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Abstract

Background: Ketamine elicits rapid onset antidepressant effects in clinically depressed patients, 

through mechanisms hypothesized to involve the genesis of neocortical dendritic spines and 

synapses. Yet, the observed changes in dendritic spine morphology usually emerge well after 

ketamine clearance, raising questions about the link between rapid behavioral effects of ketamine 

and plasticity.

Methods: Here, we use 2-photon glutamate uncaging/imaging to focally induce spinogenesis 

in the medial prefrontal cortex (mPFC), directly interrogating baseline and ketamine-associated 

plasticity of deep layer pyramidal neurons in C57BL/6 mice. We combine pharmacological, 

genetic, optogenetic, and chemogenetic manipulations to interrogate dopaminergic mechanisms 

underlying ketamine-induced rapid enhancement in evoked plasticity and associated behavioral 

changes.

Results: We find that ketamine rapidly enhances glutamate-evoked spinogenesis in mPFC, with 

timing that matches the onset of its behavioral efficacy and precedes changes in dendritic spine 

density. Ketamine increases evoked cortical spinogenesis through Drd1 receptor activation that 

requires dopamine release, compensating blunted plasticity in a learned helplessness paradigm. 

The enhancement in evoked spinogenesis after Drd1 activation or ketamine treatment depends 

on postsynaptic Protein Kinase A (PKA) activity. Furthermore, ketamine’s behavioral effects are 

blocked by chemogenetic inhibition of dopamine release and mimicked by activating presynaptic 

dopaminergic terminals, or postsynaptic Gαs-coupled cascades in mPFC.

Conclusions: Our findings highlight dopaminergic mediation of rapid enhancement in activity-

dependent dendritic spinogenesis and behavioral effects induced by ketamine.
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INTRODUCTION

Ketamine and its S-enantiomer esketamine demonstrate rapid onset and lasting 

antidepressant effects in clinical studies (1,2); esketamine (Spravato) has been recently 

approved by the Food and Drug Administration for treatment-resistant depression (3). 

Ketamine acts primarily as an antagonist at the glutamatergic N-methyl-D-aspartate 

(NMDA) receptors (4-8), although several studies implicate mechanisms beyond direct 

NMDAR antagonism (9,10). Ketamine has been shown to ameliorate depressive-like 

behaviors in animal models of stress (11-15). Accumulating evidence implicates the 

enhancement of synaptic plasticity in ketamine’s behavioral effects (6,8,13,14,16-19). 

Several prior studies demonstrate that in vivo administration of ketamine enhances dendritic 

spine density (16,20-23) and restores dendritic spine loss in the medial prefrontal cortex 

(mPFC) (19). Notably, increased dendritic spine density in mPFC pyramidal neurons usually 

emerges 12-24 hrs after a single subanesthetic dose of ketamine (16,19,20,23), yet clinical 

effects on behavior emerge within 2-4 hrs (1,2,24). Even if ketamine’s effects on plasticity 

are linked to its behavioral efficacy, as has been suggested (16,19,21,23,25), this temporal 

mismatch could in principle result from a rapid enhancement of spinogenesis by ketamine, 

which over time leads to increased dendritic spine density. This possibility has not yet been 

directly examined.

Changes in hedonic, motivational, and aversive processing represent fundamental features of 

major depressive disorders (26-29). Reward, aversion, and motivational states are strongly 

tied to changes in the activity of midbrain dopaminergic (DA) neurons (30-35). In addition, 

dysregulation of DA systems has been demonstrated in clinically depressed patients (36,37) 

and in animal models of depression (38-41). The reversal of deficits in the DA system 

usually improves depressive-like behaviors (39,40,42). A recently published meta-analysis 

suggests that acute sub-anesthetic doses of ketamine increase DA levels in the prefrontal 

cortex (43), reported for both in vivo and ex vivo studies (44-48). Yet, little is known 

about the behavioral and neurobiological consequences of elevated cortical dopamine level 

induced by ketamine treatment. Outside the context of ketamine effects on the brain, several 

studies have elucidated DA modulation of intrinsic excitability and ion channel properties 

of mPFC pyramidal neurons (49-52). Whether DA signaling regulates structural plasticity of 

dendritic spines in mPFC and whether changes in DA tone account for ketamine-associated 

plasticity remains unknown.

Here, we rely on dual laser 2-photon glutamate uncaging and imaging to directly induce 

de novo dendritic spinogenesis on mPFC pyramidal neurons. The spatiotemporal control 

of this assay enables us to evaluate the capacity for spinogenesis independently from 

pre-existing dendritic spines. Combining this assay with pharmacological, genetic, and 
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behavioral manipulations allows us to functionally dissect the underlying mechanism of 

changes in the glutamate-evoked genesis of new dendritic spines.

METHODS AND MATERIALS

A detailed description of experimental procedures, including mouse strains and genotyping, 

stereotactic injections and optic fiber implants, behavior assays, local drug infusion, 

acute slice preparation, pharmacology, tissue processing and immunohistochemistry, and 

quantitative fluorescence in situ hybridization is provided in the Supplementary Information.

