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Abstract

Background: T and B cell receptor (TCR, BCR) repertoires constitute the foundation of adaptive immunity. Adaptive
immune receptor repertoire sequencing (AIRR-seq) is a common approach to study immune system dynamics.
Understanding the genetic factors influencing the composition and dynamics of these repertoires is of major scientific
and clinical importance. The chromosomal loci encoding for the variable regions of TCRs and BCRs are challenging to
decipher due to repetitive elements and undocumented structural variants.

Methods: To confront this challenge, AIRR-seq-based methods have recently been developed for B cells, enabling
genotype and haplotype inference and discovery of undocumented alleles. However, this approach relies on
complete coverage of the receptors’ variable regions, whereas most T cell studies sequence a small fraction of that
region. Here, we adapted a B cell pipeline for undocumented alleles, genotype, and haplotype inference for full and
partial AIRR-seq TCR data sets. The pipeline also deals with gene assignment ambiguities, which is especially
important in the analysis of data sets of partial sequences.

Results: From the full and partial AIRR-seq TCR data sets, we identified 39 undocumented polymorphisms in T cell
receptor Beta V (TRBV) and 31 undocumented 5′ UTR sequences. A subset of these inferences was also observed using
independent genomic approaches. We found that a single nucleotide polymorphism differentiating between the two
documented T cell receptor Beta D2 (TRBD2) alleles is strongly associated with dramatic changes in the expressed
repertoire.

Conclusions: We reveal a rich picture of germline variability and demonstrate how a single nucleotide
polymorphism dramatically affects the composition of the whole repertoire. Our findings provide a basis for
annotation of TCR repertoires for future basic and clinical studies.
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Background
The immune system’s success in fighting countless evolv-
ing pathogens depends on a dynamic and diverse set of
B and T cell receptors. Due to the longevity of immuno-
logical memory, high-throughput sequencing of adap-
tive immune receptor repertoires (AIRR-seq) provides
detailed insights into the past and present encounters of
the human immune system [1]. It can teach us about
fundamental immune processes and reveal dysregulation,
with broad implications for biomedicine. B and T cell
receptors are assembled within B and T cells, respectively,
during differentiation from hematopoietic stem cells, by
a complex process involving somatic recombination of a
large number of germline-encoded Variable (V), Diver-
sity (D), and Joining (J) gene segments, along with junc-
tional diversity in the form of addition and subtraction of
nucleotides at the boundaries where these segments are
joined together [2]. This V(D)J recombination process cre-
ates a diverse repertoire of receptors that together with
the innate immune system form the first line of defense
against pathogens.
Genetic factors are expected to influence the structure

and functionality of AIRRs [3, 4]. However, understanding
these genetic effects is confounded by lack of knowledge
about the population genetics of the TCR and BCR encod-
ing genomic loci, and the special challenges involved in
describing the germline gene set of any individual [5]. The
lack of knowledge about these loci is due to difficulties in
reliably mapping repetitive elements and undocumented
structural variations with short-read sequencing. Many
TCR genes were reported in the decade after their first
discovery [6]. Complete sequences of the TCR encoding
loci were reported in 1985 [7–9], and this led to the
development of the TCR encoding gene nomenclature
by the ImMunoGeneTics (IMGT) group [10]. Since
then, very few allelic variants have been entered into the
IMGT reference directories of germline genes. In fact,
no new allelic variants of the TCR variable region genes
have been named this century despite published studies
suggesting that the IMGT TCR reference directory (www.
imgt.org/download/V-QUEST/) may be far from
complete [11–13].
Until recently, there has been a similar lack of attention

paid to the documentation of BCR encoding loci, because
the direct genomic sequencing of these loci is also very
challenging [14, 15]. This changed with the development
of a method for targeted long-read direct sequencing of
the BCR heavy chain encoding locus [16], and with the
realization that BCR encoding undocumented germline
alleles and genotypes can be reliably inferred from AIRR-
seq data [17–20], as well as haplotypes [21, 22], and chro-
mosomal deletions within the BCR encoding loci [23].

Even though TCR V(D)J gene rearrangements are gener-
ated by analogous mechanisms to BCR rearrangements,
to date, there is no published data about TCR germline
allele inference and structural variation in the TCR encod-
ing loci. Recently, there were attempts to extract BCR and
TCR encoding allelic information from short-read whole-
genome sequencing data [11, 24, 25], but these approaches
were not validated with targeted sequencing or AIRR-seq
and therefore are subject to criticism regarding the reli-
ability of the inferences [5, 26]. Hence, to study genomic
variations in TCR encoding loci and their relations to
the expressed repertoires, there is a need to adapt BCR
inference tools to TCR data.
In T cells, due to the lack of somatic mutations, most

studies sequence only a small fraction of the variable
region. AIRR-seq data can be generated by methods that
differ in the length of their coverage of V(D)J sequences.
5′ RACE amplifies the whole V(D)J region from the 3′
end of the J region to the 5′ end of the mRNA molecule.
BIOMED-2 primers [27] amplify partial V(D)J sequences
from the J gene to the framework-2 (FR2) of the V gene,
while the Adaptive Biotechnologies [28] approach gener-
ates only 87 nucleotides from a fixed position within each
T cell receptor Beta J (TRBJ) gene in FR4 and includes
the complementary determining region 3 (CDR3) and a
fraction of the TRBV gene from FR3. As there are TRBV
alleles that are identical to other TRBV alleles for varying
lengths from their 3′ ends, in some cases, it is impossible
to identify the gene and allele source of these partial V(D)J
sequences, generating a serious gene assignment ambigu-
ity problem. Thus, the development of a TRBV genotype
inference method requires the detailed documentation of
any gene pairs that can be impossible to distinguish for a
given sequencing approach.
Here, we adapt a B cell inference pipeline to TRB AIRR-

seq data (Fig. 1A), to work with these three types of
sequencing approaches (Fig. 1B), and infer undocumented
alleles, i.e., alleles that were previously not documented
in IMGT, as well as single and double chromosome
deletions, genotypes, and haplotypes. The pipeline was
adapted to deal with the gene assignment ambiguity prob-
lem, which is especially important in the analysis of data
sets of partial sequences (Fig. 1C, D). We applied this
pipeline to four of the largest AIRR-seq data sets currently
available and revealed a rich picture of germline variability
and a demonstration of how a single nucleotide polymor-
phism dramatically affects the composition of the whole
repertoire. TCR germline variability and its effects on
the expressed repertoire may have important implications
for TCR-based immunotherapy and disease diagnosis, for
example by enabling the discovery of TCR-related predis-
positions to diseases, or responses to different therapies.

www.imgt.org/download/V-QUEST/
www.imgt.org/download/V-QUEST/
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Fig. 1 Overview of TRB genotyping and haplotyping workflow, TCRβ sequencing technologies, and number of documented alleles. A An
illustration of the steps for TRB genotyping and haplotyping. The input is an AIRR-seq fasta file after preprocessing, according to the sequencing
protocol described in the “Methods” section (see the “Data” section). B An illustration of the three TCRβ sequencing approaches investigated in this
study. C Heatmaps of distances between amplified TRBV gene sequences. The three panels correspond to the sequencing approaches shown
above them. Colors correspond to the distances between the genes as measured by the minimum global alignment score (with a padded
beginning and a penalty of one for each mismatch, insertion, or deletion) between the closest two alleles in the sequenced region. D Barplot of the
unique sequence number per gene in the studied sequencing approaches



