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Abstract

Primary cilium, first described in the 19th century in different cell types and organisms 

by Alexander Ecker, Albert Kolliker, Aleksandr Kowalevsky, Paul Langerhans, and Karl 

Zimmermann (Ecker, 1844; Kolliker, 1854; Kowalevsky, 1867; Langerhans, 1876; Zimmermann, 

1898), play an essential modulatory role in diverse aspects of nervous system development and 

function. The primary cilium, sometimes referred to as the cell’s ‘antennae’, can receive wide 

ranging inputs from cellular milieu, including morphogens, growth factors, neuromodulators, 

and neurotransmitters. Its unique structural and functional organization bequeaths it the 

capacity to hyper-concentrate signaling machinery in a restricted cellular domain approximately 

one-thousandth the volume of cell soma. Thus enabling it to act as a signaling hub that 

integrates diverse developmental and homestatic information from cellular milieu to regulate 

the development and function of neural cells. Dysfunction of primary cilia contributes to 

the pathophysiology of several brain malformations, intellectual disabilities, epilepsy, and 

psychiatric disorders. This review focuses on the most essential contributions of primary cilia 

to cerebral cortical development and function, in the context of neurodevelopmental disorders and 

malformations. It highlights the recent progress made in identifying the mechanisms underlying 

primary cilia’s role in cortical progenitors, neurons and glia, in health and disease. A future 

challenge will be to translate these insights and advances into effective clinical treatments for 

ciliopathies.

1. Introduction

Primary cilia are microtubule based antennae-like sensory organelles extended by a vast 

majority of mammalian cells (Bloodgood, 2009; Fliegauf, Benzing, & Omran, 2007; 

Hilgendorf, Johnson, & Jackson, 2016; Reiter & Leroux, 2017; Sengupta, 2017). Primary 

cilia are anchored to the cell by mother centriole, the older of the pair of centrioles, which 

together with the pericentrosomal matrix, make up the centrosome complex. The primary 
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cilia are structurally and functionally distinct from the motile cilia, that line epithelia 

and power fluid movement (Ringers, Olstad, & Jurisch-Yaksi, 2020). Disruption of the 

physiological function of primary cilia in humans lead to a broad range of multi-organ 

disease phenotypes, including obesity, renal, hepatic, and pancreatic cyst formation, situs 

abnormalities, congenital heart defects, anosmia, retinal degeneration, postaxial polydactyly, 

bronchiectasis, hypogonadism, infertility, hearing loss, facial anomalies, liver fibrosis, 

and brain malformations (Fliegauf et al., 2007; Hildebrandt, Benzing, & Katsanis, 2011; 

Lancaster & Gleeson, 2009; McIntyre et al., 2012; Mitchison & Valente, 2017; Park, Jang, 

& Lee, 2019; Reiter & Leroux, 2017; Sattar & Gleeson, 2011; Thomas, Boutaud, Reilly, & 

Benmerah, 2019; Valente, Rosti, Gibbs, & Gleeson, 2014). These disorders resulting from 

aberrant primary cilia function include Bardet-Biedl syndrome (BBS), nephronophthisis 

(NPHP), Senior-Loken syndrome (SNLS), Alstrom syndrome (ALMS), Meckel syndrome 

(MKS), Joubert syndrome (JBTS), Oral-facial-digital Type I (OFD 1), polycystic kidney 

diseases (PKD), Jeune asphyxiating thoracic dystrophy (JATD), Ellis van Creveld (EVC), 

and Leber congenital amaurosis (LCA) (see Reiter & Leroux, 2017 and Ringers et al., 2020 

for comprehensive reviews of motile and non-motile ciliopathies).

Abnormalities in the formation, connectivity, and function of the central nervous system 

(CNS) underlie the neurological syndromes triggered by primary cilia malfunction (Caspary, 

Larkins, & Anderson, 2007; Doherty, 2009; Guo et al., 2015; Novarino, Akizu, & 

Gleeson, 2011; Parisi, 2019; Romani, Micalizzi, & Valente, 2013; Valente et al., 2014). 

These neurological syndromes include developmental delay, intellectual disabilities, autism 

spectrum disorder, mood disorders, epilepsy, abnormal respiratory rhythms, hypotonia, 

ataxia, oculomotor apraxia, and mirror movement synkinesis. The structural anomalies 

such as microcephaly, neuronal heterotopia, disrupted neuronal layer malformation, absent 

or reduced growth and decussation of axonal tracts (e.g., superior cerebellar peduncles 

(SCP), corticospinal tract (CST), corpus callosum (CC), and central pontine tracts), and 

cerebellar hypoplasia associated with these functional outcomes indicate the significance of 

physiological function of primary cilia in progenitors, neurons, and glia during human CNS 

development (Doherty, 2009; Guo et al., 2015; Juric-Sekhar, Adkins, Doherty, & Hevner, 

2012; Parisi, 2019; Romani et al., 2013; Valente et al., 2014).

The human cerebral cortex forms as a result of coordinated unfolding of a series of inter-

related developmental events (Kwan, Sestan, & Anton, 2012; Molnár et al., 2019; Fig. 

1A). During early embryonic development, an undifferentiated sheet of pseudostratified 

neuroepithelial cells in telencephalic vesicles end their interkinetic nuclear migration, 

spanning the apical–basal axis, and transform into radial glial progenitors. Radial glial 

cells (RGCs), through their function as a source of neurogenic progenitors and neuronal 

migratory guides, provide a template for the formation of the cerebral cortex. RGCs in the 

pallium divide symmetrically and asymmetrically to expand the pool of progenitors and 

generate neurons, respectively. During the neurogenic period, asymmetric division of RGCs 

generates cortical neurons and neurogenic intermediate progenitors (IPs) or outer radial 

glial cells (oRGCs). Symmetric proliferation of IPs and oRGCs serve to rapidly expand 

the cortical neuronal population, particularly the upper layer neurons. The cell soma of 

radial progenitors remain apically positioned in the ventricular zone, with a long basal 

process extending toward the pial surface, thereby enabling the orderly generation and 
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guidance of new neurons in the cerebral cortex. Migration of clonally related neurons along 

related radial glial basal processes leads to the formation of cortical radial columns (or 

radial units) and laminar organization of neurons. As neurogenesis nears its completion, 

progenitors either morphologically transform or undergo a final division to generate 