Mouse strains and genotyping.

Animals were handled according to protocols approved by the Northwestern University 

Animal Care and Use Committee. Weanling and young adult male and female mice 

(postnatal days 25-60) were used in this study. Approximately equal numbers of males 

and females were used for every experiment. All mice were group-housed, with standard 

feeding, light-dark cycle, and enrichment procedures; littermates were randomly assigned to 

conditions.

Behavior assays

Learned helplessness (LH).—P40-60 mice were used for behavioral assays with 

optogenetic and chemogenetic experiments. P25-40 mice were used for spinogenesis 

assays with behavioral manipulations. The learned helplessness procedure consisted of two 

induction sessions (1 session per day; 360 inescapable foot shocks per session; 0.3 mA, 

3 sec; random 1-15 sec inter-shock intervals). Active/Passive Avoidance Shuttle Boxes 

from MazeEngineers (Boston, MA) were used for the experiment. To assess the degree 

of aversive learning, test sessions (30 escapable foot shocks per session; 0.3 mA, 10 sec; 

random 5-30 sec inter-shock intervals) were conducted before induction, 24 hrs after the 

last induction session, and following pharmacological or optogenetic manipulations. The 

testing was performed in a shuttle box (18 × 18 × 20 cm) equipped with a grid floor and a 

door separating the two compartments. No conditioned stimulus was delivered either before 

or after the shocks. Escapes were scored when the animal shuttled between compartments 

during the shock. Escape latency was measured as the time from the start of the shock 

to the escape. The shock automatically terminated when the animal shuttled to the other 

compartment. Failures were scored when the animal failed to escape before the shock end. 

The weaker LH paradigm (wLH) consisted of one induction session, and one test session 

with a larger number of brief escapable shocks (100 escapable foot shocks per session; 0.3 

mA, 3 sec; random 5-15 sec intershock intervals). All behavioral assays were conducted 

during the active phase of the circadian cycle. Schematics involving mice were made using 

BioRender.

Two-photon imaging with two-photon glutamate uncaging

Dendritic imaging and uncaging of MNI-glutamate for spinogenesis induction were 

accomplished on a custom-built microscope combining two-photon laser-scanning 

microscopy (2PLSM) and two-photon laser photoactivation, as previously described (53-55). 

Two mode-locked Ti:Sapphire lasers (Mai Tai eHP and Mai Tai eHP DeepSee, Spectra-
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Physics, Santa Clara, CA) were tuned to 910 and 725 nm for exciting EGFP and uncaging 

MNI-glutamate, respectively. The intensity of each laser was independently controlled by 

Pockels cells (Conoptics, Danbury, CT). A modified version of Scanimage software was 

used for data acquisition (56). For glutamate uncaging, 2.5 mM MNI-caged-L-glutamate 

(Tocris) was perfused into the slice chamber, and 725 nm light guided through a galvo 

scanhead was used to focally release the caging group. Secondary and tertiary dendritic 

branches were selected for dendritic imaging and spinogenesis induction. MNI-glutamate 

was uncaged near the dendrite (~0.5 μm) at 2 Hz using up to forty 2 ms-long pulses. 

Images were continually acquired during the induction protocol at 1 Hz, and uncaging was 

stopped if a spinehead was visible before 40 uncaging pulses were delivered. Analysis was 

carried out on raw image stacks and z projections. For display purposes only, a subset 

of the 2-photon micrographs was processed using Candle (57). A successful induction 

of new dendritic spine was scored when a protrusion from the dendrite in the uncaging 

location was observed. A newly generated dendritic spine had to satisfy the following 

criteria: de novo protrusion from the dendrite within 1 μm of the uncaging site; mean spine 

head fluorescence matching average fluorescence of spine heads on the parent dendrite; 

mean spine head fluorescence exceeding 20% of intensity in the parent dendrite. Changes 

in fluorescence intensity were profiled using line-scan analyses. For each animal, the 

probability of spinogenesis is represented as the fraction of successful induction trials out of 

all conducted trials within the individual.

Quantification of dendritic spine density

Sections of mPFC were either examined with a custom-built 2PLSM or a Leica SP5 

confocal microscope (Leica Microsystems). Distal apical dendritic segments were selected 

for analysis. For each dendritic segment, dendritic spines protruding on both sides of the 

dendrite were marked using a 3D reconstruction system Neurolucida 360 (MBF Bioscience, 

Williston, VT). Six to eight z stacks (0.3 μm between each stack), at 0.07 μm lateral pixel 

size, were used for reconstruction. Dendritic spine density was averaged from 8-12 dendritic 

segments for each animal.