Omer et al. GenomeMedicine            (2022) 14:2 Page 4 of 19

Methods
Data
Four AIRR-seq TCR data sets (DSs) were collected
[29–34] (Table 1). Three were bulk sequenced, but each
of them was generated using a different sequencing
protocol, producing sequences of different lengths. The
DSs also differ in sequencing depth, i.e., the number of
unique sequences per repertoire (Additional file 1: Fig.
S1). Another DS of TCRs amplified from single cells was
collected from three different sources [33–35] (see Addi-
tional file 1: Table S1). The data sets are described in
Table 1. In DS3, there were originally 313 individuals and
348 samples, out of which 108 samples were obtained
from 94 individuals with hematological cancer. These 108
samples were dropped out of the analysis, given their likely
bias towards substantial mutation and oligoclonality. DS2
and DS4 were downloaded after preprocessing, DS1 was
preprocessed according to the preprocessing of Eliyahu
et al. [29], and DS3 was preprocessed using pRESTO
[36] according to the example workflow “Illumina MiSeq
2x250 BCRmRNA” as follows: (i) paired ends were assem-
bled, (ii) sequences with low quality (mean Phred quality
scores lower than 20) were removed, (iii) the 3′ and 5′
end primers were cut, and (iv) duplicate sequences were
removed and collapsed.

Merging indistinguishable genes
Sequences of two full-length TRBV genes, TRBV6-2*01
and TRBV6-3*01, are indistinguishable (Fig. 1C). We
therefore refer to them here as TRBV6-2*01/TRBV6-3*01.
TRBV sequences amplified using the BIOMED-2 primers
are partial, yet it is still possible to differentiate most of the
genes. Only TRBV6-2 and TRBV6-3, as well as TRBV12-
3 and TRBV12-4, could not be differentiated (Fig. 1C).
Those indistinguishable sequences are referred to here
as TRBV6-2/TRBV6-3 and TRBV12-3/TRBV12-4. The

Adaptive Biotechnologies sequencing protocol generates
very short partial TRBV gene sequences, yet it is still pos-
sible to identify most of them. Only the gene pairs TRBV6-
2/TRBV6-3, TRBV12-3/TRBV12-4, TRBV3-1/TRBV3-2,
and TRBV6-5/TRBV6-6 were indistinguishable (Fig. 1C).
Adaptive Biotechnologies supplies 87 nucleotides from

a fixed position within each TRBJ gene [28]. As a result,
the given coverage of the TRBV segment is not constant,
because TRBJ genes and junction regions have different
lengths. Therefore, the distribution of the first position
that the sequences covered of the TRBV reference was
investigated. Ninety-six percent of the sequences cover
the first position following the TRBV gene primers. The
BIOMED-2 protocol did not include primers for TRBV12-
2. Thus, we were unable to explore the usage or genetic
variation of this gene in DS3.

Allele pattern collapsing
Although there are few ambiguities in the identification
of partial TRBV genes, the unambiguous identification of
partial allelic variants is more problematic. Many SNPs
that distinguish between alleles are located outside the
regions that are generated using BIOMED-2 or Adap-
tive Biotechnologies primers. Thus, all alleles were col-
lapsed into partial allelic variation groups. The sequence
of each partial allelic variation group was determined
to be identical to the longest allele sequence reference
(out of the identical partial alleles’ references). The allele
patterns were named here using the following structure:
[gene name]*[protocol primers][0-9][0-9]. The BIOMED-
2 partial allelic variants were symbolized by bp, and
the Adaptive Biotechnologies partial allelic variants were
symbolized by ap. For example, the partial sequence of
the allele TRBV5-6*01 was collapsed into the partial allelic
variation groups TRBV5-6*bp01 and TRBV5-6*ap01 (see
Additional file 1: Table S2 and Additional file 1: Table S3).

Table 1 AIRR-seq TCR data sets (DS) analyzed in this study

Data set Cohort # of
individuals

# of
samples

Sequencing
protocol

UMI Helix Accession Citation

DS1 Hepatitis 28 28 5′ RACE + RNA ENA:PRJEB28370 Eliyahu et al. [29]

C Virus (full-length)

(HCV)

DS2 - 25 25 10x Genomics
(full-length)

+ RNA https://www.10xgenomics.com/resources/
datasets

10x Genomics [32]

EGA:EGAS00001003449 Wen et al. [33]

GEO:GSE145926 Liao et al. [34]

DS3 Cancer 219 240 BIOMED-2 - DNA ENA:PRJEB33490 Simnica et al. [30]

DS4 Cytomegalovirus 786 786 Adaptive
Biotechnologies

- DNA https://doi.org/10.21417/B7001Z Emerson et al. [31]

(CMV)

https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
https://doi.org/10.21417/B7001Z
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The primers of the BIOMED-2 protocol were taken from
van Dongen et al. [27], and the primers of Adaptive
Biotechnologies were taken from Robins et al. [28].

Genotype and undocumented allele inference
IgDiscover [17] was used for detection of undocumented
allele candidates, and TIgGER for genotype inferences.
Sequences were first aligned with IgBlast and processed
using the IgDiscover igblast function and the Change-O
MakeDb function [37]. A correction to the inferred CDR3
sequences in the IgDiscover output was done by replac-
ing the sequences with their counterparts in the MakeDb
output. TRBV allele candidates were inferred using IgDi-
cover’s “discover” function. Undocumented allele can-
didates were filtered based on several rules. First, sus-
pected SNPs were counted only between the bound-
aries: 5′ position of N+5 where N is the nucleotide
position in which the primer ends or the sequence
starts (the larger between the two), and 3′ position
316 by IMGT numbering. Second, candidate undocu-
mented alleles were filtered out if they were not an
exact match to at least 5% of the gene alignments.
Third, such candidates had to have a sufficient rearrange-
ment diversity: at least two different CDR3 lengths and
two TRBJ genes. Fourth, for noisy data sets in which
chimeras were observed, candidates that could result
from chimerism were filtered out. A candidate was sus-
pected as having the potential to result from chimerism
if two alleles from separate genes could generate an exact
matched sequence in the range between nucleotides N+5
and 316.
Undocumented allele candidates were then combined

with the IMGT TRBV Reference Directory to cre-
ate individual-specific Reference Directories. Sequence
sets were then re-aligned against the new directories,
and genotypes were constructed with TIgGER using
a Bayesian approach [19]. Genotyping was limited to
sequences with a single assignment (only one best match)
and with up to one mismatch in the TRBV segment. For
the construction of the TRBD genotype, sequences with
mismatches in the TRBD segment or with identifiable
TRBD sequences shorter than nine nucleotides were fil-
tered out. TIgGER’s level of confidence was calculated
using a Bayes factor (K) from the posterior probability for
each model. The larger the K, the greater the certainty
in the genotype inference. lk that is used throughout the
manuscript indicates the log of K.
For the undocumented alleles, two additional filters

after the genotype inferences were added. First, undocu-
mented alleles were filtered out if there was more than
one SNP within a stretch of four adjacent nucleotides [38].
Second, to account for potential sequencing errors, we
investigated the modality of the usage distribution of each
undocumented allele in the population. The alleles that

did not follow the expected usage distribution of bi- or
tri-modal were discarded.