astrocytes. Oligodendrocytes are generated similarly from progenitors in the subpallium. In 

contrast, microglia, originating from early erythromyeloid progenitors (EMPs) in the extra-

embryonic yolk sac, enter the CNS in association with waves of hematopoiesis, prior to 

the proliferation of neural progenitors (Thion, Ginhoux, & Garel, 2018). The developmental 

balance between different progenitor subtypes and the resultant differences in the generation 

and guidance of distinct classes of neurons and glia within the developing cerebral cortex 

enables the emergence of distinctly different cortical areas with characteristic patterns 

of neuronal and glial density and diversity. Once appropriately positioned, connectivity 

between the two main types of neurons, excitatory projection neurons with spiny dendrites 

and long axons and inhibitory interneurons with short axons and non-spiny dendrites, form 

the basic neuronal circuitry in the cerebral cortex. The distinct cellular architecture of 

these neuronal subtypes and their interactions with glia (i.e., astrocytes, oligodendroglia, 

and microglia) constrains the types of circuits formed and thus the excitatory/inhibitory 

(E/I) balance and the functional competence of these cortical circuits. Primary cilia play 

a diverse and essential modulatory role in these major developmental events underlying 

cerebral cortical formation and function (Fig. 1B-M).

The majority of the cellular components of the developing cerebral cortex, including 

neuroepithelial cells, progenitors, migrating neurons, postmigratory neurons, and astrocytes, 

have active primary cilia (Fig. 2; Arellano, Guadiana, Breunig, Rakic, & Sarkisian, 2017; 

Bishop, Berbari, Lewis, & Mykytyn, 2007; Green & Mykytyn, 2014; Guemez-Gamboa, 

Coufal, & Gleeson, 2014; Sarkisian & Guadiana, 2015; Sengupta, 2017). Presence of 

primary cilia in mature oligodendrocytes and microglial cells has yet to be conclusively 

demonstrated. Primary cilia in the developing cortical cells are highly dynamic in terms 

of their ability to undergo changes in shape, length, and orientation during development 

(Fig. 2B; Higginbotham et al., 2012, 2013). Although the detection of primary cilia in 

different cortical cells with transmission or scanning electron microscopy analyses or 

immunolabeling with pancilia-specific antibodies (e.g., anti-ACIII or Arl13b) do not reveal 

their functional diversity, primary cilia in each of these cell types are highly likely to be 

specialized to subserve cell-type specific functions during cortical development. Supporting 

this possibility, expression mapping of cilia-associated genes across different cell types 

during cerebral cortical development reveals distinct cell-type specific expression profiles 

(Loo et al., 2019; Fig. 3). How this molecular specification of primary cilia in different 

cortical cells translates into developmental stage- and cell type-specific functions during 

cerebral cortical formation remains open. However, the spectrum of primary cilia related 

developmental brain malformations indicate the significance of this sensory organelle for the 

appropriate development and differentiation of cortical progenitors, neurons, and glia and 

the resultant orderly progression of cerebral cortical formation and organization.
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2. Progenitors, primary cilia, and associated brain developmental 

malformations

The organization of the ventricular niche where radial glial cells, intermediate progenitors, 

and outer radial glial progenitors actively form, divide, and interact with their daughter 

neuron or glial cells, depends on primary cilia signaling (Guo et al., 2015; Higginbotham 

et al., 2013; Lepanto, Badano, & Zolessi, 2016; Valente et al., 2014). In proliferating 

progenitors, primary cilia are disassembled during cell division and ciliary membrane 

remnants may preferentially associate with the mother centriole. During neurogenesis, 

asymmetric inheritance of the old mother centriole by daughter radial glial progenitors 

facilitates the maintenance of radial progenitor identity (Wang et al., 2009). Asymmetric 

inheritance of the primed mother centriole and thus, rapid extension of a primary cilium 

by one of the daughter cells is thought to provide differential competence for that daughter 

cell to respond to environmental cues in the ventricular niche (Basten & Giles, 2013; 

Delgehyr & Spassky, 2014). In dividing radial progenitors, WDR62 enables centrosome 

protein CEP170’s localization to the basal body of the primary cilium, where CEP170 

recruits a microtubule depolymerizing factor, KIF2A, to dismantle the cilium (Zhang et 

al., 2019). Disruption of this pathway and other WDR62 linked networks vital for cilia 

formation (e.g., WDR62-CPAP-IFT88) lead to microcephaly (Shohayeb et al., 2020; Zhang 

et al., 2019).

Disruption of primary cilia activity in early radial progenitors via Arl13b deletion 

disrupt their apical-basal polarity, leading to drastic malformation of the cerebral cortex 

(Higginbotham et al., 2013). Shh mutations in humans, likely disrupting cilia mediated Shh 

signaling, lead to holoprosencephaly where defective early patterning of neuroepithelial cells 

results in the failure of the forebrain to develop into two cerebral cortical hemispheres 

(Fig. 1B and C; Monuki & Walsh, 2001; Nanni et al., 1999). Further, primary cilia in 

RGCs regulate the size of the surface of their ventricular apical domains via the mTORC1 

pathway. Genetic deletion of primary cilia in RGCs (via conditional deletion of Ift88 or 

Kif3a in RGCs) leads to misorientation of the mitotic spindle in radial glia, increased basal 

progenitors, dilation of brain ventricles (ventriculomegaly), and eventual hydrocephalus 

(Foerster et al., 2017). In contrast to RGCs, the dynamics and significance of primary cilia 

in intermediate progenitors and outer radial glia remains to be fully defined. In the postnatal 

germinal niche of the forebrain, the ventricular–subventricular zone, where there is ongoing 

progenitor proliferation and neurogenesis, the primary cilia is required for neurogenesis 

(Tong et al., 2014).