Statistical analyses

Group statistical analyses were done using GraphPad Prism 7 software (GraphPad, LaJolla, 

CA). For N sizes, the number of trials or cells recorded, as well as the number of animals 

are provided. All data are expressed as mean ± SEM, or individual plots. Probabilities 

are expressed as aggregate probabilities within individuals. For two-group comparisons, 

statistical significance was determined by two-tailed Student’s t-tests. For multiple group 

comparisons, one-way or two-way analysis of variance (ANOVA) tests were used for 

normally distributed data, followed by post hoc analyses. For non-normally distributed 

data, non-parametric tests for the appropriate group numbers were used. Pearson regression 

was used to detect the correlation between two groups of data. p < 0.05 was considered 

statistically significant.
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RESULTS

Ketamine rapidly enhances glutamate-evoked spinogenesis in mPFC pyramidal neurons

Acute slices of mPFC were prepared from P25-40 mice of both sexes following neonatal 

transduction of sparse EGFP expression accomplished by a combination of AAV1.hSyn.Cre 

and AAV8.FLEX.EGFP. We imaged EGFP-labeled dendrites of layer 5 pyramidal neurons 

in mPFC using 2-photon laser scanning microscopy (2PLSM, 910 nm). A second laser was 

tuned to 725 nm to locally uncage MNI-glutamate near dendrites to probabilistically induce 

the formation of new dendritic spines (Figure 1A), as previously described for developing 

neurons in the striatum and superficial layers of sensory and motor cortex (53,55,58). 

Successful and unsuccessful induction trials of de novo spinogenesis were distinguished in 

z-stack projections through a dendritic segment before and after the brief induction protocol 

(< 30 sec) of up to 40 uncaging pulses (Figure 1B). In order to be classified as newly 

induced dendritic spines, the new membrane protrusions had to satisfy several criteria based 

on location and fluorescence intensity, relative to parent dendrite and pre-existing dendritic 

spines (methods and Supplementary Figure 1A-C).

We carried out evoked spinogenesis assays in different mice at several time points (2-72 

hours) after a single subanesthetic dose of ketamine (10 mg/kg, i.p.). In vivo administration 

of ketamine in naive animals enhanced evoked de novo spinogenesis 2 and 4 hours after 

treatment (Figure 1C), temporally matching the emergence of ketamine’s behavioral effects 

(4,5). This effect was transient, by 12 hours after ketamine was administered, the probability 

of spinogenesis decreased back to baseline levels. In addition, dendritic spine density was 

quantified at the same time points. In contrast to the rapid, transient changes in evoked 

spinogenesis, the increase in dendritic spine density was delayed until 12 hours after 

treatment (Figure 1C), consistent with prior reports (14,18-20). This temporal precedence 

of ketamine-associated potentiation of evoked spinogenesis suggests that changes in the 

potential for activity-dependent plasticity may contribute to slower, accumulating increases 

in spine density after ketamine treatment.

Rapid enhancement in evoked spinogenesis requires Drd1-PKA signaling

Given the hypothesized links between ketamine and the DA system, we sought to determine 

whether ketamine’s effect on evoked plasticity is mediated by the activation of DA receptors. 

First, we verified the expression of Drd1a receptors in EGFP-expressing neurons. Consistent 

with prior reports (59,60), the majority of pyramidal neurons in the deep layers of mPFC 

express Drd1a mRNA (Figure 1D, Supplementary Figure 2A, B). We compared glutamate-

evoked spinogenesis after administering ketamine alone, or in conjunction with a Drd1 

receptor antagonist SKF 83566 (10 mg/kg i.p., 2 hours prior to ex vivo experiments). 

We found that antagonizing Drd1 receptors blocked ketamine’s potentiation of evoked 

spinogenesis, while the antagonist treatment alone had no effect relative to baseline (Figure 

1D). Thus, while the activation of Drd1 receptors in this neuronal population is not 

required for baseline glutamate-evoked plasticity, it appears to be necessary for ketamine’s 

enhancement of evoked spinogenesis.
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Next, in order to suppress mPFC DA release without broadly altering Drd1 activation 

and locomotor behavior (61), we used chemogenetic inhibition of VTA DA neurons; the 

major source of DA in mPFC. Inhibiting hM4Di+ VTA DA neurons with CNO (3 mg/kg, 

i.p.) while administering ketamine treatment blocked ketamine’s spinogenesis-enhancing 

effects (Figure 1E). Yet, as for the pharmacological Drd1 receptor blockade in vivo, we 

observed no effects of CNO treatment on evoked spinogenesis in the absence of ketamine. 

These observations are consistent with a model where the genesis of new dendritic spines 

and synapses mechanistically depends on glutamate, but the enhancement of this plasticity 

requires the activation of PKA via Gαs-coupled receptors (55). In addition to blocking 

ketamine-mediated enhancement of evoked spinogenesis, transient inhibition of VTA DA 

neuron activity (a single CNO dose + ketamine) also abolished the delayed increase of 

spine density 24 hours after ketamine (Figure 1F). These data show that in the absence 

of behavioral manipulations, Drd1 activation and VTA DA activity regulate changes in 

spinogenesis and dendritic spine density, mediating the effects of ketamine on plasticity in 

mPFC.