Validating undocumented alleles/variants in long-read
assemblies
Thirty-five diploid (70 haplotypes) whole-genome
sequencing assemblies from 32 unrelated individuals and
three offsprings [39] were downloaded and aligned to
GRCh38 (Genome Reference Consortium Human Build
38) [40] using BLASR with default parameters [41]. Gene
sequences (5′ UTR, leader-1, leader-2, and exons) from
the assemblies were extracted based on the alignment.
Undocumented alleles and variants were determined to
be present in the assemblies only if they exactly matched
the extracted gene sequence. Deleted genes were detected
by their absence in the assembly and visually validated
using IGV [42].

Determining the borders between TRBD2 genotype groups
We examined the fraction of TRBD2*01 assignments
amongst all sequences unambiguously assigned to TRBD2
in DS1. The observed frequencies defined three distinct
groups (Additional file 1: Fig. S2A). In the first group
(∼ 0 − 0.2), TRBD2*01 assignments peaked around 0.125
of the TRBD2 annotations. The second group (∼ 0.2 −
0.8) peaked around 0.5, and the third group (∼ 0.8 − 1)
peaked around 0.95. According to this distribution, indi-
viduals in the first group are homozygous for TRBD2*02,
and all alignments to TRBD2*01 are in error. The sec-
ond group corresponds to individuals who are heterozy-
gous for TRBD2, and individuals in the third group are
homozygous for TRBD2*01. The resulting genotype fre-
quency distribution of TRBD2 were in Hardy–Weinberg
equilibrium.
To better define the thresholds differentiating the three

groups, we turned to the larger data sets. DS3 was
too noisy for this purpose (Additional file 1: Fig. S2B),
most likely due to the library preparation and sequenc-
ing protocol. In DS4, which contains 768 individuals, the
TRBD2*01 distribution was tri-modal and very similar to
that in DS1 (Additional file 1: Fig. S2C). The homozygous
TRBD2*01 group is centered around a frequency of 0.96.
The heterozygous group is centered around 0.45, and the
homozygous TRBD2*02 group is centered around 0.12.
The medians of the three groups are close to their means
(Additional file 1: Table S4), and as the size of the groups is
large enough, we used the central limit theorem and thus
assume that the three data sets are normally distributed.
Boundaries between the tri-modal peaks were defined

as the equilibrium points between the peaks. The equi-
librium point between two normal distributions is the
point between the two averages of the groups, at which
the probability of being in either one of the two groups
is equal. For two distributions X1 ∼ N1(μ1, σ1)
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and X2 ∼ N2(μ2, σ2), the equilibrium point x is deter-
mined as follows:

P1(X1 ≥ x) = P2(X2 ≤ x)

�1

(
−x − μ1

σ1

)
= �2

(
x − μ2

σ2

)

μ1 − x
σ1

= x − μ2
σ2

(μ1 − x)σ2 = (μ2 − x)σ1

μ1σ2 − xσ2 = μ2σ1 − xσ1

xσ1 + xσ2 = μ1σ2 + μ2σ1

x = μ1σ2 + μ2σ1
σ1 + σ2

Applying the above to DS4 resulted in the following
borders: the homozygous TRBD2*02 group was com-
posed of 192 samples with a fraction of TRBD2*01 lower
than 0.2066, the heterozygous group was composed of
404 samples with a fraction between 0.2066 and 0.8968,
and the homozygous TRBD2*01 group was composed
of 190 samples with a TRBD2*01 fraction above 0.8968.
Consistent with the Hardy-Weinberg principle, the geno-
type frequencies of TRBD2*01 homozygotes, TRBD2*02
homozygotes, and heterozygotes was 0.244, 0.242, and
0.514, respectively.

Gene usage comparison
The differences in gene usage between groups were ana-
lyzed using a two-tailed Mann–Whitney test with the p
value for significance adjusted by the Bonferroni correc-
tion to deal with the problem of multiple comparisons.

Double chromosome deletion inference
The detection of double chromosome deletion was done
using a published method [23] and adapted to TRB.
Briefly, the method assesses whether a gene can be
declared as deleted using a binomial test where the param-
eters for a given individual are as follows: X is set to
the number of sequences mapped to a given gene, N is
the total number of sequences, and P is the lowest rel-
ative frequency for the given gene from the non-deleted
candidates. To determine a threshold for a given gene, a
minimum cutoff is set and the closest frequency above
the cutoff is set as (P). For TRB, the minimum cutoff of
the average gene usage was lowered from 0.005 to 0.0005.
A data frame table was used that contained the following
columns: individual, gene, N, and total. N represents the
number of unique sequences for each gene. The total col-
umn records the total number of the individual’s unique
sequences. A binomial test for detecting chromosome
deletions was then applied to the data frame table.

Haplotype inference
RAbHIT was used as previously described [22], with
TRBD2 and TRBJ1-6 anchors to infer TCR haplotypes.
The epsilon error parameter was adjusted to deal with
TRBD2 alignment errors and was estimated with refer-
ence to the frequency distribution of TRBD2*01 align-
ments amongst all TRBD2-bearing sequences (see Addi-
tional file 1: Fig. S2) mentioned above. As ∼ 12.5% of
TRBD2*02 rearrangements mis-align to TRBD2*01, the
epsilon, a parameter which defines the probability of the
mis-assignment, was set at 0.125 if TRBD2*02 dominated
the TRBD2 alignments. Around 4% of the TRBD2*01
rearrangements mis-align to TRBD2*02, and epsilon was
therefore set at 0.04 if TRBD2*01 dominated the align-
ments.

Results
Identification of undocumented alleles and upstream
sequence variations within TRBV genotypes
To explore allelic variation in the TRBV locus, we inferred
the sets of alleles carried for each expressed TRBV gene
in many individuals, i.e., personal genotypes. For this, we
took a multi-step approach, using IgDiscover [17] and
TIgGER [18], which yielded a set of candidate sequences
that have not previously been documented in IMGT.
Hereafter, we will refer to such sequences as “undocu-
mented alleles.” To ensure our confidence in the infer-
ence of undocumented alleles, we took steps that reduce
the influence of sequencing errors (see the “Methods”
section).
We applied the above approach to four data sets, span-

ning different sequencing protocols and scales (see the
“Methods” section). From data set 1 (DS1), which includes
28 individuals sequenced in full length, we inferred 18
undocumented alleles (Fig. 2A). Four of the 18 alleles
were only seen at very low levels — less than 20% of
all identified alleles of those genes, and showed a uni-
modal distribution. This did not follow our expected
usage distribution (these alleles aremarked red in Fig. 2A).
These candidate “alleles” therefore potentially result from
sequencing errors. Two more undocumented alleles were
considered erroneous due to the presence of more than
one SNP in short nucleotide stretches. After discarding
these six allele candidates, we were left with 12 undocu-
mented alleles. Nine of the alleles were observed in more
than a single individual’s genotype, which increases our
confidence in the inferences.
For further validation, we compared the undocumented