Several human ciliopathy mutations that disrupt ciliogenesis in progenitors, primarily via 

disrupting centrosome or centriolar functions, lead to primary microcephaly (Fig. 1D), 

where disrupted progenitor proliferation causes a reduction in the generation of appropriate 

complement of neurons and glia necessary to form a normal cerebral cortex. For example, 

mutations in centrosome related genes PCNT, PLK4, ASPM, WDR62, CPAP, DNYLT1, 

and C2CD3 disrupt appropriate patterns of ciliogenesis or cilia maintenance, post cell-

division, thus disrupting the ability of progenitors to use primary cilia to sense essential 

environmental cues present in the CSF (e.g., SHH) or ventricular niche (e.g., IGF) necessary 
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for progenitor differentiation (Bilguvar et al., 2010; Bober & Jackson, 2017; Boczek et al., 

2018; Bond et al., 2002; Gabriel et al., 2016; Lehtinen et al., 2011; Li et al., 2011; Nicholas 

et al., 2010; Thauvin-Robinet et al., 2014). In addition, mutations in genes necessary for 

primary cilia structural maintenance, trafficking, or signaling, such as KIF2A, RPGRIP1L, 

Arl13b or Inpp5e, also disrupt the ventricular niche of the developing cerebral cortex and 

leads to microcephaly or subcortical heterotopia (Bielas et al., 2009; Broix et al., 2018; 

Cavallin et al., 2017; Higginbotham et al., 2013; Poirier et al., 2013; Uzquiano et al., 

2019). Microcephaly in humans is often presented with hydrocephalus. Many of the genes 

disrupting primary cilia in progenitors can also affect motile cilia in ependymal cells lining 

the ventricles necessary for CSF flow. This may contribute to defective ependymal cell 

differentiation, ciliogenesis, and or motile ciliary beating frequency changes in these cells 

and thus hydrocephaly (Ringers et al., 2020).

Opposite of microcephaly, megalencephaly results from over proliferation of progenitors. 

Removal of CEP83 in RGCs disrupts distal appendage (DAP) assembly and thus impairs 

the anchoring of the centrosome to the apical membrane and primary ciliogenesis (Shao 

et al., 2020). CEP83 deficiency leads to megalencephaly and biallelic mutations in human 

CEP83 cause intellectual disability (Failler et al., 2014). Furthermore, an activating mutation 

of AKT in humans cause hemimegalencephaly (Poduri et al., 2012). Primary cilia activation 

leads to phospho AKT localization at the base of primary cilium (Christensen, Morthorst, 

Mogensen, & Pedersen, 2017; Suizu et al., 2016). If and how the primary cilium is 

affected in human cortical progenitors with AKT mutations and how it contributes to brain 

overgrowth in these patients remains to be fully examined.

3. Migrating neurons and primary cilium in the developing cerebral cortex

Following their birth in the ventricular zone, newborn neurons migrate several thousand 

cell soma size distances through a complex cellular milieu to reach their final resting 

position in different cortical layers and areas. Both radially migrating projection neurons 

and tangentially migrating interneurons in the cerebral cortex display a dynamic primary 

cilium. Primary cilia change in length, rotate, branch, and appear to probe their surroundings 

in migrating inter neurons (Higginbotham et al., 2012). Cilia in neurons localize to the 

leading process during migration, but move closer to the cell soma during periods of pausing 

when they became much more dynamic in their movement and length. Electron tomography 

studies of interneuronal primary cilia further indicate that they cycle between elongated, 

surface-exposed and shorter, intracellular phases, in coordination with the cell migration 

stages (Baudoin et al., 2012). The localization and orientation of the primary cilium are 

also altered depending on the state of migration in migrating neuroblasts of the postnatal 

rostral migratory stream (Matsumoto et al., 2019). In contrast, signaling defective primary 

cilia in neurons do not display such dynamism (Higginbotham et al., 2012). Neurons with 

mutant cilia paused longer during migration and were unable to respond to micro gradients 

of guidance cues, suggesting that the reduction in cilia dynamics may reflect an inability to 

efficiently sense guidance cues in the migratory environment (Higginbotham et al., 2012).

Intriguingly, primary cilia activity modulates both radially and tangentially migrating 

neurons in the cerebral cortex (Baudoin et al., 2012; Guo et al., 2015; Higginbotham et al., 
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2012; Park et al., 2018). Radial migration involves close intercellular adhesive interactions 

with radial glial migratory guides, whereas tangential migration occurs for the most part 

in a cell-substrate independent manner. After they invade the developing cerebral wall, 

tangentially migrating neurons turn radially, along radial glia processes, to populate the 

emerging cortical layers (Yokota et al., 2007). Neuronal primary cilia are hypothesized 

to cell autonomously bind and transduce signals from gradients of guidance molecules, 

leading to changes in neuronal morphology and movement (Higginbotham et al., 2012). Shh 

signaling via primary cilia may enable tangentially migrating interneurons to turn radially 

and populate appropriate cortical plate regions (Baudoin et al., 2012). However, primary 

cilia may differentially affect the chemotaxic and haptotaxic mechanisms necessary for 

radial or tangential neuronal migration. Further, it remains untested if primary cilia and 

the growth cones in the leading processes of migrating neurons transduce different signals 

related to the directed movement of neurons.

Human genetic mutations of EML1 that perturb anterograde trafficking from the Golgi 

apparatus to primary cilia and thus the maintenance of primary cilia, lead to subcortical 

heterotopia, characterized by ectopic radial progenitor localization, disrupted neuronal 

migration, and aberrant placement of neurons away from their predestined cortical layers 

(Fig. 2F and G; Uzquiano et al., 2019). RTTN mutations associated with dysmorphic 

primary cilium can cause lissencephaly (Fig. 2E), a cortical neuronal migration defect 

resulting from an inability to properly maintain neuronal migration during cortical 

development (Kwan et al., 2012; Shamseldin et al., 2015). MTOR mutations affecting 

autophagy mediated ciliogenesis disrupts radial neuronal migration and leads to focal 

cortical dysplasia in FMCD patients with somatic mutations in MTOR (Di Nardo & Sahin, 

2018; Park et al., 2019, 2018). MTOR mutant neurons without primary cilium or severely 

shortened primary cilium do not undergo normal radial migration and appropriate laminar 

placement when compared to wild type neurons in the same brain (Park et al., 2018), further 

demonstrating a role for primary cilia signaling in cortical neuronal migration.

Recent studies combining real time neuronal migration assays with live imaging of second 

messenger pathways in the ciliary compartment are beginning to provide new insights into 

how directional information from guidance cues in the developing cortex may be conveyed 

through the primary cilium to trigger changes in neuronal migration (Stoufflet et al., 2019). 

In embryonic, postnatal and adult migrating neurons, ciliary Adenylate Cyclase 3 (AC3) 

activity generates cAMP, which in turn activates centrosomal Protein Kinase A (PKA). Live-

imaging with cAMP biosensors reveals a periodic cAMP hotspot at the centrosome, which 

appears to be necessary for centrosome/nucleus coupling and nucleokinesis of neurons. 

