sTREM-1 in the patients 
with positive blood 
culture p = 0.002
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Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Plasma and 
leukocytes

Septic shock = 60 Post‑
operative = 30

100% 98.30% 30.0 pg/ml – – ↑ sTREM-1 plasma in 
septic shock compared 
to control and postop‑
erative groups p < 0.05

[91]

Control = 30 – – – – – ↑ sTREM-1 compared 
with postoperative 
group p < 0.05

– – – – 0.955 ↑ TREM-1 expression on 
human monocytes of a 
septic shock compared 
to control and postop‑
erative groups p < 0.05

Peptide precursor of the hormone and hormone

MR-proADM Plasma Sepsis/bacterial iso‑
late = 39

78% 74.20%  ≥ 1.5 – 0.82 ↑ MR-proADM sepsis 
versus control p < 0.0001

[92]

Sepsis w/bacterial 
isolate = 23

80% 89.36%  ≥ 1.70 – 0.92 ↑ MR-proADM septic 
shock versus control 
p < 0.0001

Septic shock = 47 77.40% 59.60%  > 3.00 – 0.7 ↑ MR-proADM septic 
shock versus sepsis 
p < 0.0001

Control = 50 – – 4.37 versus 
2.34 nmol/l

– – ↑ MR-proADM, non-
survivor versus survivor 
p < 0.0001

Bio-ADM Sepsis = 632 – – – – Median sepsis 
patients = 74 pg/mL; 
septic shock = 107 pg/
mL, and 29 pg/mL in 
non-septic patients

[53]

Septic shock = 267 – – – Mortality in sepsis 
patients OR of 1.23

Non-septic = 1235 – – – – ↑ Dialysis: OR 1.97 in 
sepsis patients

– – 70 pg/mL ↑ bio-ADM ↑ Use of 
vasopressors, OR 1.33

– – 108 pg/mL – Survivors and non-
survivors in sepsis

– – – Youden’s index derived 
threshold of performed 
better

– – – ↑ bio-ADM non-survivors

–

–

–

PCT Serum Sepsis = 59 – – – – – ↑ PCT p < 0.0005 [66]

Severe sepsis/septic 
shock = 71

– – 0.67 versus 
3.81

– – Survivor versus non-
survivor at seven days

Mean age = 80 – – 0.48 versus 
1.82 ng/mL

– – Survivor versus non-
survivor at 30 days

Serum SIRS = 38 65.79% 67.33% 1.57 ng/ml – – PCT cut-off for sepsis [113]

Sepsis = 52 – – – – – ↑ PCT in sepsis group, 
p = 0.01

Age = 20 to 92
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Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Serum Sepsis = 79 – – – – – ↑ PCT concentrations in 
patients with sepsis and 
infection

[114]

Age = newborn to 12 ↓ PCT concentrations 
with antibiotic treatment

Control = 21 – – – –

Age = newborn to 10

Blood Sepsis = 119 – – 17.1, 1.8, and 
0.04 ng/ml

– – ↑ PCT septic shock and 
sepsis compared to the 
control group p < 0.001

[46]

Septic shock = 32 – – 1.8 and 9.2 ng/
ml

– – ↑ PCT levels in survivors 
versus non-survivors 
p > 0.001

Control = 20

Blood Sepsis = 33 90.70% 98.60% 407 pg/ml – 0.874 ↑ PCT sepsis patients 
compared to SIRS group 
p < 0.05

[48]

Severe sepsis = 24 – – – – – ↑ PCT and APACHEII 
score in severe sepsis 
group compared to 
sepsis group p < 0.05

Septic shock = 15

SIRS = 23

Normal = 20

Mean age = 62.1

Plasma Sepsis and shock sep‑
tic = 1089

 ↔ There was no statistic 
difference in the primary 
outcome regarding PCT-
guidance 27.9% versus 
no PCT-guidance 22.9% 
to predict mortality 
p = 0.18

[61]

PCT-guidance n = 279  ↔ PCT-guidance 
versus no PCT-guidance 
there was no statistic 
difference in 28-day 
mortality, 25.6% versus 
28.2% p = 0.34

No PCT-guidance n = 267

Serum Severe sepsis = 34 – – 129 pg/ml 
versus 105 pg/
ml

– –  ↔ PCT did not differenti‑
ate septic shock from 
severe sepsis

[89]