The next series of experiments test whether the capacity for spinogenesis is altered in 

animal models of stress, where ketamine ameliorates behavior. We exposed mice to subacute 

uncontrollable stress by administering foot shocks over 2 days, using an adapted model of 

learned helplessness (LH, 3 sec inescapable, 360 shocks each day, Figure 2A). Following 

repeated exposure to inescapable foot shocks, LH behavior manifests in increased failures to 

escape from readily avoidable shocks (10 sec escapable, 30 trials total), consistent with prior 

reports (38,62). A single dose of ketamine 4 hours prior to the test (10 mg/kg, b.w., i.p.) is 

sufficient to rescue escape behavior in this paradigm (Figure 2B). We next tested glutamate-

evoked spinogenesis in the baseline, after stress exposure (LH), and following ketamine 

treatment (LH + KET). The probability of glutamate evoked spinogenesis decreased 

relative to baseline in LH mice, while ketamine treatment restored the baseline potential 

for plasticity (Figure 2C). We found that 2 days of stressful experience is sufficient to 

decrease the potential of spinogenesis in mPFC pyramidal neurons, in contrast to changes in 

dendritic spine density that normally manifest after chronic stress (16,63,64). No significant 

sex difference was observed across conditions, despite a trend towards higher evoked 

spinogenesis in females in the baseline condition (Supplementary Figure 3A-B). To correlate 

individual behavioral outcomes with evoked plasticity, we performed de novo spinogenesis 

assays in animals trained with a modified, weaker LH paradigm (wLH), with or without 

subsequent ketamine treatment. In the wLH paradigm, we used a larger number of brief (3 

sec) escapable foot shocks to evaluate the escape behavior, following a single day of LH 

induction with inescapable shocks (Supplementary Figure 3C). We found that the probability 

of evoked spinogenesis negatively correlates with the percentages of failures to escape in 

both conditions (wLH +/− ketamine) (Supplementary Figure 3D). This result suggests that 

mPFC plasticity is linked to behavioral profiles of individual animals after LH and ketamine 

treatment.

We then tested the contribution of Drd1 receptors to ketamine related plasticity changes. To 

specifically manipulate Drd1 receptor expression in mPFC without affecting the global DA 

system, we conditionally knocked out Drd1 receptors by co-expressing Cre recombinase and 

Cre-dependent EGFP in Drd1-floxed mice (Figure 2D). We validated the conditional knock-
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out by verifying the expression of Drd1a mRNA in EGFP-expressing neurons (Figure 2D). 

Sparse genetic depletion of Drd1 receptor in mPFC pyramidal neurons abolished ketamine’s 

effect on spinogenesis in LH animals, without changing the probability of spinogenesis for 

mice in the baseline or LH conditions (Figure 2E).

Next, we addressed the downstream signaling mechanism for DA enhancement of 

glutamate-evoked spinogenesis. Drd1 receptor activation is known to regulate glutamatergic 

synapse and dendritic spine formation in the developing striatum (55,65).Yet, mPFC Drd1 

receptor expression levels in single neurons are considerably lower than in the striatum 

(mPFC Layer 5 pyramidal neurons: ~4/100,000 transcripts; striatum: ~110/100,000; data 

from DropViz (66)). We found that bath application of Drd1 agonist SKF 81297 (1 

μM) promotes glutamate-evoked spinogenesis in mPFC pyramidal neurons (Figure 3A, 

B). This effect requires Drd1a signaling, since Drd1a cKO abolished the enhancement of 

spinogenesis. Suppression of PKA activity by either bath application of H-89 (10 μM) or 

over-expression of endogenous PKA inhibitor (PKIα) in mPFC pyramidal neurons blocked 

changes in spinogenesis induced by SKF 81297 (Figure 3B, C). In addition, in vivo pre-

treatment with ketamine (10 mg/kg, i.p.) occluded the enhancement of spinogenesis by SKF 

81297 (Figure 3D), supporting the argument that ketamine’s effect on structural plasticity 

is mediated by Drd1 receptor. Furthermore, the plasticity-promoting effect of ketamine 

was blocked by over-expression of PKIα (Figure 3E). Several established targets of PKA, 

involved in cytoskeletal remodeling, could contribute to Drd1-dependent effects of ketamine 

on structural plasticity (67) (Figure 3F). Altogether, our results reveal that ketamine’s rapid 

modulation of structural plasticity in mPFC pyramidal neurons requires the Drd1a-PKA 

signaling cascade.