Delocalization of PKA from the centrosome leads to migratory defects. Primary cilia and 

its anchoring centrosome may form a cAMP-signaling unit to dynamically regulate neuronal 

migration (Stoufflet et al., 2019). Considering the cilium’s proximity to the nucleus and its 

link to the centrosome-associated microtubule network, such primary cilia generated cAMP-

signaling may promote rapid and efficient local and transcriptional signal transduction 

underlying nucleokinesis and directional migration of neurons.
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4. Dendrites, axons, neuronal connectivity and primary cilium

As neurons arrive at their appropriate laminar locations, they extend dendrites and axons 

to form appropriate connections with other neurons in cortex and sub cerebral regions 

(Banker, 2018; Barnes & Polleux, 2009). Axonal pathway defects are a common feature in 

many human ciliopathies (Guo et al., 2015; Reiter & Leroux, 2017; Valente et al., 2014; 

Fig. 2J-M). Appropriate axonal growth and pathfinding are essential for the wiring of the 

developing brain (Chedotal & Richards, 2010; Engle, 2010). Joubert Syndrome Related 

disorders (JSRD), a subset of ciliopathies, are characterized by consistent and distinct 

axonal malformations (Brancati, Dallapiccola, & Valente, 2010; Engle, 2010; Parisi, 2009). 

An axonal tract malformation called the molar tooth sign (MTS) is a diagnostic feature 

of JSRD. MTS results from thickened, elongated, and horizontally misoriented superior 

cerebellar peduncles (SCPs) that fail to decussate in the midbrain (Brancati et al., 2010; 

Juric-Sekhar et al., 2012; Parisi, 2009; Sattar & Gleeson, 2011; Senocak, Oguz, Haliloglu, 

Topcu, & Cila, 2010). SCPs are formed by the axons of deep cerebellar nuclei (DCN). 

In addition to SCP malformation, absent or reduced decussation of the corticospinal tract 

(CST), corpus callosum (CC), and transverse pontine tracts are frequently observed in JSRD 

patients (Brancati et al., 2010; Engle, 2010; Hildebrandt et al., 2011; Jissendi-Tchofo et al., 

2015; Juric-Sekhar et al., 2012; Poretti et al., 2007; Romani et al., 2013). Consistent with 

these axonal anomalies and the resultant changes in brain wiring, JSRD patients are often 

diagnosed with delayed development, intellectual disabilities, autism spectrum disorder 

(ASD), muscular hypotonia, breathing difficulties, epilepsy, and ataxia (Akizu et al., 2013, 

2014; Alvarez Retuerto et al., 2008; Novarino et al., 2011; Reiter & Leroux, 2017). Further, 

mutations in KIF7, a ciliary kinesin, leads to callosal agenesis or hypoplasia with associated 

intellectual disabilities (Putoux et al., 2011; Fig. 2J-K). Callosal axon malformations are 

also seen in ciliopathies such as Oral-facial-digital Syndrome resulting from mutations in 

OFD1 or TCTN3, necessary for centriole elongation and ciliogenesis or transition zone 

organization and SHH signaling, respectively (Guo et al., 2015; Thauvin-Robinet et al., 

2013; Thomas et al., 2012). These diverse axonal phenotypes related to primary cilia 

malfunctions in humans strongly indicate the significance of ciliary signaling to axonal 

tract growth and connectivity.

During the formation of neuronal connectivity in the brain, axons are guided by tropic 

and trophic gradients of chemoattractant or chemorepellent cues toward their target. Axons 

extend in large tracts or fascicles and follow stereotyped pathways to reach their appropriate 

synaptic targets in distant brain regions. Such group extension of axons toward appropriate 

targets is necessary for neuronal wiring in the brain (Barnes & Polleux, 2009; Chedotal 

& Richards, 2010; Cionni et al., 2018; Engle, 2010; Paolino, Fenlon, Suárez, & Richards, 

2018). The axon-dendrite polarization of neurites and initial extension of axons appear to be 

unaffected in the absence of primary cilia signaling (Guo et al., 2019). However, branching, 

fasciculation and crossing of axons and thus their accurate final projections and connectivity 

are disrupted in cilia mutants (Grochowsky & Gunay-Aygun, 2019; Guo et al., 2015; Parisi, 

2019; Poretti, Huisman, Scheer, & Boltshauser, 2011; Qian, Song, & Ming, 2019; Thomas 

et al., 2019; Ware, Gunay-Aygun, & Hildebrandt, 2011). How does primary cilia signaling 

selectively modulate the fasciculation, decussation, and targeting of axons?
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A motile growth cone that properly responds to guidance cues, and axon-axon interactions 

that enable axon sorting and fasciculation are both crucial to ensure the fidelity of axonal 

growth and navigation during development (Nishikimi, Oishi, & Nakajima, 2013; Raper & 

Mason, 2010; Wang & Marquardt, 2013; Yu & Bargmann, 2001). The axonal growth cone 

motility and direction relies on the interplay between filopodia that sense environmental 

cues for pathfinding, and lamellipodia that support persistent axonal outgrowth (Mattila & 

Lappalainen, 2008; Mejillano et al., 2004). Growth cones of neurons with aberrant primary 

cilia show altered filopodia vs. lamellipodia balance (Guo et al., 2019). Further, adhesion 

molecules such as Pcdh17, essential to mediate axon-axon recognition (Hayashi et al., 2014; 

Hoshina et al., 2013), fail to localize to axon-axon contacts along cilia mutant axonal shafts 

(Guo et al., 2019). The combined disruption in axonal growth cone dynamics and axon-axon 

interactions may thus contribute to the axonal pathfinding and fasciculation defects evident 

in neurons with defective primary cilia (Guo et al., 2015, 2019). Some of the axonal 

tract defects in ciliopathies, particularly callosal malformations, may also involve abnormal 

guidepost cell positioning and associated inappropriate midline crossing (Laclef et al., 2015; 

Putoux et al., 2019).