alleles to three sources (Additional file 1: Table S5). In
the first, an analysis of whole-genome short-read sequenc-
ing data in 286 individuals from Luo et al. [11], six out
of the 12 undocumented alleles were observed. The sec-
ond was a pmTRIG [25] data set, where we found four
out of the 12. The third was a long-read whole-genome
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Fig. 2 Undocumented alleles. A Undocumented allele distribution in DS1 and DS2. The left panel shows undocumented alleles within the
genotype. Each row represents an undocumented allele, and each column represents an individual. The Y-axis annotations in red, green, and blue
correspond to alleles not following the expected multi-modal distribution, adjacent nucleotide stretches, or both, respectively. The tile colors
correspond to an individual’s genotype. The right panel shows the fraction of the undocumented allele assignments out of the gene assignments.
The X-axis is the fraction and the Y-axis is the same as in A. Colors correspond to an individual’s genotype of the allele. The shapes correspond to the
number of gene assignments: a circle indicates that the number of gene assignments is less than 10, a triangle indicates that the number of gene
assignments is between 10 and 30, and a square indicates that the number of gene assignments is more than 30. B Documented alleles versus the
observed documented alleles and the undocumented alleles for each TRBV gene and in each data set, DS1 and DS2, DS3, and DS4, respectively. The
X-axis corresponds to the TRBV genes and the Y-axis to the number of alleles. The color corresponds to the allele groups: dark red is the
documented alleles, light red is the observed documented alleles, and blue is the observed undocumented alleles

sequencing data of 35 diploid donors from Ebert et al. [39]
which confirmed six out of the 12. Altogether, eight of
the 12 undocumented alleles were observed in at least one
of these other data sets, and two were observed in all of
the data sets. In addition to the 12 undocumented alleles,
another five DS1 alleles matched known allele references
in IMGT, but lacked 3′ nucleotides in IMGT (Additional

file 1: Table S6). We replaced these IMGT alleles with
their longer versions in our analyses, since it improves the
genotype inference.
We also explored 5′ UTR genomic variation in DS1.

Consensuses of the 5′ UTRwere constructed as previously
described in Mikocziova et al. [43, 44]. We compared
the consensus sequences to the upstream regions that
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include leader 1 (L-PART1), leader 2 (L-PART2), and the
upstream leader 1 sequence (Additional file 1: Table S7)
and found 31 undocumented upstream sequences. The
L-PART1 and L-PART2 of 10 of these sequences are
absent from IMGT, and the L-PART1 of TRBV10-3*02
is also absent from IMGT (Additional file 1: Table S8).
Four of the 11 absent L-PART1 sequences and six of
the 10 absent L-PART2 sequences were also observed in
long-read assemblies (Additional file 1: Table S8). Two
sequence variants were observed in L-PART2. Both were
associated with TRBV13*01 and were also observed in the
long-read assemblies. In L-PART1, we found 15 sequence
variants from 14 different alleles, and 13 of them were
also observed in the long-read assemblies. In addition, we
found four alternative splicing sequences from three dif-
ferent alleles. The first two are from clusters of TRBV23-1,
an ORF gene that lacks a functional splice donor site [45].
As a result, the 5′UTR consensus sequence of TRBV23-
1*01 contains an intron between L-PART1 and L-PART2.
Both consensus sequences differ from the previously
reported upstream sequence by the number of copies of
the TTTTG motif (Additional file 1: Fig. S3). The other
two alternative splicing variants were found upstream of
the TRBV7-7 alleles. Here, both the documented *01 allele
and the undocumented allele *01_C315T carry the alter-
native splicing sequences. Three more upstream inferred
sequences that correspond to TRBV4-3*01, TRBV20-
1*01, and TRBV20-1*02 are absent from IMGT. How-
ever, those three sequences match the reference of the
TRB locus under GRCh38 [40]. The 3′ ends of the L-
PART1 references of the three sequences in IMGT seem
to originate from the intron, and the 5′ splice site of the
introns of those three alleles were likely mis-identified in
IMGT (Additional file 1: Fig. S4). We also found three
variant consensus sequences associated with TRBV6-
2*01/TRBV6-3*01 (Additional file 1: Fig. S3), all three
were observed in the long-read assemblies for the TRBV6-
2*01 annotation. One of them, TRBV6-2*01/TRBV6-
3*01_2, was also observed in the undocumented allele
TRBV6-3*01_G47A.
Next, we analyzed DS2, which includes data from 25

individuals. Fifteen undocumented alleles were inferred
(Fig. 2A). Nine of them were also observed in DS1.
Four others were present in the short-read whole-genome
databases. One was in Luo et al. [11] and all four were in
pmTRIG [25]. Two out of those four undocumented alle-
les were observed in the 35 diploid long-read assemblies
from Ebert et al. [39]. One out of those two undocu-
mented alleles was observed in all sources, and two of the
15 undocumented alleles were not observed in any of the
sources, including DS1 (Additional file 1: Table S5).
Lastly, we investigated genomic variation in DS3 and

DS4. Both data sets contain partial sequences, making
it impossible to distinguish between alleles that differ

in the regions outside those covered by the library
primers. At first, we confirmed our inference approach
by using artificial sequences trimmed from DS1 to the
same sequence lengths as DS3 and DS4 (BIOMED-2 and
Adaptive Biotechnologies, respectively; Additional file 1:
Table S9). Of the 12 undocumented DS1 alleles, seven
were in range for the BIOMED-2 primers and two for
the Adaptive Biotechnologies primers. The artificial data
sets enabled the inference of all the in-range undocu-
mented alleles for both partial libraries. Having gained
confidence in the approach, we then applied it to DS3 and
DS4. From the 219 DS3 TRB genotypes [30], we inferred
29 potential undocumented allele patterns. However, 13
alleles failed the quality filtering steps (see the “Methods”
section and Additional file 1: Table S10). Five of the
remaining 16 undocumented alleles were independently
identified in multiple genotypes, giving us added confi-
dence in these inferences. Four alleles were supported
by their identification by Luo et al. [11]. Six alleles were
also supported by pmTRIG [25]. Eight alleles were not
observed in any of the sources including DS1 and DS2
(Additional file 1: Table S10). A similar analysis of inferred
genotypes from 786 individuals in the Adaptive Biotech-
nologies data set (DS4) identified a further 24 undoc-
umented alleles (Additional file 1: Table S11). We dis-
carded 10 alleles that failed the quality filtering steps (see
the “Methods” section and Additional file 1: Table S11).
Six out of the remaining 14 undocumented alleles were
independently identified in multiple genotypes, giving us
added confidence in these inferences. Two alleles were
supported by the presence of alleles identified also by Luo
et al. [11]. Five alleles were supported also by pmTRIG
[25]. Eight alleles were not observed in any of the sources
including DS1, DS2, and DS3 (Additional file 1: Table
S11). To summarize this part, we compared the docu-
mented alleles for this locus with all alleles observed in our
data sets and with the assemblies of genomic long reads
(Fig. 2B). All in all we identified 39 undocumented TRBV
alleles and 31 undocumented upstream sequences. Eight
of those complete undocumented alleles and seven undoc-
umented upstream sequences were also observed in the
35 long-read diploid assemblies of Ebert et al. [39].