Bidirectional manipulation of mPFC DA release controls behavioral effects of ketamine

To connect the mechanisms of ketamine-associated plasticity and its behavioral effects, we 

examined the role of cortical DA signaling in escape behavior after LH. To induce local 

dopamine release in mPFC, we optogenetically activated DA terminals in mPFC in animals 

with ChR2 expression restricted to VTA DA neurons. DATicre neonates were transduced 

with AAV1.EF1α.DIO.hChR2(H134R).eYFP, or a control fluorophore, and implanted with 

optical fibers 4-6 weeks after transduction (Figure 4A, B). After LH induction, animals 

received a series of burst optogenetic stimuli at 20 Hz every 10 sec (10 pulses, 20 ms width, 

500 ms duration) during the test session consisting of 30 avoidable foot shocks (Figure 

4C). The stimulation bursts were not timed relative to shocks and took place on either side 

of the shuttle box, decreasing the likelihood of forming conditioned place preference or 

aversion. Optogenetic activation of DA axon terminals in mPFC significantly decreased the 

percentage of failures after LH, as well as latencies to escape (Figure 4D). Optogenetic 

stimulation did not alter locomotion behavior in either the open field or the shuttle box, 

suggesting the high escape tendency is not caused by hyperlocomotion (Figure 4E). Thus, 

enhancing DA release in mPFC is sufficient to rescue escapes after LH.

While we find that optogenetically driven increase in mPFC DA tone mimics behavioral 

effects of ketamine, whether these effects require local DA release in mPFC remains 

unclear. To achieve local inhibition of DA release, we infused CNO into the mPFC 
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of mice expressing hM4Di in VTA DA neurons and their terminals in mPFC to 

reduce axonal release of dopamine (68-70). DATiCre neonates were transduced with 

AAV1.CBA.DIO.hM4Di.mCherry in the VTA, and cannulae were implanted bilaterally 

over mPFC in order to locally deliver 1 mM CNO (1 μl for each side) (Figure 4F 

and Supplementary Figure 4A). A high density of hM4Di.mCherry expression in mPFC 

terminals was observed in immunoenhanced fixed tissue sections (Figure 4G). Local 

infusion of CNO in mPFC along with ketamine treatment blocked the behavioral effect of 

ketamine (10 mg/kg, i.p.) in the LH paradigm, while ketamine alone was sufficient to rescue 

escape behavior (Figure 4H and Supplementary Figure 4B). To determine whether mPFC 

DA function is required to maintain the effect of ketamine on behavior, we chemogenetically 

inhibited DA release 24 hours after ketamine treatment (Supplementary Figure 4C). This 

delayed manipulation had no significant effect on escape behaviors. Together, these results 

suggest that disruption of DA signaling is important for ketamine effects during an initial 

narrow time window following ketamine administration.

The activation of Drd1 receptors initiates Gαs mediated PKA signaling cascades, which 

enhance spinogenesis, synaptic transmission, and neuronal activity (54,55,59,71). We 

therefore tested whether selective activation of Gαs signaling in mPFC Drd1 expressing 

neurons could rescue escape behavior after aversive learning. We relied on the Gαs-coupled 

rM3D DREADD, expressing AAV1.CBA.DIO.rM3Ds.mCherry in Drd1-Cre-FK150 mice 

(Figure 4I). The expression of rM3Ds alone did not change baseline escape and failure rates, 

or the magnitude of aversive learning. After LH induction, a single i.p. dose of CNO was 

sufficient to rescue escape behavior 4 hours after treatment, lasting at least 24 hours (Figure 

4I). Activating Gαs signaling in Drd1a expressing neurons in vivo significantly increased 

phosphorylation of CREB, which is typically induced by Gαs-coupled cascades (Figure 4J). 

In addition to our results, a recently published study showed that optogenetic activation of 

Drd1+ mPFC neurons decreases immobility time in the forced swim test, suggesting that 

these Drd1-expressing neurons may broadly regulate aversive or active coping responses 

(72). Altogether, our data demonstrate that mPFC DA signaling mediates both the rapid 

plasticity-promoting actions and behavioral effects of ketamine.

DISCUSSION

Glutamate-evoked interrogation of plasticity on genetically targeted neurons offers unique 

strengths as a structural plasticity readout. Besides dissociating de novo genesis and 

elimination of dendritic spines and synapses, this assay facilitates pharmacological and 

genetic mechanism dissection and is compatible with behavioral manipulations. Our 

observations demonstrate a temporal precedence of spinogenesis increase relative to changes 

in dendritic spine density, suggesting that the changes in spine density in vivo can be due to 

a prior, accumulating change in glutamatergic activity-dependent spinogenesis. Recent work 

demonstrates that newly formed dendritic spines are required to maintain the behavioral 

effect of ketamine after chronic corticosterone administration (19), establishing a causal link 

between the increase in new spine formation and ketamine’s behavioral effects. Here, we 

have defined the mechanisms underlying rapid changes in spinogenesis that are required for 

these causal effects.
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The current study explains several intriguing temporal observations about ketamine actions 

and reconciles previously reported temporal mismatches. First, rapid anti-depressant effects 

of ketamine usually begin 2-4 hours after a single dose of treatment (2,4,24,73), while 

changes in dendritic spine morphology in mPFC are primarily observed 8-16 hours later 