Once they reach their appropriate targets, axons establish proper connections by extending 

terminal axon arbors (Courchet et al., 2013; Gibson & Ma, 2011; Kalil & Dent, 2014; 

Kalil, Li, & Hutchins, 2011). Upper layer cortical neurons with disrupted cilia grow a 

long primary axon with significantly reduced terminal arbors at targets in ipsi and contra 

lateral cortex, thus failing to sufficiently innervate their targets to form appropriate neuronal 

connections (Guo et al., 2019). Neuron intrinsic properties (e.g. neuronal activity, cAMP and 

Ca2+ gradients) are known to converge onto signaling nodes (e.g. PI3K/AKT/GSK3β, Rho 

GTPases) to shape axonal growth, branching and targeting (Kalil & Dent, 2014). But how do 

primary cilia convey such signals to axons?

The primary cilium, with a volume ~1/1000 of the soma (Phua, Lin, & Inoue, 2015), is 

home to diverse signaling machineries, including receptor tyrosine kinases (e.g., IGFR, 

EGFR, MET, PDGFR-α, Trk receptors p75NTR and TrkB; (Armato, Chakravarthy, Chiarini, 

PrÃ, & Whitfield, 2011; Christensen, Clement, Satir, & Pedersen, 2012) and GPCRs (e.g., 

Smo, Frizzled receptor FZD3, Sstr3, HTR6, NPY2R, NPY5R, DRD1, DRD2, MchR1, 

GPR161, GPR120 (Choi et al., 2011; Christensen et al., 2012; Green & Mykytyn, 2014; 

Hilgendorf et al., 2016; Mukhopadhyay & Rohatgi, 2014; Nichols, Floyd, Bruinsma, 

Narzinski, & Baranski, 2013; Omori et al., 2015; Schou, Pedersen, & Christensen, 2015), 

their downstream effectors (e.g., PI3 kinase (Franco et al., 2014), Inpp5b, Inpp5e (Conduit, 

Dyson, & Mitchell, 2012; Jacoby et al., 2009), Ocrl (Phua et al., 2015), AKT (Zhu, 

Shi, Wang, & Liao, 2009), AC3, 5 and 6 (Phua et al., 2015), and second messengers 

(e.g., PIP3, PIP2, Ca2+ and cAMP; (DeCaen, Delling, Vien, & Clapham, 2015; Delling, 

DeCaen, Doerner, Febvay, & Clapham, 2013). The primary cilium thus provides a unique 

environment where signaling components are highly concentrated in a small cellular 

domain to rapidly trigger and facilitate efficient signaling cascade activation and crosstalk 

(Gherman, Davis, & Katsanis, 2006; Ishikawa, Thompson, Yates, & Marshall, 2012; Kohli 

et al., 2017; Narita, Kozuka-Hata, Nonami, et al., 2012; Sigg et al., 2017; Van Dam et al., 

2019, 2013; Mick et al., 2015).
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Using optogenetic or chemogenetic methods to exert precise control of cilia-specific 

signaling events, the cellular and physiological impact of the signaling emanating selectively 

from the primary cilium on developing neurons and neural circuit formation are beginning 

to be understood (Guo et al., 2017, 2019). Optogenetic or chemogenetic manipulation 

of ciliary signaling events at multiple levels, including receptor activation (e.g., GPCRs), 

downstream effector activation (e.g., PI3K, AKT), and second messenger production 

(i.e., cAMP via ACIII), reveal that exogenously induced deregulation of ciliary signaling 

cascades rapidly alters growth cone behavior and filopodia/lamellipodia balance, to a 

large extent recapitulating the aberrant axonal growth cone behavior seen in primary cilia 

mutant neurons. Conversely, activation of the ciliary-phosphoinositide phosphatase (Inpp5e) 

pathway, that antagonizes PI3K/AKT signaling, induces an opposite effect, causing axons 

to retract filopodia and extend lamellipodia. These results suggest that disrupted primary 

cilia driven PI3K/AKT signaling homeostasis may be an underlying cause of aberrant axonal 

growth dynamics in cilia mutant neurons and that signals emanating from primary cilia have 

the capacity to remotely and rapidly regulate axonal growth behavior (Guo et al., 2015, 

2019).

Once triggered, PI3K/AKT signaling co-opts downstream kinase cascades and second 

messengers (e.g. Ca2+, cAMP, IP3, PIP3) to amplify and propagate signals for cell-wide, 

long-distance signaling (Civelli, 2012; Gavi, Shumay, Wang, & Malbon, 2006; Lemmon 

& Schlessinger, 2010). Ciliary GPCR signaling can induce axonal Ca2+ waves down to 

the growth cone (Guo et al., 2019). Localized activation of GPCR or PI3K/AKT signaling 

are known to trigger cell-wide Ca2+ waves through Ca2+ influx via Ca2+ channels on the 

plasma membrane, IP3-mediated Ca2+ release from ER internal stores, and Ca2+/calmodulin 

signaling mediated by calcium binding proteins such as CaMKII (Averaimo & Nicol, 2014; 

Henle et al., 2011; Schneider et al., 2008; Zheng & Poo, 2007). Various Ca2+ channels 

localize to primary cilia (e.g., PKD1-L1 and 2-L1; DeCaen et al., 2015; Phua et al., 

2015; Pablo, DeCaen, & Clapham, 2017). CaMKIIβ, known to amplify Ca2+ signals, 

is localized to the base of cilia (Puram et al., 2011). Furthermore, Shh-Smo signaling, 

likely mediated via primary cilia, can downregulate cAMP levels and protein kinase A 

activity in commissural neurons to allow Sema3-mediated repulsion of commissural axons 

at midline crossing (Parra & Zou, 2010). Even though the exact mechanisms that enable 

ciliary signaling to trigger axonal Ca2+ wave and its integration with axonal PI3K/AKT 

signaling waves are yet to be fully elucidated, signaling effectors downstream of PI3K/AKT, 

such as TSC/mTOR, GSK3β, and CREB, are known to regulate cytoskeleton organization, 

transcriptional and translational programs involved in neuronal morphogenesis and synaptic 

plasticity. Particularly, human patients and genetic models with mutations in PI3K/AKT 

signaling pathway components (e.g. PTEN, AKT1, TSC1/2) show aberrant axonal growth 

and disorganization of axon tracts (Choi et al., 2008; Geoffroy et al., 2015; Huang, Chen, & 

Page, 2016; Kwon et al., 2006; Shin et al., 2017; Tsai & Sahin, 2011). Elevated PI3K/AKT 

activity and altered downstream mTOR, GSK3β and CREB activity were evident in JSRD-

related mouse neuronal cilia mutant models (Guo et al., 2017, 2019; Higginbotham et al., 

2012). Further, transcriptional networks modulated by JSRD genes such as ARL13B and 

ZNF423 converge onto neuronal developmental programs including neuronal differentiation, 

cytoskeleton organization, and neural survival, potentially through AKT signaling network 

Liu et al. Page 9

Curr Top Dev Biol. Author manuscript; available in PMC 2022 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Guo et al., 2019). These observations raise the intriguing hypothesis that PI3K/AKT 

signaling may serve as a converging node to integrate ciliary receptor signaling necessary for 

both rapid axonal growth modulation and long-term neuronal development programs.

