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A Computational Model for Estimating
the Speech Motor System’s Sensitivity

to Auditory Prediction Errors

Ayoub Daliria
Purpose: The speech motor system uses feedforward and
feedback control mechanisms that are both reliant on
prediction errors. Here, we developed a state-space model
to estimate the error sensitivity of the control systems. We
examined (a) whether the model accounts for the error
sensitivity of the control systems and (b) whether the two
systems have similar error sensitivity.
Method: Participants (N = 50) completed an adaptation
paradigm, in which their first and second formants were
perturbed such that a participant’s /ε/ would sound like her
/ӕ/. We measured adaptive responses to the perturbations
at early (0–80 ms) and late (220–300 ms) time points relative
to the onset of the perturbations. As data-driven correlates
of the error sensitivity of the feedforward and feedback
systems, we used the average early responses and difference
responses (i.e., late minus early responses), respectively.
We fitted the state-space model to participants’ adaptive
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responses and used the model’s parameters as model-
based estimates of error sensitivity.
Results: We found that the late responses were larger
than the early responses. Additionally, the model-based
estimates of error sensitivity strongly correlated with the
data-driven estimates. However, the data-driven and
model-based estimates of error sensitivity of the feedforward
system did not correlate with those of the feedback
system.
Conclusions: Overall, our results suggested that the
dynamics of adaptive responses as well as error sensitivity
of the control systems can be accurately predicted by
the model. Furthermore, our results suggested that
the feedforward and feedback control systems function
independently.
Supplemental Material: https://doi.org/10.23641/asha.
14669808
Current theories of speech production (Guenther,
2016; Houde & Nagarajan, 2011) suggest that the
speech motor system uses two control mechanisms

to produce speech: feedforward and feedback control systems
(for an elegant discussion of these control systems, see Parrell
& Houde, 2019). The feedforward control system generates
motor commands to achieve the desired sensory goals. The
feedback control system monitors the sensory consequences
of the motor commands to ensure the accuracy of produced
speech movements. While preparing motor commands,
the speech motor system also predicts sensory outcomes
of the motor commands (e.g., Krakauer et al., 2019). The
speech motor system compares its sensory prediction with
incoming sensory feedback of the speech movements to
estimate potential errors in its output (i.e., sensory prediction
error). The feedforward control system uses sensory predic-
tion errors to adjust its motor commands so that future
motor commands more accurately achieve the desired sen-
sory goals (Daliri & Dittman, 2019; Daliri, Murray, et al.,
2020; Daliri et al., 2014, 2013; Guenther, 2016). The feed-
back control system uses sensory prediction errors in the
current movement to generate corrective motor responses to
more accurately achieve the current movement’s sensory
goals (Daliri, Chao, & Fitzgerald, 2020; Guenther, 2016;
Kearney et al., 2020; Parrell & Houde, 2019). The outputs
of these control systems depend on their error sensitivity—
the weight that they assign to prediction error (Berniker &
Körding, 2008; Shadmehr & Mussa-Ivaldi, 2012). Overall,
these control mechanisms strongly rely on sensory prediction
errors (a) to generate corrective responses and (b) to calibrate
motor commands for achieving the desired sensory goals.