(14,16,19,23). Our results reveal that the enhancement of glutamate-induced spinogenesis 

occurs rapidly (2-4 hours) after ketamine treatment, corresponding to its rapid-onset 

behavioral effects. Second, the half-life of ketamine is estimated at 1-3 hours in humans 

(~1.5 hours in rodents), with a relatively short clearance time (~8-12 hours) (74,75). These 

short clearance times stand in contrast to the lasting behavioral effects of ketamine in both 

humans and rodents (> 24 hours) (1,2,24). Given this temporal difference, one intriguing 

possibility is that the timing of the clinical anti-depressant effects of ketamine in MDD 

patients (~1 week following a single dose) derives from a lasting change in DA-dependent 

structural plasticity caused by ketamine. Exactly how new dendritic spines stabilize and 

contribute to behavior after ketamine treatment may further reveal how ketamine’s effects 

last days beyond its bioavailability. Since our experiments were carried out in young 

animals and neural plasticity dynamics are known to change across age (76-78), the efficacy 

of ketamine treatment could vary in clinical populations as a function of age, even if 

mechanisms of action are conserved. Since DA tone in mPFC changes through the lifespan 

(79-82), the variance in ketamine’s antidepressant efficacy (e.g. low efficacy and more 

transient effects for geriatric depression (83)) may be partially explained by the age-related 

alterations in cortical DA tone.

This work ties into a growing body of literature explicitly and implicitly linking 

ketamine, behavior, and plasticity. A recent study concluded that Drd1-positive neurons 

in mPFC regulate depressive-like behavior (72), and our study investigated the underlying 

neuromodulatory and plasticity mechanisms consistent with this discovery. Together, the 

two studies support the idea that ketamine controls mPFC plasticity and behaviors through 

cortical modulation by DA. Another recent paper demonstrates that newly formed dendritic 

spines are required to maintain the behavioral effect of ketamine after chronic corticosterone 

administration (19), establishing a causal link between the increase in new spine formation 

and ketamine’s behavioral effects. These findings, together with our observations of 

correlated spinogenesis and escape behavior after LH, highlight the importance of new 

dendritic spine formation for behavioral regulation. Future experiments are required to fully 

understand the impact of individual variability in plasticity and neuromodulatory signaling 

on the anti-depressant effects of ketamine.

Our observations that DA signaling mediates of dendritic spine plasticity in mPFC after 

ketamine injection, may reflect broadly conserved mechanisms in the brain, where DA 

controls activity-induced plasticity of dendritic spines and excitatory synapse formation. 

Prior data demonstrate that, during development, DA regulates the formation of dendritic 

spines and excitatory synapses in striatal direct pathway spiny projection neurons expressing 

Drd1 receptors (55,65). The activation of Drd1 receptors stimulates Gαs signaling cascades, 

increasing cAMP production and PKA activity. Analogously, DA promotes glutamate-

evoked spinogenesis on mPFC pyramidal neurons through Drd1 receptor activation and 

changes in PKA activity. Given that actin dynamics are important for dendritic spine 

formation and shape regulation (84), the mechanistic link between Drd1-PKA signaling 
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and dendritic spine formation likely involves cytoskeleton remodeling proteins. Indeed, PKA 

modulates the activity of small GTPases (e.g., Rap1, Rac1, Cdc42, among others) known 

to regulate dendritic spines (67) through guanine nucleotide exchange factors (GEFs) and 

GTPase-activating proteins (GAPs) (85,86). Specific molecular effectors responsible for 

ketamine-induced changes in synaptic and dendritic spine plasticity remain to be elucidated 

and may provide new clinical targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ketamine regulates mPFC plasticity through a DA-dependent mechanism
(A). Schematic illustrating glutamate-evoked de novo spinogenesis platform. Top, viral 

transduction and an example EGFP+ pyramidal neuron in mPFC. Bottom, MNI-glutamate 

uncaging parameters for the induction of new dendritic spines. Scale bar, 50 μm.

(B). Example 2PLSM images of successful and unsuccessful induction trials of de novo 

spinogenesis. Red circles, uncaging sites. Black rectangle, close up images of local dendritic 

segments before and after glutamate uncaging. Scale bar, 2 μm.

(C). Left, schematic illustrating timecourse of ketamine treatments and experiments. Middle, 

timecourse of evoked spinogenesis probability on deep layer mPFC neurons in mice 

treated with either saline or ketamine (i.p. 10 mg/kg, acute slice preparation 2-72 hrs after 

treatment). Each small circle, aggregate probability of evoked spinogenesis from a single 

animal. Large circle, group data. n = 6 - 7 animals/time point, 15 - 25 trials/animal, one-way 

ANOVA, F (5, 35) = 9.895, p < 0.0001, Sidak’s multiple comparison test vs Saline, 2 hrs p 

= 0.076, 4 hrs, p < 0.0001, 12 hrs, p = 0.0532, 24/72 hrs, p > 0.9. Right, same as left but for 

dendritic spine density. n = 7 - 8 animals/time point, one-way ANOVA, F (5, 37) = 6.319, 

p = 0.0002, Sidak’s multiple comparison test vs Saline, 2/4 hrs p > 0.8, 12 hrs, p = 0.0056, 

24 hrs, p = 0.0011, 72 hrs, p = 0.1271. Inset, normalized time course of changes in evoked 

spinogenesis (orange) and dendritic spine density (blue).