Primary cilia signaling is known to modulate dendritic branching and spine formation in 

cortical neurons, possibly via cAMP and Shh-dependent pathways (Guadiana et al., 2013; 

Guo et al., 2017; Harwell et al., 2012; Lesiak, Brodsky, Cohenca, Croicu, & Neumaier, 

2018). Disrupting primary cilia signaling via overexpression of 5HT6 and SSTR3 in cortical 

neurons, induces the formation of elongated and branched primary cilia, increases levels 

of intraflagellar transport proteins such as Kif3a, and reduces dendritic outgrowth and 

branching. These deficits are rescued when ciliary signaling capacity is restored with ACIII 

(Guadiana et al., 2013).

Intriguingly, both dendritic spines and cilia share a common function, i.e., to sense and 

transduce extracellular signals, with cilia being receptive to a broader range of extracellular 

cues than dendritic spines, which receive input signals primarily from presynaptic neurons 

and surrounding astrocytes or microglia (Nechipurenko, Doroquez, & Sengupta, 2013: 

Thion et al., 2018). Despite this commonality, if and how they influence each other 

remains an open question in neuronal functional biology. Intriguingly, synaptic integration 

that occurs in dendritic spines appears to require a functional primary cilium. Conditional 

deletion of cilia in hippocampal neurons induced defective dendritic refinement and synapse 

formation (Kumamoto et al., 2012). Importantly, unlike major axonal pathway defects 

detectable in MRI of ciliopathy patient brains, neuronal dendritic disruptions are yet to 

be systematically probed in genotyped ciliopathy patient brain tissue or organoid models.

5. Primary cilia’s impact on neural circuit maintenance and function

In ciliopathies such JSRD, nearly two thirds of the affected individuals function in the 

intellectually disabled range, indicative of ongoing neural circuit malfunction (Grochowsky 

& Gunay-Aygun, 2019; Parisi, 2019). Psychomotor delay and epilepsy in subsets of 

ciliopathy patients further indicates neural circuit disruptions (Canning et al., 2018; 

Grochowsky & Gunay-Aygun, 2019). DISC1, a major susceptibility gene for psychiatric 

syndromes, regulates the formation and maintenance of primary cilia and targeting of 

dopamine D2 receptors to ciliary membrane (Marley & von Castro, 2012; Marley & von 

Zastrow, 2010). A diverse number of neuro-psychiatric risk genes affect the formation or 

maintenance of primary cilia (Marley & von Castro, 2012). A decrease in the percentage of 

cells (olfactory neuronal precursors [ONP]) with primary cilia was noticed in schizophrenia 

(SCZ) and bipolar disorder (BD) patients (Muñoz-Estrada, Lora-Castellanos, Meza, Alarcón 

Elizaldes, & Benítez-King, 2017). Missense mutations in RTTN or AH1, resulting in 

short and dysmorphic primary cilia, cause polymicrogyria, characterized by abnormal 

cortical neuronal organization and circuits (Fig. 1H and I; Dixon-Salazar et al., 2004; 

Kheradmand Kia et al., 2012). Lithium, a commonly used antimanic mood stabilizer, 

elongates primary cilia (Miyoshi, Kasahara, Miyazaki, & Asanuma, 2009; Muñoz-Estrada 

et al., 2017) and is known to rescue brain malformations in mouse models of JSRD 

ciliopathy (Ferland et al., 2004). Interneurons (INs) with Arl13b deficient primary cilia 

(Arl13bcKO-IN) display reduced synaptic bouton density and size (Guo et al., 2017). 
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Patch-clamp electrophysiological recordings of interneuron-projection neuron circuits in 

brains with defective interneuronal primary cilia indicate a decrease in mIPSC frequency 

in projection neurons (Guo et al., 2017). In contrast, no changes in mIPSC amplitude, 

mEPSC frequency, or mEPSC amplitude were evident. The specific decrease in the 

inhibitory synaptic input onto projection neurons in cilia mutant mice (Arl13bcKO-IN), 

leads to excitatory/inhibitory (E/I) synaptic imbalance in the IN-PN circuit. Intriguingly, 

accumulation and expression of somatostatin receptor 3 (Sstr3), a neurotransmitter receptor, 

is disrupted in the primary cilia of Arl13b deficient INs. Normal ciliary signaling involves 

ectocytosis of activated Sstr3 from ciliary tips (Nager et al., 2017). Disrupted ciliary 

targeting of neurotransmitter receptors such as Sstr3 may underlie cilia driven E/I imbalance 

in these mice. Consistent with this possibility, induced expression of Sstr3 in cilia mutant 

interneurons rescues their synaptic and E/I imbalance deficits (Guo et al., 2017). These 

observations indicate that primary cilia signaling is a non-synaptic signaling mechanism 

through which environmental signals can shape and refine interneuronal networks and this 

mechanism might be compromised in ciliopathy patients with neuro-behavioral or epilepsy 

phenotypes.

6. Glial diversity (astrocytes, oligodendrocytes, microglia), function, and 

primary cilia in the developing cerebral cortex

Primary cilia functions and signaling in developing glial cells (astrocytes, 

oligodendendrocytes, and microglia) of the central nervous system remain for the most 

part uncharacterized. The vast majority of astrocytes in the postnatal cerebral cortex express 

an individual primary cilium (Kasahara, Miyoshi, Murakami, Miyazaki, & Asanuma, 2014). 