Inference of double chromosome deletions in four TRBV
genes
Deletion polymorphisms can be so common that an indi-
vidual may carry the deletion in both chromosomes.
We refer to these genes as double chromosome dele-
tions, although it is important to note that they are
deleted from the expressed repertoire and not necessar-
ily from the genome itself (see the “Discussion” section).
TRBV gene usage in DS1 shows such deletion polymor-
phisms in four genes (Fig. 3A). TRBV4-3 and TRBV3-
2 are absent from the genotypes of eight individuals,
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Fig. 3 Gene usage and genotypes of the DS1 data set. A TRB gene usage. Each dot is one individual’s relative gene usage, which is the fraction of
the number of sequences mapped to a given gene by the number of total sequences. The X-axis shows the TRB genes in the order in which they
are found in the genome, except TRBV30 that is located after the TRBD and TRBJ section. The Y-axis shows the frequency of gene usage. B TRB
genotypes. Each row shows an individual genotype, and columns correspond to the different genes in the same order as in A. Colors correspond to
alleles as indicated in the bottom of the figure

while TRBV11-1 is absent from two individuals, and
TRBV30 from one individual (Fig. 3B). In DS2, a similar
data set to DS1 from the point of view of sequence length
of the coding region, double chromosome deletions of
TRBV4-3 were identified in eight individuals, TRBV3-
2 in two individuals, and TRBV7-3 in one individual
(Additional file 1: Fig. S5). Interestingly, the individual
from DS1 with an inferred TRBV30 deletion (HC10) was
shown to be homozygous or hemizygous for the undoc-
umented allele TRBV30*03_T285C. On the assumption
that this undocumented allele is found at relatively low
frequency within the human population, homozygosity is

unlikely. However, it is possible that the undocumented
allele has escaped more widespread detection because
of its low usage level. This low usage is a consequence
of TRBV30*03_T285C being a pseudogene, because its
coding region includes an in-frame stop codon. HC10
therefore has at least the functional equivalent of a double
chromosome deletion.
The gene TRBV4-3 and the pseudogene TRBV3-2

were always inferred as being deleted together in DS1
individuals (Fig. 3B). TRBV4-3 and TRBV3-2 are close
to each other, and a common ∼ 21-kb deletion which
includes TRBV4-3, TRBV3-2, and one of the genes
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TRBV6-2/TRBV6-3 has been reported from genomic
studies [10, 46–48]. The inference of a deletion of either
TRBV6-2 or TRBV6-3 in AIRR-Seq data is made diffi-
cult, because the deletionmight be hidden by the presence
of the other identical TRBV6-2/TRBV6-3 gene. However,
indirect evidence that the deletion polymorphisms seen in
DS1 are associated with the previously reported ∼ 21-kb
deletion comes from the usage of TRBV6-2*01/TRBV6-
3*01. In individuals who lack TRBV4-3 and TRBV3-2,
usage of TRBV6-2*01/TRBV6-3*01 is significantly lower
than in the individuals who express TRBV4-3 and TRBV3-
2 (Additional file 1: Fig. S6). It is therefore likely that
detection of TRBV6-2*01/TRBV6-3*01 in these individ-
uals is entirely a consequence of sequences utilizing one
of the genes. This line of reasoning also allowed us to
conclude that an undocumented polymorphism seen in
sample HC4 is most likely an allele of the undeleted gene,
meaning it can be either TRBV6-3*01_G47A or TRBV6-
2*01_G47A.
In DS2 individuals, deletion of V4-3 was not always

accompanied by evidence of deletion of TRBV3-2. This is
likely because DS2 was collected from different sources,
and in some data sets, non-productive sequences had
been filtered out. Evidence of the presence or absence of
the TRBV3-2 pseudogene is therefore lacking. In other
samples, analysis of TRBV3-2 usage is compromised by its
low usage (Fig. 3A).

Strong asymmetry between the probabilities for
mis-identification of TRBD2 alleles
There are only two TRBD genes, TRBD1 and TRBD2,
and three reported TRBD sequences (TRBD1, TRBD2*01,
and TRBD2*02). Both genes are short and highly simi-
lar. TRBD1 is 12bp long, and TRBD2 is 16bp long. Each
sequence includes a short central motif flanked by G-
rich ends. A single G/A SNP that is flanked by runs
of Gs differentiates the two TRBD2 alleles (TRBD2*01:
“GGGACTAGCGGGGGGG”, TRBD2*02:“GGGACTAG
CGGGAGGG”). During V(D)J rearrangement, the ends
of the TRBD segment are trimmed, and P-nucleotides
and N-nucleotides are added between the joining TRBV,
TRBD, and TRBJ genes [2]. Studies of N-nucleotide addi-
tion in BCR V(D)J genes show the process to be biased
towards addition of Gs and addition of homopolymer
tracts [49]. The unequivocal identification of germline-
encoded nucleotides within the TCRβ V(D)J junctions
is therefore problematic, and this is particularly true
for the TRBD gene ends. To reduce errors, we limited
the TRBD gene genotype analyses to sequences with
a minimum inferred length of 9 bp. Some errors still
remained, particularly as a result of TRBD2 allele assign-
ment errors. Twenty-three out of the 28 individuals from
DS1 were initially inferred to be heterozygous at the
TRBD locus. However, this is unlikely according to the

Hardy–Weinberg principle, which states that in equilib-
rium, in the absence of selection or other evolutionary
pressures, the maximum frequency of heterozygous indi-
viduals in a population having two allelic variants of the
gene is 0.5 [50].
To correct for these errors, we applied a process to

determine the borders between TRBD2 genotype groups,
as described in the “Methods” section (the “Deter-
mining the borders between TRBD2 genotype groups”
section), resulting in a clear separation between the
groups. This implies that TRBD2*01 is mis-identified as
TRBD2*02 with a probability of 4%. The probability of
mis-identifying TRBD2*01 as TRBD2*02 is estimated to
be 12.7%. We can thus estimate the average usage of
TRBD2*01 in heterozygous individuals corrected for these
errors to be∼0.393. There is a strong asymmetry between
the probabilities for mis-identification of TRBD2*01 as
TRBD2*02 (GGGACTAGCGGGGGGG and GGGAC-
TAGCGGGAGGG, respectively) or the opposite. Mis-
identification is generally a result of several processes: (1)
V(D)J recombination, where the ends of the TRBD seg-
ment are trimmed, and P-nucleotides and N-nucleotides
are added between the joining TRBV, TRBD, and TRBJ
genes ([49]); (2) PCR errors [51]; and (3) sequencing errors
[38, 52]. All three contribute to this asymmetric mis-
identification. It may also result from selection, from the
amino acid differences in the sequences, or from unknown
structural variants in the locus that could be associated
with the different alleles.

Linkage disequilibrium between TRBJ1-6 and TRBD2
To explore J genotypes, we first checked for evidence of
errors by exploring the fraction of all TRBJ1-6 assign-
ments that are assigned to TRBJ1-6*01. This is the most
likely error in TRBJ genotyping, as TRBJ1-6 is the only
TRBJ gene with two known functional alleles. The distri-
bution of frequencies shows a good partitioning between
homozygous and heterozygous individuals (Additional
file 1: Fig. S2D), indicating that the TRBJ1-6 alleles can be
reliably inferred.
Of note, in heterozygous individuals, TRBJ1-6*02 is

considerably more frequently used compared with TRBJ1-
6*01 (Additional file 1: Fig. S2D). The average fraction
of TRBJ1-6*01 out of all sequences assigned to TRBJ1-6
in heterozygous individuals is ∼ 0.39, which is com-
parable with the average fraction of TRBD2*01 out of
all sequences assigned to TRBD2 in TRBD2 heterozy-
gous individuals after correcting for mis-assignments (see
above). The similarity between the biased usage of TRBJ1-
6 and TRBD2 alleles in heterozygous individuals led us to
test the genetic dependency between these loci.
The distance between TRBJ1-6 to TRBD2 is relatively

short (∼ 6000bp), suggesting these loci could indeed be
in linkage disequilibrium (LD). To test this hypothesis,
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we reviewed whole-genome sequencing (WGS) records
from the 1000 Genomes Project to profile the region’s
variants based on TRBD2 haplotype (Additional file 1: Fig.
S7). We observed SNPs with a high LD score (r-square)
between the genes. Furthermore, the WGS haplotypes
showed several other SNPs with high LD score scattered
in the TRBD-TRBC2 genomic region, which strengthens
the association between TRBD2 alleles and other markers
in the locus. DS4 was unsuitable to test this hypothe-
sis because DS4 sequences do not include the SNP that
differentiates between TRBJ1-6*01 and TRBJ1-6*02. We
therefore tested the LD hypothesis using DS3. Only geno-
types for which we were confident of the TRBD2 genotype
were taken into account. These genotypes are shown out-
side the gray areas of Additional file 1: Fig. S2B. Additional
file 1: Fig. S8 shows that all of the homozygous TRBD2*01
individuals are also homozygous for TRBJ1-6*02. Also,
29 out of the 31 homozygous TRBJ1-6*01 individuals are
homozygous for TRBD2*02.