(D). Left, viral transduction and percentage of Drd1a+Egfp+/Egfp+ cells in layer 5 mPFC. 

Right, probability of glutamate-evoked spinogenesis on deep layer mPFC neurons in mice 

treated with Saline, KET (10 mg/kg), KET + SKF 83566 (10 mg/kg), or SKF 83566 alone. 

Each small circle, aggregate probability of evoked spinogenesis from a single animal. Large 

circle, group data. One-way ANOVA, p < 0.0001, F (3, 16) = 20.29, Sidak’s multiple 

comparison test, Saline vs KET, p < 0.0001, KET vs KET + SKF83566, p = 0.0002, Saline 

vs SKF83566, p = 0.8574.

(E). Left, schematic illustrating triple viral transduction strategy for evoked spinogenesis 

with DA neuron inhibition. Right, probability of spinogenesis on deep layer mPFC neurons 

in DATiCre+ and DATiCreG− animals treated with CNO (3 mg/kg) across conditions 

(baseline, KET). n = 4 animals/condition as shown in plots, two-way ANOVA, Sidak’s 

multiple comparison test, Cre− vs Cre+, CNO, p = 0.8686, CNO + KET, p = 0.0042.

(F). Left, example confocal images of EGFP expression in dendrites of deep layer mPFC 

pyramidal neurons, in response to CNO and ketamine treatment, as noted. Scale, 2 μm. 

Right, same as (E) but for dendritic spine density. n = 5 - 6 animals/condition as shown in 
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plots, two-way ANOVA, Sidak’s multiple comparison test, Cre− vs Cre+, CNO, p = 0.5005, 

CNO + KET, p < 0.0001. Scale bar, 2 μm.

** p < 0.01, *** p < 0.001 **** p < 0.0001. Error bars reflect SEM.
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Figure 2. Ketamine rescues mPFC plasticity after stressful experience through Drd1 receptor
(A). Left, schematic illustrating glutamate-evoked spinogenesis assay in Baseline, LH, and 

LH + KET conditions.

(B). Summary data showing the percentage of failures to escape an escapable aversive 

shock, one-way ANOVA, F (2, 18) = 20.26, p < 0.0001, Sidak’s multiple comparison test, 

Baseline vs LH, p < 0.0001, LH vs LH + KET, p = 0.0041.

(C). Probability of glutamate-evoked spinogenesis on deep layer mPFC neurons in distinct 

stages of aversive learning (baseline, LH, LH + KET). n = 9 - 12 animals/condition as shown 

in plots, one-way ANOVA, F (2, 28) = 7.146, p = 0.0031, Sidak’s multiple comparison test, 

Baseline vs LH, p = 0.0496, LH vs LH + KET, p = 0.0016.

(D). Left, schematic illustrating dual viral transduction strategy with sparse genetic 

manipulation of Drd1 receptor expression in Drd1ff mice. Middle, Fluorescence in situ 

hybridization (FISH) image confirming the absence of Drd1a mRNA expression (purple) 

in Egfp mRNA expressing mPFC cells (green) in Drd1ff mice. Inset, close up of a single 

neuron. Scale bar, 50 μm. Right, quantification of the percentage of Drd1a+ cells among 

Egfp+ cells in mPFC. 5% Drd1a+ and 95% Drd1a− among 151 Egfp+ cells from 2 animals.

(E). Probability of glutamate-evoked spinogenesis on deep layer mPFC neurons in distinct 

stages of aversive learning (baseline, LH, LH + KET, LH + saline) in wild type and Drd1ff 

mice. Two-way ANOVA, Sidak’s multiple comparison test, WT vs Drd1ff, LH + KET, p = 

0.0043, Baseline, LH and LH + Saline, p > 0.9, n = 5 animals.

*p < 0.05, ** p < 0.01, *** p < 0.001 **** p < 0.0001. Error bars reflect SEM.
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Figure 3. Drd1 activation promotes glutamate-induced spinogenesis in mPFC pyramidal neurons 
through PKA signaling
(A). Example 2PLSM images of de novo spinogenesis trials with ACSF or 1 μM SKF 

81297. Red circles, uncaging sites. Black rectangle, close up images of local dendritic 

segments before and after glutamate uncaging. Scale bar, 2 μm.

(B). Probability of glutamate-evoked spinogenesis on deep layer mPFC neurons in brain 

slices with or without bath application of 1 μM SKF 81297. Slices were treated with 10 

μM H-89 or collected from mice with genetic manipulation of GFP expressing pyramidal 

neurons (Drd1ff or PKIα). Each small circle, aggregate probability of evoked spinogenesis 

from a single experiment. Large circles, group data. Paired two-tailed t test, ACSF vs SKF 

81297, Control, p = 0.0007; Drd1ff, p = 0.9249; H-89, p = 0.7351; PKIα, p = 0.4; n = 5 – 6 

experiments/group.