Primary cilia signaling is necessary for the neurogenic function of astrocyte like precursors 

in mature hippocampus (Breunig et al., 2008; Han et al., 2009). Altered functional states 

such as seizure activity shortens astroglial cilia length (Sterpka et al., 2020). In contrast, 

primary cilia are either absent or severely malformed in aberrantly proliferating, invasive 

astrocytes in astrocytomas or gliomas (Basten & Giles, 2013; Han et al., 2009; Han & 

Alvarez-Buylla, 2010; Moser, Fritzler, & Rattner, 2009; Sarkisian & Semple-Rowland, 

2019; Seeger-Nukpezah & Golemis, 2012). Primary cilia are present in oligodendrocyte 

precursor cells and ciliary Shh signaling is critical for the generation of myelinating 

oligodendrocytes from these precursors (Bhattarai, 2015; Falcon-Urrutia, Carrasco, Lois, 

Palma, & Roth, 2015; Sanchez & Armstrong, 2018). Although loss of primary cilia 

in differentiated oligodendrocytes was noticed in vitro (Falcon-Urrutia et al., 2015), the 

presence of primary cilia in subsets of myelinating mature oligodendrocytes in vivo remains 

possible (Sanchez & Armstrong, 2018). Immunolabeling with common primary ciliary 

markers such as ACIII did not detect primary cilia in microglial cells. However, the lack of 

primary cilia in these cells remains to be fully validated with the use of other established 

ciliary markers and electron microscopy analysis. Further, comprehensive characterization 

of the presence and function of primary cilia in different glial cells of the cerebral cortex, 

spanning the entire spectrum of cortical development, is necessary to fully evaluate the 

functional impact of glial primary cilia in cerebral cortex.
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7. Future directions: Primary cilia’s role in brain development and 

neurodevelopmental disorders

The primary cilium is structured and positioned to be able to generate a fast and 

robust response to a wide range of extracellular signals present in the cellular milieu 

of the developing brain. The diffusion barrier at the base of the cilium allows a cell to 

maximize the local concentration of a plethora of signaling receptors and their downstream 

effectors within cilia. The design of the primary cilium enables high levels of second 

messengers to be sustained more easily within the narrow geometry of the cilium than 

in other regions of the cell where diffusion through a larger space could lead to a rapid 

diminishment of the signal. The primary cilium’s proximity to the nucleus and its link to the 

centrosome-associated microtubule network may promote rapid and efficient intracellular 

signal transduction. Understanding in real time how signaling emanating from primary cilia 

is conveyed to far flung domains of a neuron, including, dendritic, spines, axonal growth 

cones, AIS, and nucleus (or similarly, between primary cilium and distinct cell domains 

in non-neural cell types of the CNS) will be essential to fully evaluate the cell biological 

significance of this sensory organelle in nervous system development and disease (Fig. 4). 

Further, understanding the crosstalk that occurs between intracellular signaling cascades 

that originate in distinct cellular compartments (e.g., primary cilium, growth cone, dendritic 

spine, glial end feet etc.) of neural cells during development will help define the primary 

cilia-specific pathways vital for normal CNS development.

Considering that the vast majority of ciliopathies have their origins in primary cilia 

malfunction during embryonic development (Fig. 3), better modeling of cilia dysfunction 

and rescue in relevant human models, such as iPSC derived brain organoids, or exploration 

of CRISPR/Cas9-based targeted editing of ciliary gene defects in utero during development 

will help open up new therapeutic strategies to address ciliopathies at their origin.

Centrosomes play an essential role in ciliogenesis and cilia maintenance. Often human 

mutations affecting primarily the centrosomes lead to secondary structural and functional 

changes in primary cilia, causing a spectrum of outcomes not entirely attributable to primary 

cilia signaling. Further development of unbiased screening assays for the discovery and 

interrogation of mutations that exclusively affect the signaling function of neuronal or glial 

primary cilium and its underpinning cilia-specific machinery will shed new light on the 

functional importance of primary cilia in the nervous system.

Neuronal or glial primary cilia may produce a “ciliary signaling signature” that elicits 

cilia-specific impact on neuronal or glial events such as calcium waves, second messenger 

cascades, cytoskeletal rearrangements, adhesion, and transcriptional regulation necessary for 

proper neuronal or glial generation, growth, differentiation, and interactions. In this regard, 

examining if primary cilia in distinct cell types are as molecularly specified as the cell types 

they subserve, will be highly informative. Future efforts to decipher the precise molecular 

mediators of communication between neuronal or glial cilia and their cellular environment 

in the context of brain development will enable us to decisively delineate how primary cilia 

convey environmental signals to modulate brain formation and organization. Since ciliary 

proteins, such as Arl13b, can also exert cilia-independent functions in neural cells (Ferent et 
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al., 2019), a vigilant approach that excludes non-ciliary functions of cilia localized proteins 

should be part of this effort.

The neural circuit malfunctions associated with ciliopathies highlight the importance of 

investigating the possible participation of primary ciliary signaling in experience-driven 

refinement of cortical neuronal connectivity during critical periods or during learning and 

memory (Baraban et al., 2009; Chattopadhyaya et al., 2004; Southwell, Froemke, Alvarez-

Buylla, Stryker, & Gandhi, 2010). Intriguingly, IGF1, a ligand for lgf1 R receptors in 

cilia (Higginbotham et al., 2013; Lehtinen et al., 2011), has been identified as a sensory 

experience regulated gene necessary to sculpt the synaptic connections of vasoactive 

intestinal peptide INs (Mardinly et al., 2016). In neurodegenerative disorders such as 

Huntington disease (HD), pathogenic polyQ expansion of huntingtin (HTT) protein causes 

centrosomal accumulation of PCM1 and abnormally long primary cilia in striatal cells, 

contributing to dysregulated circuit homeostasis in this disease (Keryer et al., 2011). It is 

thus conceivable that ciliary signaling is continuously required in mature neurons for the 

maintenance and modulation of neuronal network homeostasis. Moreover, the source and 

the molecular identity of the various environmental cues, including neurotransmitters or 

neuromodulators, that can initiate or modulate primary cilia signaling in mature neurons, 

and whether such signaling enables neurons to function cooperatively (Karnani et al., 

2016) to modulate the dynamics of a circuit underlying specific functions or behavior 

are yet to be fully characterized. In this regard, the role of primary cilia signaling via 

ciliary melanocortin-4 receptors (MC4R) in hypothalamic neurons to regulate food intake 

and body weight provides an informative example (Siljee et al., 2018). Future efforts 

aimed at decisively resolving the above outlined issues will further our understanding of 

the fundamentally vital modulatory role primary cilia play in cerebral cortical formation, 

function, and disorders.
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Fig. 1. 
Development of the cerebral cortex and cortical malformations associated with primary 

ciliary dysfunction. (A) During early development, symmetrically dividing neuroepithelial 

cells (NPs) in the ventricular zone (VZ;blue) assume radial glial identity. Radial glia cells 