Given the reliance of the feedforward and feedback
control mechanisms on prediction errors (Parrell & Houde,
2019), one approach for studying these control mechanisms
is to experimentally generate errors using somatosensory
(e.g., Tremblay et al., 2003) or auditory feedback perturbations
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(e.g., Houde & Jordan, 1998). In auditory perturbation para-
digms (for a review, see Fuchs et al., 2019), a participant’s
speech is recorded via a microphone; the acoustic character-
istics of the recorded speech (e.g., formants) are perturbed;
then, the modified speech is played back to the partici-
pant via headphones (in near real-time). For example, as a
participant plans to generate speech movements for the word
“head,” she also predicts to hear “head” through the head-
phones. However, when she produces the word, formant
frequencies of her speech are experimentally perturbed to
synthesize a word that sounds like “had,” which is played
back to her through the headphones. In this case, the par-
ticipant experiences a mismatch between what she predicted
to hear (i.e., “head”) and what she hears (i.e., “had”). As
mentioned above, participants use this prediction error in
two ways (e.g., Guenther, 2016). First, participants may rely
on the prediction error to generate a within-trial corrective
motor response that starts within 100–200 ms from the on-
set of the perturbation. Corrective responses are typically
interpreted as the contributions of the feedback control sys-
tem (e.g., Daliri, Chao, & Fitzgerald, 2020). Second, par-
ticipants may rely on the prediction error to modify their
feedforward motor commands (i.e., adapt) to reduce pre-
diction errors in future productions. The adaptive responses
are typically interpreted as the contributions of the feed-
forward control system (e.g., Kearney et al., 2020). To
measure online corrective responses, studies have applied
perturbations on a set of randomly selected trials that are
surrounded by several unperturbed trials—commonly known
as the compensation paradigm (Daliri, Chao, & Fitzgerald,
2020; Niziolek & Guenther, 2013; Parrell et al., 2017; Tour-
ville et al., 2008). The rationale for this approach is to mini-
mize the adaptive changes in speech due to the exposure
to perturbations (i.e., minimizing the contributions of the
feedforward control system). To measure adaptive responses,
studies have applied perturbations on several subsequent
trials—commonly known as the adaptation paradigm (Abur
et al., 2018; Ballard et al., 2018; Daliri et al., 2017; Daliri &
Dittman, 2019; Daliri & Max, 2018; Houde & Jordan, 1998;
Lester-Smith et al., 2020; Stepp et al., 2017). Together, the
adaptation and compensation paradigms are powerful para-
digms that can elucidate the contributions of the feedforward
and feedback control mechanisms.

Although both the feedforward and feedback control
systems rely on prediction errors, it is not clear (a) whether
the two systems have similar error sensitivity and (b) whether
the outputs of the two systems are related or function inde-
pendently. Previous studies have used the adaptation and
compensation paradigms to separately estimate the error
sensitivity of feedforward and feedback systems (Franken
et al., 2019; Hawco & Jones, 2009; Lester-Smith et al., 2020;
Parrell et al., 2017; Scheerer & Jones, 2018). While many
studies have used more typical adaptation and compensa-
tion paradigms, Franken et al. (2019) developed a new par-
adigm in which they systematically examined the effects of
frequently versus infrequently applied perturbations. Over-
all, these studies have measured adaptive and corrective
responses to perturbations as data-driven correlates of error
1842 Journal of Speech, Language, and Hearing Research • Vol. 64 •
sensitivity of the feedforward and feedback control systems,
respectively. Note that the magnitudes of adaptive and
corrective responses depend on both the error sensitivity
of the control systems and the magnitude of the error it-
self (i.e., response = error sensitivity × error). However,
several limitations of these paradigms make it difficult to
determine the error sensitivity of the control mechanisms
accurately. First, many adaptation studies (Fuchs et al.,
2019), including our previous adaptation studies (Daliri &
Dittman, 2019; Daliri & Max, 2018; Daliri et al., 2017),
have examined formant changes measured at the midpoint
of a vowel (e.g., the mid 20% of the vowel) as evidence for
adaptive changes in the feedforward control system. How-
ever, if the midpoint is after ~150 ms, it is most likely that
the feedback control system has received the auditory feed-
back regarding the perturbations and has generated a correc-
tive response (Daliri, Chao, & Fitzgerald, 2020; Kearney
et al., 2020; Tourville et al., 2008). Thus, formant changes
measured at the midpoint are not necessarily reflective of
the contributions of the feedforward control system alone.
Second, in the compensation paradigm, perturbed trials are
randomly distributed to minimize potential effects of the
feedforward control system; however, exposure to per-
turbations may lead to small—and likely unmeasurable
(Daliri, Chao, & Fitzgerald, 2020; Parrell et al., 2017)—
changes in the feedforward control system. Thus, the cor-
rective responses measured in the compensation paradigm
are not necessarily reflective of the contributions of the feed-
back control system alone. Third, measuring the feedforward
and feedback control systems separately and in isolation dis-
counts the potential bidirectional interactions between the
two systems (Guenther, 2016). Finally, the adaptation
and compensation paradigms are relatively time-consuming
and require many trials; this limitation poses a practical
challenge, especially for examining the control systems in
patient populations and children. Therefore, the primary
goal of this study is to develop a procedure to more efficiently
and accurately examine the feedforward and feedback mecha-
nisms and to estimate their sensitivity to prediction errors in
auditory perturbation paradigms.