(C). Top, colocalization of PKIα-mRuby2 in EGFP-expressing mPFC neurons. Bottom, 

close up images of EGFP and mRuby2 signals. Scale bar, 100 μm and 20 μm.

(D). Left, schematic illustrating glutamate-evoked spinogenesis assay in slices from mice 

pre-treated with ketamine (10 mg/kg, i.p.). Bottom, probability of glutamate-evoked 

spinogenesis on deep layer mPFC neurons in brain slices with or without bath application of 

1 μM SKF 81297. Paired two-tailed t test, ACSF vs SKF 81297, p = 0.3745.

(E). Left, schematic illustrating triple viral transduction strategy for PKIα expression. Right, 

probability of glutamate-evoked spinogenesis in deep layer mPFC neurons in mice with or 

without PKIα expression, injected with ketamine (10 mg/kg, i.p.). Unpaired two-tailed t test, 

GFP vs GFP + PKIα, p = 0.0020.

(F). Schematic of simplified signaling pathways downstream of Drd1-PKA involved in actin 

remodeling in dendritic spines.

** p < 0.01, *** p < 0.001. Error bars reflect SEM.
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Figure 4. Activity of local DA terminals and Drd1+ neurons in mPFC mediates ketamine effects 
on behavior after stress
(A). Schematic for viral transduction with Cre-dependent ChR2 AAV in the VTA and 

subsequent optogenetic fiber implant in mPFC.

(B). Left, fiber placement illustration on a coronal section through mPFC, with a close up 

image of ChR2.eYFP terminals (white dashed lines, Paxinos atlas overlay; yellow dashed 

lines, fiber track). Green, immunoenhanced ChR2.eYFP; blue, Hoechst nucleic stain. Scale 

bars: 500 μm and 50 μm. Right, atlas location of fiber placement for each subject.

(C). Schematic illustrating open loop optogenetic stimulation parameters (Stim, optogenetic 

stimulation).

(D). Left, summary data showing the percentage of failures to escape an escapable aversive 

shock in ChR2-expressing mice (n = 9) and fluorophore-expressing controls (n = 7) across 

phases of learning, Baseline, LH, and LH + Stim. Right, summary data for latency to escape 

in LH compared with LH + Stim conditions. Repeated measures two-way ANOVA, Sidak’s 

multiple comparison test, LH vs LH + Stim, ChR2, p = 0.0002, Fluorophore, p = 0.9358. 

Latency to escape, LH vs LH + Stim, ChR2, p = 0.0014, Fluorophore, p = 0.9248.

(E). Left, locomotion in the open field and shuttle box (m/min) after learning with and 

without optogenetic stimulation. Repeated measures two-way ANOVA, Sidak’s multiple 

comparison test, open field, p = 0.1742, shuttle box, p = 0.7503, n = 5 mice.

(F). Left, schematic illustrating viral transduction strategy. Right, local CNO infusion in 

mPFC (1 mM, 1 μl).
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(G). Left, immunoenhanced image of hM4Di.mCherry+ DAT+ terminals in mPFC. Right, 

mCherry+ terminals colocalize with a subset of tyrosine hydroxylase (TH) expressing axons. 

Scale bars, 500 μm and 50 μm.

(H). Summary data showing the percentage of failures to escape an escapable aversive 

shock across learning and treatment conditions for hM4Di-expressing DATiCre positive and 

negative littermates. n = 5 animals for Cre−, 8 animals for Cre+, two-way ANOVA, Sidak’s 

multiple comparison test. KET + CNO 4 hrs, p < 0.0001, KET + CNO 24 hrs, p = 0.0476, 

KET + only 4, 24, and 72 hrs, p > 0.7.

(I). Left, schematic illustrating viral transduction strategy. Right, Summary data showing the 

percentage of failures to escape an escapable aversive shock in Drd1-Cre+ and Drd1-Cre− 

mice expressing rM3Ds across phases of learning and after CNO treatment (Baseline, LH, 

LH + CNO 4 hrs, and LH + CNO 24 hrs). n = 8 - 10 animals/condition, two-way ANOVA, 

Sidak’s multiple comparison test, Cre+ vs Cre−, LH + CNO 4 hrs, p = 0.0018, LH + CNO 

24 hrs, p = 0.0007, Baseline/LH, p > 0.9.

(J). Left, colocalization of pCREB immunolabeling and rM3Ds.mCherry expression in 

mPFC after Saline/CNO treatment in Drd1 Cre+ mice. Right, the quantification of 

percentage of pCREB+ cells among mCherry+ cells. Scale bar, 20 μm. n = 3 animals/

condition cell number as noted in each bar, two-tailed unpaired t-test, p = 0.0455.

*p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Error bars reflect SEM.
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