(RGCs) divide symmetrically to expand the RGC pool or asymmetrically to generate 

neurons and other progenitors (intermediate progenitor cells [IPCs] or outer radial glial 

cells [oRGC]). Newborn neurons assume a multipolar morphology and then migrate away 

from the germinal zones, guided by the basal processes of the RGCs, to reach the mantle 

layers. The first-born neurons settle within the preplate (PP) to form the nascent cortical 

plate (CP). Continued addition of subsequently generated neurons then split the PP into 

the marginal zone (MZ) and the subplate (SP), leading to sequential formation of deep 

(L6 and L5; blue) and upper layers (L4, L3 and L2; red) neurons of the cerebral cortex. 

Intermediate progenitor cells (IPCs) or outer radial glial cells (oRGC) derived from radial 

glia undergo symmetric neurogenic divisions in the SVZ to generate upper layer neurons. 

Concurrent to radial migration of projection neurons, tangentially migrating interneurons 

originating in the ganglionic eminence invade the cortical plate. At the end of neurogenesis, 

the radial glial scaffold is dismantled, progenitors become gliogenic, generate cortical 

and subependymal zone (SEZ) astrocytes (Ast), and give rise to a layer of ependymal 
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cells (EL). Early embryonic microglial (MG) invasion into the developing cerebral wall 

and oligodendrocyte precursor (OLP) generation and differentiation into oligodendrocytes 

(OL) are not illustrated. AS, astrocyte; BV, blood vessel; CP, cortical plate; CRN, Cajal-

Retzius neuron; EP, ependymal cell; IN, interneuron; IPC, intermediate progenitor cell; 

MG, microglia; MPC, multipolar cell; MZ, marginal zone; NPC, neuroepithelial progenitor 

cell; OLP, oligodendrocyte precursor; OL, oligodendrocyte; oRGC, outer radial glia; PMN, 

Pyramidal neuron; RGC, radial glial cell, RMN, radially migrating neuron; SP, subplate; 

SVZ, subventricular zone, TIN, tangentially migrating interneuron; VZ, ventricular zone. 

A timeline of mouse embryonic (E) day or human gestational week (GW) relevant to the 

initial stages of the respective developmental events are indicated. (B–M) Primary cilia 

dysfunction during distinct stages of cortical development contributes to specific cortical 

malformations. (B, C) Shh mutations, likely disrupting cilia mediated Shh signaling, in 

NPs lead to holoprosencephaly. (D–G) Primary cilia malfunction in RGCs or migrating 

neurons can promote microcephaly (D), lissencephaly (E), and subcortical heterotopia (F, 

G). Primary cilia dysfunction in postmigratory neurons contributes to poly microgyria 

(H[arrow], I), callosal agenesis (arrow, J) or hypoplasia (arrow, K), and CST decussation 

defects (L, M [asterisk in boxed area indicates enlarged, nondecussating anterior CST in HE 

stained cervical spinal cord]). Images are reproduced from Monuki and Walsh (2001) (B, C), 

Shamseldin et al. (2015) (D, E; RTTN mutation), Uzquiano et al. (2019) (F, G; RPGRIP1L 
mutation), Kheradmand Kia et al. (2012) (H, I; RTTN mutation), Putoux et al. (2011) (J, 

K; KIF7 mutation), and Juric-Sekhar et al. (2012) (L, M; OFD1 mutation). These mutations 

directly or indirectly disrupt primary cilia signaling and maintenance.
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Fig. 2. 
Primary cilia in the embryonic and postnatal cerebral cortex. Primary cilia (green) in the 

ventricular zone of the developing mouse cerebral cortex (E16) were labeled with hGFAP-

Cre induced Sstr3-GFP (A). Radial glia and intermediate progenitors were co-labeled with 

RC2 (red) and anti-Tbr2 (blue) antibodies, respectively. (B) Live imaging of a primary 

cilium in the embryonic cerebral wall (E16), over 5.5 h, indicates its dynamic nature. Images 

at different time points were pseudocolored to illustrate the changing shape, length, and 

orientation. (C) Projection neuronal primary cilia in postnatal brains (P7) were labeled with 

Nex-Cre induced Sstr3-GFP (B). Neurons across cortical layers display primary cilia of 

varying shapes and orientation (C).
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Fig. 3. 
Ciliopathy gene expression profile in the developing primate brain. (A) Gene expression 

levels of distinct populations of cells in individual cortical layers were profiled in rhesus 

monkey brain at 10 different pre and postnatal ages (E40, E50, E70, E80, E90, E120, 

0M, 3M, 12M, and 48M; Bakken et al., 2016). Ciliopathy associated genes (confirmed 

and candidate) were significantly enriched among genes co-expressed in the developing 

cortex, primarily in the proliferative niche and new born neurons. Circle size indicates how 

many genes are in the module. Modules significantly enriched for risk genes associated 

with ciliopathies are in red (P < 0.1). Modules from adjacent ages with the most highly 

significant gene overlap are connected by gray lines. Though the number of ciliopathy genes 

overlapping with the other modules did not reach statistical significance, different ciliopathy 

genes are expressed in these modules (see Table 1). (B) Average expression pattern of 

cilia associated genes found in at least two enriched modules. Heat maps are organized by 

specific cortical layer and age as described in Bakken et al. (2016). MZ, marginal zone; 

CPo/CPi, outer/inner cortical plate; SP, subplate; IZ, intermediate zone; SZ, subventricular 

zone; VZo/VZi, outer/inner ventricular zone; L2-6, cortical neuronal layers 2–6.
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Fig. 4. 
Understanding the functional importance of primary cilia in neurons. Interrogating the 

selective effect of signaling emanating from primary cilia on axons and dendrites and 

defining how signaling spreads from the primary cilium to distal domains of neurons (red 

gradient) and to the nucleus (cyan arrow) to influence neuronal activity and behavior are 

challenges yet to be met. A similar dearth of knowledge exists for the importance of primary 

cilia signaling during glial cell development and behavior.
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