Septic shock = 53

Age = 2 mo to 16 years

NT-proBNP Serum Sepsis = 60 – – 1.209 ng/l – – ↑ NT-proBNP level 
at 24 h after sepsis 
diagnosis

[55]

Severe sepsis = 89 – – – – – ↑ NT-proBNP levels 
at 24 h after sepsis 
onset were associated 
with ↓ SPPB scores at 
12 months p < 0.05, and 
↓ handgrip strength at 
six and 12-month follow-
up p < 0.001

Septic shock = 47

Age = 59.1 ± 15.1
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Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Plasma Sepsis = 142 4 (2.6–8.8) ver‑
sus 8.2 nmol/L 
(5.2–12.6)

- ↑ NT-proBNP levels in 
non-survivors com‑
pared with survivors 
p < 0.01. ↔ CRP did not 
change in survivors and 
non-survivors

[52]

Septic shock = 947 - ↑ NT-proBNP prediction 
of 28-day mortality in 
total population, sepsis 
group, and shock septic 
group, respectively

0.73, 0.73, 
and 0.72

Neutrophil, cells, and related biomarkers

Lactate Plasma Sepsis = 59 – – – – ↑ Lactate p < 0.0005 [66]

Severe sepsis/septic 
shock = 71

– – 1.7 versus 3.4 – Survivor versus non-
survivor at seven days

Mean age = 80 – – 1.6 versus 2.2 – Survivor versus non-
survivor at 30 days

– – mmol/l 0.79 and 
0.77

Predictors of mortality at 
7 and 30 days p = 0.001

Serum Non- sepsis-associated 
encephalopathy = 2513 
Sepsis-associated 
encephalopathy = 2474

– – – – – ↑ Lactate predicted 
30-day mortality of 
patients with sepsis-asso‑
ciated encephalopathy, 
OR: 1.19 p < 0.0005

[93]

Blood Sepsis = 33 90.70% 98.60% 407 pg/ml – 0.859 and 
0.723

↑ Lactate and APACHE-II 
score in severe sepsis 
group compared to 
sepsis group p < 0.05

[48]

Severe sepsis = 24 – – – – – ↑ APACHE-II score and 
lactate in septic shock 
group when compared 
with severe sepsis group 
p < 0.05

Septic shock = 15

SIRS = 23

Normal = 20

Mean age = 62.1

Serum Severe sepsis = 34 – – – – –  ↔ Lactate did not dif‑
ferentiate septic shock 
from severe sepsis

[89]

Septic shock = 53

Age = 2 mo to 16 years

MPO Plasma Sepsis = 957 – – 128.1 ng/ml – – ↑ MPO day 1 and 
progressively decreased 
until day 7

[94]

– – – – – ↑ MPO increase on days 
on days 1, 2, and 7 in 
90-day non-survivors 
p < 0.003, p = 0.03, and 
p = 0.001
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Septic shock = 55 – – – – – ↑ MPO-DNA and cf-DNA 
in patients with septic 
shock on day 1 p < 0.01

[95]

Control = 13 – – – – – ↑ MPO-DNA on days 
3 and 7 of sepsis was 
associated with 28-day 
mortality p < 0.01

Mean age = 68 – – – 0.303 
and 
0.434

– ↑ MPO-DNA on day 3 
and 7 positive correlation 
with SOFA score p = 0.04 
and p = 0.03, subse‑
quently

♂ = 71%

Resistin Plasma Sepsis = 957 – – 192.9 ng/ml – – ↑ Resistin on day one 
and progressively 
decreased until day 7

[94]

Mean age = 70 – – – – – ↑ Resistin increase on 
days 1, 2, and 7 in 90-day 
non-survivors p < 0.001

♂ = 60%

Serum Sepsis = 50 72%, 80%, 
and 100%

82%, 95%, 
and 100%

5.2, 6.1, and 
7,5 ng/ml

– – ↑ Resistin levels on day 
1, 4, and 7

[115]

Patient without sep‑
sis = 22

– – – – 0.864, 
0.987, and 
0.987

↑ Resistin levels on days 
1, 4, and 7 were associ‑
ated with sepsis

Control = 25

Age ≤ 12

Serum Sepsis = 60 – – 36.45 – – ↑ Resistin in sepsis/septic 
shock groups p = 0.001

[96]