Although adaptive and corrective responses are com-
monly used as data-driven correlates of error sensitivity of
the control systems, these measures are limited in that they
are strongly dependent on the analysis choice. For exam-
ple, adaptive responses are often defined as the average re-
sponses over several trials after participants have experienced
the perturbations, and their responses have become stable
(e.g., Daliri & Dittman, 2019). However, the averaged
adaptive response depends on the number of trials and the
location of the trials relative to the beginning of the intro-
duction of the perturbations. Thus, there are large differ-
ences in adaptive responses across studies (for a review,
see Fuchs et al., 2019). One approach to minimize this
limitation is to use computational models that calculate
error sensitivity based on the participant’s adaptive re-
sponses in all trials (and not just a few trials). In a recent
study (Daliri & Dittman, 2019), we adopted a computa-
tional model (state-space model), commonly used in the
1841–1854 • June 2021



limb motor control studies (Shadmehr & Mussa-Ivaldi,
2012), to estimate error sensitivity of the feedforward
control system in an adaptation paradigm. In this study,
we further developed the state-space model to be able to
estimate the error sensitivity of both the feedforward and
feedback control systems in an adaptation paradigm
(see Figure 1A). Given that the speech output includes
the contributions of both control systems, the model in-
cludes feedforward and feedback components that use er-
ror sensitivity (model parameters) and prediction errors
Figure 1. We developed a new state-space model to estimate the
error sensitivity of the feedforward and feedback control systems
(A). Formants at early time points (FEarly) were used to estimate the
feedforward control system’s contributions. Formants at late time
points (FLate) were used to estimate the contributions of the
combined feedforward and feedback control systems. The difference
responses (the difference between late and early responses) were
used to estimate the contributions of the feedback control system
alone. We used the model to predict (based on a set of arbitrary
parameters) change in the first formant at early and late time points
in response to a perturbation of the first formant (100 Hz) in
two adaptation paradigms, in which the perturbation is gradually
introduced (B) or suddenly introduced (C). F1 = first formant; F2 =
second formant.
to generate their outputs. The model’s parameters of er-
ror sensitivity (feedforward and feedback error sensitiv-
ity; βFF and βFB) can be estimated by fitting the model to
participants’ responses. Although both feedforward and
feedback control systems contribute to speech production,
the relative contributions of the two systems are not equal
throughout a production (Guenther, 2016). The contribu-
tions of the feedback control system during the early time
points of a given speech token is minimal that is because
the feedback control system needs to wait until the audi-
tory feedback of the produced speech becomes available
to calculate prediction error and generate corrective responses
accordingly (Guenther, 2016; Kearney et al., 2020; Parrell &
Houde, 2019). Therefore, responses at early time points
(FEarly in Figure 1A) can be used to estimate the contri-
butions of the feedforward control system, and responses
at late time points (time points later than ~150 ms) can
be used to estimate the contributions of the combined
feedforward and feedback control systems (FLate in Figure 1A).
In other words, the difference between late and early responses
can be used as an estimate of the feedback control system.
Note that the difference between late and early responses
can also be influenced by the articulatory constraints of the
next consonant. However, we can minimize this effect by
adjusting the early and late responses based on their values
during unperturbed trials—when there are no perturbation-
induced errors and only articulatory constraints exist. An-
other important advantage of computational models—in
addition to providing model-based error sensitivity—is that
the model can predict early and late responses in auditory
perturbation experiments before conducting the experi-
ments. For example, Figure 1 shows the simulated (based
on an arbitrary set of model parameters) early and late
formant responses (e.g., the first formant) in an adaptation
paradigm, in which the formant perturbation is gradually
introduced (see Figure 1B; this is the most common adapta-
tion paradigm) or suddenly introduced (see Figure 1C; this
adaptation paradigm is less common). These two simulated
responses suggest that the difference between late and early
responses has a sudden change when the perturbation is in-
troduced suddenly, whereas this change gradually develops
when the perturbation is introduced gradually. Overall, by
using this model and examining early and late responses in
one auditory perturbation task (rather than conducting
separate adaptation and compensation paradigms), we
can (a) more efficiently and accurately determine (model-
based) error sensitivity of both the feedforward and feed-
back control systems, and (b) predict early and late re-
sponses to auditory feedback perturbations and generate
model-driven hypotheses.