TRBJ usage is strongly dependent on the TRBD2 genotype
Having confirmed that TRBJ1-6 and TRBD2 are in LD,
we next investigated the influence of TRBD2 genotypes
on TRBJ/TRBV gene usage in the repertoires. Since such
an investigation requires accurate TRBD2 genotype infer-
ence, accurate annotations of TRBJ genes, and a large data
set, DS4 was used.
We found that homozygous TRBD2*02 individuals

tend to use TRBD2 1.29 times more than homozygous
TRBD2*01 individuals (Fig. 4A, left panel). TRBD2 can
undergo rearrangements only with TRBJ2 genes [53], so
we expected that the usage of TRBJ2 genes should increase
in homozygous TRBD2*02 individuals. Indeed, homozy-
gous TRBD2*02 individuals use TRBJ2 genes significantly
more than heterozygous and homozygous TRBD2*01
individuals (Fig. 4A, right panel), with 11 out of the 13
genes yielding p values lower than 0.001 (Mann–Whitney
test, adjusted by Bonferroni correction). Furthermore,
comparing the combined usage of all TRBJ2 genes to the
combined usage of all TRBJ1 genes reveals a strong effect.
For TRBD2*01 individuals, the mean usage of TRBJ1 was
0.473 compared to 0.366 for the TRBD2*02 individuals
(Fig. 4B).
Next, we examined if and how TRBD2 haplotypes

affect the relative usage of individual TRBJ1 and TRBJ2
genes. For this, we plotted the relative usage of individ-
ual TRBJ1 and TRBJ2 genes normalized independently
for each gene family (Fig. 4C). Surprisingly, we found
that TRBJ usage within each family is also affected by
the TRBD2 genotype. Since TRBD2 can rearrange only
with TRBJ2 genes, we stratified the above distributions
into subsets that include only biologically possible rear-
rangements. In particular, Fig. 4D shows the conditional
probability P(TRBJ2-N|TRBD2) for all the TRBJ2 genes.

The biased usage of the TRBJ2 genes observed in Fig. 4C
is still present, indicating that TRBD2 relative likelihood
to recombine with TRBJ2 genes is strongly affected by
the TRBD2 genotype. We then explored the TRBJ gene
fraction of the sequences assigned to TRBD1 (P(TRBJ1/2-
N|TRBD1), Fig. 4E) and observed that TRBD2 genotype is
associated with the TRBD1 likelihoods to rearrange with
individual TRBJ genes. We further investigated the effect
of TRBD2 genotype on the likelihoods to rearrange with
individual TRBJ2 genes only, and the effect was mostly
eliminated in terms of magnitude P(TRBJ2-N|TRBD1),
Fig. 4F).
The strong biases observed in Fig. 4A–E can result from

amino acid alterations in the sequence, from non-coding
regulatory variants, or from unknown structural variants
in the locus that are associated with the different alleles.
To discriminate between these options, we repeated the
analysis for non-functional sequences that resulted from
frame-shifts between the TRBV and TRBJ genes. Such
non-functional sequences are commonly used to reflect
the initial V(D)J usage prior to thymic selection [54–56].
Of note, these non-functional clones cannot overlap with
functional clones, since in T cells clones are defined as
sharing identical V(D)J sequence. In these non-functional
sequences, the biases are pronounced in a similar fash-
ion (Additional file 1: Fig. S9). Thus, we conclude that
the differences between the TRBD and TRBJ rearrange-
ments stratified by TRBD2 genotype are most likely due
to structural differences or non-coding regulatory vari-
ants between the haplotypes rather than due to negative
selection.

Haplotype inference reveals several association patterns
From the genotype analysis of DS1, we observed a poten-
tial pattern between homozygosity of TRBV7-2*02 and
lack of usage of TRBV4-3 in four individuals. To inspect
the link between TRBV7-2*02 and the lack of usage of
TRBV4-3, we turned to haplotype inference. In an anal-
ogous way to the haplotyping methods for B cell recep-
tor data [21, 22], a heterozygous TRBD or TRBJ gene
was needed as an anchor for TRBV haplotype infer-
ence. A suitable candidate is TRBJ1-6, for which 11 indi-
viduals from DS1 (Fig. 3B) and eight individuals from
DS2 (Additional file 1: Fig. S5) are heterozygous. In
seven individuals who are heterozygous for TRBV7-2,
the chromosome that carried the allele 02 of this gene
had a clear deletion of TRBV4-3 (SAMPLE_ANCHOR-
GENE_ALLELE: CI13_J1-6_01, SC12_J1-6_02, HC6_J1-
6_01, HC9_J1-6_02, SC7_J1-6_02, LRS2_J1-6_01, and
donor3_J1-6_02). The genotype and haplotype inferences
both support the association between TRBV7-2 geno-
type and the usage of TRBV4-3. To further quantify this
effect, we surveyed individual genotype and haplotype
inferences in DS3. DS3 is a much larger data set, which
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Fig. 4 TRBD and TRBJ usage correspond to TRBD2 genotype. A TRBD and TRBJ gene usage in DS4 individuals with different TRBD2 genotypes. TRBJ
genes are shown along the X-axis in the order in which they appear in the genome. B The TRBJ family usage in DS4 individuals with different TRBD2
genotypes. TRBJ families are shown along the X-axis in the order in which they appear in the genome. C TRBJ gene usage normalized to the TRBJ
family usage, in DS4 individuals with different TRBD2 genotypes. TRBJ genes are shown along the X-axis in the order in which they appear in the
genome. D The relative fraction of TRBJ2 genes out of the sequences that were assigned to TRBD2 and were longer than 7nt. E The fraction of TRBJ2
genes out of the sequences that were assigned to TRBD1 and were longer than 7nt. TRBJ genes are shown along the X-axis in the order in which they
appear in the genome. F The fraction of TRBJ genes out of the sequences that were assigned to TRBD1 and were longer than 7nt. TRBJ genes are
shown along the X-axis in the order in which they appear in the genome. The box colors correspond to the TRBD2 genotype. Statistical significance
was determined using a Mann–Whitney test and adjusted by Bonferroni correction ( n.s. not significant, *p < 0.05, **p < 0.01, and ***p < 0.001)

covers one of the unique SNPs of TRBV7-2*02, allow-
ing the differentiation of TRBV7-2*02 from the rest of
the known TRBV7-2 alleles (Additional file 1: Table S2).
In eight out of nine individuals with a high genotype
inference likelihood, the pattern between homozygosity
of TRBV7-2*bp02 (see the section “Allele pattern collaps-
ing”) and a deletion inference of TRBV4-3 was appar-
ent (Additional file 1: Fig. S10 and S11). Another gene
with a link to TRBV7-2 is TRBV6-2/TRBV6-3. Its usage
was also highly affected by the genotype of TRBV7-2.
The mean usage of TRBV6-2/TRBV6-3 in TRBV7-2*bp02
homozygous individuals was less than half of the mean