Septic shock = 42 – – 48.13 versus 
31.58

– – ↑ Resistin levels in non-
survivors versus Survivors 
on day 1 and 7 p < 0.001 
and p < 0.001

Control = 102 – – 46.20 versus 
25.22

– – ↑ Resistin septic shock 
versus sepsis on day 
1 and 3 p < 0.001 and 
p < 0.001

40.8 versus 
33.4

37.1 versus 
27.4

µg/l

Soluble receptors

sPD-L1 Serum Sepsis = 483 – – 0.16 ng/ml – – ↑ sPD-L1 immunosup‑
pression phenotype, ↑ 
risk of hospital readmis‑
sion and mortality, 
OR = 8.26

[22]

Mean age = 60.5 ↑ sPD-L1, 45 (46.4%) at 
3 months, 40 (44.9%) at 
6 months, and 44 (49.4%) 
at 12 months

♂ 54.9% – – – – – ↑ sPD-L1 to predict 
28-day mortal‑
ity ≅ APACHE-II and SOFA 
scores

– – – – –
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Serum Sepsis = 91 – – 2.09 ng/ml – – ↑ sPD-L1 and sPD-1 
in septic patients 
p = 0.0001

[68]

Control = 29 – – – – – ↑ sPD-L1 increased in 
non-survivors p < 0.05

– – – – 0.71 ↑ sPD-L1 level to predict 
28-day mortality

suPAR Serum Sepsis = 59 – – – – – ↑ suPAR, p < 0.0005 [66]

Severe sepsis/septic 
shock = 71

– – 6.9 versus 9.8 – – Survivor versus non-
survivor at seven days

Mean age = 80 – – 6.4 versus 9.3 – – Survivor versus non-
survivor at 30 days

– – ng/ml 0.72 and 
0.77

Predictors of mortality at 
7 and 30 days p = 0.006

– – – – – ↓ suPAR from day 1 to 
day seven sepsis and 
severe sepsis/septic 
shock p < 0.0005

Serum Sepsis = 60 – – 13 – – ↑ suPAR in sepsis and 
septic shock

[96]

Septic shock = 42 – – 10.5 versus 
14.1

– – ↑ suPAR in septic shock 
compared with sepsis on 
day one but not on day 
7 p < 0.04 and p = 0.68, 
subsequently

Control = 102 11.3 versus 
12.9 μg/l

sTNFR-1 Plasma SIRS = 943 – – 7719 versus 
18,197

– – ↑ sTNFR-1 in non-
survivor versus survivor, 
p < 0.001

[81]

Sepsis = 330 – – pg/ml – – ↑ sTNFR-1 sepsis com‑
pared to SIRS p < 0.001

Shock = 216

Pneumonia = 169

Others = 152

Age = 55.1 ± 16.1

♂ 63.9%

Plasma No delirium = 47 – – 3.843 and 
10.250 pg/ml

– – ↑ sTNFR1 and sTNFR2 
delirium cutoff p = 0.005

[98]

Delirium = 31 – – – – – ↑ sTNFR1 and sTNFR2 
in delirium group com‑
pared with non-delirium 
p = 0.005, and p = 0.003, 
subsequently

OR: 18 to sTNFR1, 
p = 0.004 and OR: 51 to

STNFR2, p = 0.006

– – – – –
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Table 2  (continued)

Biomarker Sample Demographic Specificity 
(%)

Sensitivity 
(%)

Cut-off R2 AUC​ Clinical relevance References

Lipoproteins

LDL Serum Sepsis = 594 – – – – – Risk of sepsis, OR, 0.86, 
p = 0.001and admission 
to the ICU, OR, 0.85; 
p = 0.008; but not hospi‑
tal mortality, OR,

[99]

↓Quartile greater risk 
of sepsis; OR, 1.48; and 
admission to the ICU, 
OR, 1.45, versus highest 
quartile

 ↔ When comorbidities 
were considered

HDL Serum Sepsis = 63 – – – – – ↓ HDL in non-survivors 
on days 1 to 4

[100]

Mean age = 72 – – – – 0.84 Predicts mortality within 
30 days

80% 92% 20 mg/dl – – 83% accuracy to predict 
30-day overall mortality

– – – – – HDL < 20 mg/dl increases 
attributable mortality, 
risk of prolonged ICU 
stay, and hospital-
acquired infection rate

Plasma Suspected sepsis = 200 0.690 0.716 30.9 mg/dl – 0,749 MODS predictor [101]