In this study, we conducted an auditory perturbation
experiment to examine whether the state-space model’s pa-
rameters can be used as estimates of the error sensitivity of
the feedforward and feedback control systems. Participants
completed an adaptation paradigm in which formants of
their /ε/ were shifted toward their /ӕ/ (an increase in the
first formant, and a decrease in the second formant). Our
preliminary simulations (see Figures 1B and 1C) suggested
Daliri: Feedback and Feedforward Control Systems 1843



Figure 2. Schematic of the apparatus for applying formant
perturbations (A). Participants completed an adaptation paradigm
consisting of three phases: baseline, hold, and end (B). In the baseline
and end phases, participants received normal (unperturbed) auditory
feedback. In the hold phase, participants received perturbed auditory
feedback. The perturbation’s magnitude and direction were designed
using each participant’s ε–æ distance and angle (C). The perturbation
shifted a participant’s /ε/ toward her /æ/ (increase in F1 and decrease
in F2). F1 = first formant; F2 = second formant.
that the difference between late and early responses would
be more evident and perhaps more easily measured if the
perturbations are introduced suddenly. Thus, similar to our
previous studies (Daliri & Max, 2018; Kim et al., 2020), we
used an adaptation paradigm in which the perturbations
were introduced suddenly. We measured participants’ early
adaptive responses (within 0–80 ms) and late adaptive re-
sponses (within 220–300 ms). We hypothesized that if the
feedforward and feedback mechanisms contribute to the
late responses, and only the feedforward mechanism con-
tributes to early responses, then the late responses would
be different from early responses. Additionally, to test
whether the model accounts for the error sensitivity of
the control systems, we examined the relationship between
the model-based and data-driven estimates of error sensitivity
of the control systems. We used feedforward and feedback
error sensitivity (βFF and βFB) as model-based estimates of
error sensitivity. As data-driven estimates of error sensitiv-
ity of the feedforward and feedback systems, we used av-
erage early adaptive responses and average difference
response (the difference between late and early responses),
respectively. Because both feedforward and feedback
control systems rely on prediction errors, we also examined
the relationship between error sensitivity in the feedforward
and feedback control systems.

Method
Participants

Fifty right-handed adults were recruited to participate
in this study (10 men; age range: 18–48 years, M =
23.51 years, SD = 5.01 years). We used the following in-
clusion criteria to recruit participants: (a) self-reported
absence of neurological, psychological, or speech-language
disorders; (b) being a native speaker of American English;
and (c) having a binaural pure-tone hearing threshold less
than 20 dB HL at all octave frequencies of 250–8000 Hz
(American Speech-Language-Hearing Association, 1997).
Before the experimental session, participants signed a written
consent form. The institutional review board of Arizona
State University approved all study protocols.

Apparatus
Figure 2A shows the apparatus of the experiment.