usage in TRBV7-2*bp01 homozygous individuals. Since
we cannot distinguish between TRBV6-2 and TRBV6-
3, this observation supports the hypothesis that both
TRBV4-3 and one of TRBV6-2/TRBV6-3, are not present
in haplotypes that carry TRBV7-2*bp02. We used long-
read assembly haplotypes to investigate the connection
between TRBV7-2 and the deletions. All 40 haplotypes
that carried TRBV7-2*bp02 had a deletion stretch at
the genomic location of TRBV4-3 and either TRBV6-
2 or TRBV6-3. An additional 27 haplotypes carried
TRBV7-2*bp01, of which eight had the same deletion
stretch as with TRBV7-2*bp02.
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In addition, the following association patterns between
specific alleles and single chromosome deletions were
revealed by haplotype inference: (1) TRBV24-1*02 was
observed in eight samples on the chromosome carry-
ing TRBJ1-6*02 and none in the other chromosome. (2)
TRBV28*Del was observed in 4 samples on the chro-
mosome carrying TRBJ1-6*02 and none in the other
chromosome. (3) TRBV20-1*05 was observed in five sam-
ples on the chromosome carrying TRBJ1-6*01 and none
in the other chromosome. (4) In eight individuals when
TRBV24-1*02 was present on chromosome TRBJ1-6*02,
TRBV20-1*02 was also observed. Of note is a haplotype
block between the genes TRBV6-4 to TRBV10-1 that was
observed in DS1:CI21 on the TRBJ1-6*01 chromosome
and in DS2:donor4 on the TRBJ1-6*02 chromosome
(Fig. 5).
TRBD2 was also considered a potential anchor gene

for haplotype inference. To examine the reliability of this

inference, we used the same individuals who were het-
erozygous for TRBJ1-6. Ten out of the 11 individuals from
DS1 were heterozygous for TRBD2 and were used for the
haplotype inference (Additional file 1: Fig. S12). Although
the number of recombinations of TRBD2 with the TRBV
genes is much larger than TRBJ1-6 and could potentially
supply a better inference, comparison of the results from
both anchor genes shows a different picture. The haplo-
types inferred with TRBD2 commonly show occurrences
of more than one allele per gene on a single chromosome.
This is most likely due to ambiguous assignment of the
very short and similar TRBD2 alleles. Hence, although
haplotype inference with TRBD2 is feasible, it is likely to
be less accurate.

Discussion
In this study, we have explored how beta chain TCR V(D)J
sequences of different lengths, generated using differing

Fig. 5 TRBV haplotypes for 19 individuals from DS1 and DS2. The upper and lower panels show the TRBV haplotypes anchored with TRBJ1-6*01 and
TRBJ1-6*02, respectively. Each row is an individual’s haplotype, and each column is a V gene call. The colors correspond to the V alleles and the tile
annotations correspond to the undocumented allelic variants
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technologies, can contribute to our knowledge of TRB
genes, their allelic variants, and their influence on the
expressed repertoire. Previous studies of BCR genotypes
and haplotypes have led to the identification of dozens
of new allelic variants of heavy and light chain variable
region genes. This approach has not been extended to
investigations of the TCR genes. Zhang et al. [57] inves-
tigated the reliability of V gene identification for different
lengths of sequences of IGH, IGK, IGL, TRA, and TRB
with respect to somatic hypermutations and sequenc-
ing errors. The comparison there is between full-length
and lengths of 100, 150, or 200 nucleotides, whereas we
used an analogous approach to compare the lengths of
the common sequencing protocols. The focus of most
TCR gene studies remains firmly fixed on the CDR3
regions of the genes [58]. Despite their interaction with
the major histocompatibility complex (MHC), and their
documented influences on TCR/MHC/peptide interac-
tions [59, 60], the CDR1 and CDR2 gene sequences and
their translated products are still generally ignored in TCR
repertoire studies. Only the 3′ ends of the TCR variable
gene sequences are included in the amplicons gener-
ated by commercial providers of TCR sequencing such
as BGI, iRepertoire, and Adaptive Biotechnologies. Their
sequencing setup allows the unambiguous identification
of most variable region genes that may partially encode
the CDR3 sequences, but they are rarely able to iden-
tify TRBV genes at the allele level. This study sheds light
on understudied regions of the TCR, to enable accurate
identification of new alleles, genotypes, and haplotypes.
Despite the intimate partnership of MHC proteins and

TCRs in the recognition of antigenic peptides, it is only
the genes of the MHC that are widely recognized as dis-
ease susceptibility genes [61]. The germline genes that
rearrange to produce TCRs are rarely accorded much
importance. Themultiple sets of TCR alpha, beta, gamma,
and delta V, D, and J genes each include many highly sim-
ilar genes. This may have encouraged the view that the
astonishing processes of V(D)J recombination should gen-
erate much the same kind of repertoire, no matter which
germline genes are available to an individual.
Germline TCR genes may also represent a blind-spot

to the immunological community, because until recently
they were so difficult to document in an individual, let
alone in a population. High-throughput sequencing stud-
ies of TCR repertoires now enable easy documentation of
germline genes. In this study, we adapt tools and tech-
niques that were developed for analysis of BCR genotypes
[18, 19, 21, 23, 62, 63] and haplotypes [17, 22] for the
analysis of TCR data sets. Other tools such as LymAna-
lyzer have been specifically developed for the analysis of
TCR data [64], but they do not produce genotypes and
haplotypes.

Our analysis demonstrates that many undocumented
V genes remain to be discovered and that even par-
tial AIRR sequences can be analyzed for the detection
of undocumented polymorphisms. It is clear, however,
that much additional information is to be gained by the
study of full-length V(D)J genes. Analysis of genotypes
and haplotypes from full-length sequence data sets of 53
individuals led to the identification of 18 TRBV alleles
that are not documented in the IMGT Reference Direc-
tory. In contrast, only 16 polymorphisms were identified
in truncated sequences generated from 219 individuals
using BIOMED-2 primers, and just 14 new allele patterns
were seen in the 786 Adaptive Biotechnologies data sets.
This latter result reflects both the very short lengths of
the Adaptive Biotechnologies sequences and the general
lack of variability in the 3′ ends of the TRBV genes. To
try and speculate whether the TRB polymorphisms are
more important for MHC binding or antigen binding, we
compared the distributions of known SNPs in TRBV and
IGHV genes (Additional file 1: Fig. S13 and Fig. S14),
expecting to find more amino acid replacements in the
regions of CDR1/2. Schwartz et al. [65] have shown that
germline diversity at a given position is a good indicator
for the potential to survive after a somatic mutation at
that position. However, there are far fewer known SNPs in
TRBV than in IGHV, whichmakes it impossible to address
this interesting question. We also could not address the
question of polymorphisms in TRA, as there are very few
full-length TRA samples available.
It is interesting to contrast this level of gene discovery

with genetic variation amongst the BCR-encoding genes:
to date, 120 functional alleles are documented in IMGT
for 48 TRBV genes (avg. 2.5 alleles per gene). This com-
pares to 286 functional alleles reported for the 55 IGHV
genes (avg. 5.2 alleles per gene). This study adds a total
of 39 alleles and SNPs to the record of TRBV genes (∼
33% of the known alleles), and it seems likely that many
undocumented TRBV alleles remain to be discovered.
It appears that there is less structural variation in the