0.699 0.857 25,1 mg/dl – 0,818 Mortality in 28 days

– –  < 25.1 mg/dl – – ↑ Mortality, p < 0.0001 in 
28 days and p = 0.0007 
in 90 days

– – – – – 74% of patients with 
HDL < 25.1 mg/dl 
required ICU compared 
to 35% above cutoff; 
development of severe 
acute renal dysfunction 
was 47% versus 21%, 
respectively; multiple 
organ dysfunction was 
60% versus 25%; and 
mechanical ventilation 
was 53% versus 21%

– – – – – ↓ HD, the 28-day mortal‑
ity is more than ten-fold 
higher (17.6% versus 
1.5%) and a mean of 
6.2 fewer days without 
mechanical ventilation 
and vasopressor support

T-chol Serum Sepsis = 136 – – – – – ↓ T-chol associated with 
risk of death in septic 
patients p < 0.05

[102]

Ang-1 angiopoietin-1, Ang-2 angiopoietin-2, APACHE-II acute physiology and chronic health evaluation II, ARDS acute respiratory distress syndrome, AUC​ area under the 
curve, BBB blood–brain barrier, BMVEC brain microvascular endothelial cells, CD cluster of differentiation, CLDN-5 claudin-5, CRP C reactive protein, CSF cerebrospinal fluid, 
DAMPs damage-associated molecular patterns, DIC disseminated intravascular coagulation, EEG electroencephalography, GCS Glasgow coma scale, HDL high-density 
lipoprotein, HLA-DR human leukocyte antigen, HMGB1 high mobility group box 1, hsCRP high-sensitivity C reactive protein, I-FABP intestinal fatty acid binding protein, IL 
interleukin, LDL low-density lipoprotein, lnc-ANRIL long non-coding antisense non-coding RNA in the INK4 locus, lnc-MALAT1 long non-coding metastasis-associated lung 
adenocarcinoma transcript 1, lnc-MEG3 long non-coding RNA maternally expressed gene 3, lncRNA long non-coding RNA, MCP-1 monocyte chemoattractant protein-1, 
miR-125a micro RNA-125a, miR-125b micro RNA-125b, MODS multiple organ dysfunction syndrome, MOF multiple organ failure, MPO myeloperoxidase, MR-proADM mid-
regional pro adrenomedullin, NFL neurofilament light, NfH neurofilament heavy, NSE neuron specific enolase, NT-proBNP N-terminal pro-brain natriuretic peptide, OCLN 
occludin, OR odds ratio, PAI-1 plasminogen activator inhibitor 1, PCT procalcitonin, PTX-3 pentraxin-3, RNA ribonucleic acid, S100B calcium-binding protein B, sE-Selectin 
soluble E-selectin, sFlt-1 soluble fms-like tyrosine kinase 1, sICAM-1 soluble intercellular adhesion molecule 1, SIRS systemic inflammatory response syndrome, SOFA 
sequential organ failure assessment, sPD-1 soluble programmed death protein 1, sPD-L1 soluble programmed death ligand 1, SPPB short physical performance battery, 
sTNFR1 soluble tumor necrosis factor receptor type 1, sTNFR2 soluble tumor necrosis factor receptor type 2, sTREM-1 soluble triggering receptor expressed on myeloid cells 
1, suPAR soluble form of the urokinase plasminogen activator receptor, sVCAM-1 soluble vascular cell adhesion molecule 1, T-chol total cholesterol, TNF-α tumour necrosis 
factor alpha, TREM-1 triggering receptor expressed on myeloid cells-1, VLA-3/a3β1 integrin alpha 3 beta 1, ZO-1 zonula-occluden 1). ↑ increase, ↓ decrease, ↔ no difference
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Conclusion
Despite significant advances in treating septic patients, 
this disease continues to be associated with high mor-
tality rates and high long-term cognitive dysfunction. 
Extensive research in the area is being performed to 
validate biomarkers, facilitate sepsis diagnosis, and 
allow an early intervention that, although primarily 
supportive, can reduce the risk of death. Sepsis some-
times shows a hyperinflammatory response pattern and 
may be followed by an immunosuppressive phase, dur-
ing which multiple organ dysfunction is present. A bio-
marker or a panel of biomarkers could be a new avenue 
to predict, identify, or provide new approaches to treat 
sepsis.
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