TRBV locus than is seen in the IGHV locus. A well-
documented 21-kb deletion polymorphism in the TRBV
locus, involving the TRBV4-3, TRBV3-2, and TRBV6-2
genes, was frequently noted here. Other deletion poly-
morphisms, each involving single genes — TRBV11-
1, TRBV7-3, TRBV30, TRBV2, TRBV4-2, TRBV6-5,
TRBV5-5, TRBV13, and TRBV28—were seen at relatively
low frequencies. No deletion polymorphisms involving
the TRBD or TRBJ loci were detected. In contrast, numer-
ous relatively common deletions are now known in the
IGH loci, including one involving 13 consecutive, func-
tional IGHV genes, and one involving six consecutive
IGHD genes [21, 23]. The seven functional IGHV genes
that can be found between IGHV4-28 and IGHV4-34 are
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rarely all present, or all absent, with at least six recognized
structural variant haplotypes [16, 23].
It should be emphasized that the deletions reported here

reflect an absence of rearrangements in the expressed
TCR repertoire. It is possible that the deletions are
“functional” rather than structural, perhaps as a result
of variants in recombination signal sequences (RSS) or
other regulatory elements. Certainly in a few individuals,
a handful of rearrangements of the genes in question were
seen. For example, TRBV4-3 was usually present in about
2% of all rearrangements, but in eight individuals, it was
seen at frequencies less than 0.05%.
No previously unknown gene duplications were inferred

in this study. This is in sharp contrast to observations
from studies of the IGHV locus. Early restriction fragment
length polymorphism (RFLP)-based analyses pointed to
duplications of sequences that came to be known as
IGHV3-23 and IGHV1-69 [66–70]. More recently, the
duplication of these two genes and of three other func-
tional genes was confirmed, first by analysis of AIRR-Seq
data [71] and then from genomic assembly data, including
the second complete assembly of the IGHV locus [14].
It was not possible in this study to explore possible

RSS variants, as RSS are lost from the genome during
V(D)J recombination. On the other hand, 5′ RACE data
allows for the exploration of variation in the 5′ UTR, as
has recently been reported from BCR repertoire stud-
ies [43, 44]. Thirty-one variants of the 5′ UTR sequences
of TRBV genes were identified in this study — a similar
level of variability to that seen in IGHV studies. The func-
tional implications of this kind of variation is yet to be
determined.
The documentation of allelic variation and structural

variation in the TCR gene loci will be important, as there
are clear consequences of such variation on the expressed
TCR repertoire, and if such variation can be shown to
have consequences for the disease susceptibility of differ-
ent individuals. It might be assumed that thymic selection
would so powerfully shape individual TCR repertoires
that any consequences upon the TCR repertoire of indi-
vidual genotypes and haplotypes would be obscured. This
study shows, however, that the usage of particular genes
in the expressed repertoire appears to be very similar
between individuals. The “shape” of the TCR repertoire
may therefore be as predictable as has been found for
the BCR repertoire [3, 4], reflecting both the carriage
of individual genes and the LD that is found within the
loci. Conspicuous LD identified in this study includes
that of the TRBV4-3/TRBV3-2/(TRBV6-2 or TRBV6-3)
deletion polymorphism and carriage of the TRBV7-2*02
allele, as well as linkage between the TRBD2 and TRBJ1-
6 loci. These different haplotypes, in turn, are associated
with significant differences in the usage of neighboring
genes.

The power of AIRR-Seq analysis is well demonstrated by
the TRBD gene analysis in this study. Although most TCR
AIRR-Seq studies have been CDR3-focused, the TRBD
genes that provide recurring central motifs to the CDR3
have usually been ignored. This study demonstrates that
meaningful analysis of TRBD genes is possible and that
even the slight sequence variation between the TRBD
genes have consequences for the expressed repertoire.
Within large V(D)J data sets, TRBD genes can be identi-
fied with confidence, and even the presence of different
TRBD2 alleles in an individual’s genotype can shape the
expressed repertoire in predictable ways. Yet, all of these
findings were procured mainly from individuals from
developed countries or undocumented geographic origin.
Sequencing individuals from developing and least devel-
oped countries could very well add or alter some of these
results, as argued by Peng et al. [72]. Nonetheless, as our
knowledge of these and other genes of the TCR loci grows,
the way will be open to identify “departures from the
repertoire norm” that may have biological and perhaps
even clinical implications.
The frequency distribution analysis shown in Fig. 2A

focuses on bi- or tri-modal distributions. In cases that
involve duplicated genes that share the same allele, such
as TRBV6-2 and TRBV6-3, having more than two alleles
per gene may shift the location of the second/third/fourth
mode of the distribution, but it will still not be uni-modal.
As such, as long as we do not have extreme cases in which
the relative frequency of the candidate allele is comparable
to the mis-identification rate of the allele, the method is
applicable. In other cases, such as the ones present in the
IGH/IGK loci, these assumptions should be revisited [73].
To date, there have been very few associations of TCR

genes with disease. One clear example is the genetic pre-
disposition to carbamazepine-induced Stevens–Johnson
syndrome (SJS), a severe cutaneous hypersensitivity with
high mortality [74]. SJS and other cutaneous hypersensi-
tivity reactions have been linked to HLA types, but these
associations have all had a low positive predictive value
[75], leading others to explore a possible role for TCR
genes. It has now been shown that SJS is associated with
the usage by cytotoxic T cells of a public TCR clonotype
encoded by the TRBV12-4 and TRBJ2-2 genes [76]. Full-
length sequences were not reported in the study of Pan
and colleagues [76], and so a possible role for specific
allelic variants of these genes could not be explored. Inter-
estingly, in the present study, a previously undocumented
polymorphism of TRBV12-4 was identified.
The lack of disease associations with TCR genes is likely

to be a reflection of our ignorance of individual genetic
variation within the TCR loci. Only after thorough explo-
ration of the population genetics of the TCR genes, and
of individual variation in the expressed TCR repertoire,
will it be possible to determine whether or not these genes
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have a role in disease susceptibility. Genomic sequenc-
ing of TCR genes will contribute to this [77], but the
present study demonstrates that it will also be possible to
do this efficiently through the analysis of AIRR-Seq data.
For this reason, the amplification of full-length TCRV(D)J
sequences, or genomic long-read paired sequencing of the
locus, must be strongly encouraged in AIRR-Seq studies.
The results presented in this paper pave the way towards
establishing functional links between the TRB germline
repertoire and the TCR immune response. They expand
our knowledge of genomic variation in the TRB locus and
lay the ground for more accurate basic and clinical studies.

Conclusions
To summarize our findings, we identified 39 undocu-
mented TRBV alleles and 31 undocumented upstream
sequences, and inferred double chromosome deletions in
TRBV4-3, TRBV3-2, TRBV11-1, and TRBV30. For TRBD
and TRBJ, we determined the error rates in identification
between TRBD2*01 and TRBD2*02 and corrected them,
discovered LD between TRBJ1-6 and TRBD2, and found
a strong bias in the usage of TRBJ genes depending on
which TRBD2 allele is used. For example, for TRBD2*01
individuals, the mean usage of TRBJ1 was 0.473 compared
to 0.366 for the TRBD2*02 individuals. Overall, our study
sheds light on the genomic loci encoding TRB, to enable
identification of new alleles, genotypes, and haplotypes.
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