Participants were seated in front of a computer monitor in-
side a double-walled, sound-attenuating booth. To record
speech signals, a microphone (SM58, Shure) was placed
~15 cm away from the corner of the participant’s mouth
at a ~ 45o angle. The speech signal was amplified (TubeOpto 8,
ART) and passed through an external audio interface (8pre,
MOTU). The audio interface digitized the signal, transmit-
ted the signal to a computer, and transmitted it back to the
audio interface. The output of the audio interface was am-
plified (S.phone, Samson Technologies Corp.) and binaurally
played back to the participants via insert earphones (ER-1,
Etymotic Research Inc.). Before each experimental session,
we calibrated the amplification levels of the microphone and
1844 Journal of Speech, Language, and Hearing Research • Vol. 64 •
the earphones amplifiers to ensure that the intensity of the
signal at the insert earphones was 5 dB higher than the inten-
sity of the microphone signal (Abur et al., 2018; Daliri &
Max, 2015a; Max & Daliri, 2019; Merrikhi et al., 2018).

To apply auditory perturbation, we used Audapter
(Cai, 2015), publicly available software for near real-time
formant tracking and shifting. The exact input–output delay
depends on several factors, such as the audio interface hard-
ware and signal processing routines involved in the formant
tracking and shifting (Kim et al., 2019). We used a digital
audio recorder (Tascam DR-680MKII) to simultaneously re-
cord the input of the audio interface (microphone) and the
output of the audio interface (manipulated auditory feedback;
insert earphones) on two separate channels. Our analysis
showed that the input–output delay was ~16.4 ms. We also
used a 2-cc coupler (Type 4946, Bruel & Kjaer Inc.) connected
to a sound level meter (Type 2250A, Bruel & Kjaer Inc.) to
measure the input–output delay of the insert earphones
(Daliri & Max, 2015a, 2015b, 2016). Our measurements
1841–1854 • June 2021



showed that the insert earphones introduced less than 1-ms
delay. Overall, the total input–output delay was ~17.4 ms.
Audapter uses linear predictive coding (LPC) analysis in
combination with dynamic programming and a set of
heuristic rules to track formants. We used an LPC order
of 15 for female participants and an LPC order of 17 for
male participants. We also used a sampling frequency of
48 kHz, a downsampling factor of 3, and a buffer size of
96 samples.
Procedure
This study was conducted in one session that lasted

less than 1 hr. All 50 participants completed a training task,
a pretest task, and an adaptation task.

Training Task
To ensure that participants are accustomed to the ex-

perimental setup, they completed a training task that con-
sisted of 30 trials. In each trial, a consonant–vowel–consonant
word containing /ɛ/ (“hep,” “head,” and “heck”) appeared
in black font on a gray background. The target word
remained on the monitor for 2.5 s, and there was a short
break (1–1.5 s) between two consecutive trials. The train-
ing task consisted of 10 repetitions of each of the words in
random order. In this task, participants were trained to
produce words with the duration and intensity within the
desired ranges (400–600 ms; 70–80 dB SPL). For this pur-
pose, after the completion of each trial, they were given visual
feedback regarding their duration and intensity. Eight partici-
pants struggled with maintaining their productions within
the desired ranges, and therefore, we repeated the training
task for these participants.

Pretest Task
The goal of this task was to find the centroids of /ε/

and /æ/ for each participant. For this purpose, participants
completed 50 trials of a word reading task—25 repetitions
of each vowel in the context of /hVp/. The design of each
trial was similar to the design of the training trials, except
that visual feedback regarding the intensity and duration
of the productions was presented to participants only if
their intensity or duration was outside the desired ranges.
We used a custom-written MATLAB script to automati-
cally extract the average of the first formant (F1) and the
second formant (F2) for each production. Note that the
formants were calculated by Audapter. We used the cal-
culated formants to estimate the vowel centroids—the
center of a vowel distribution in the F1–F2 coordinates. The
vowel distributions and centroids were visually inspected to
ensure that the centroids had been accurately calculated. We
used the centroids to calculate (a) ε–æ Euclidean distance
(in Hz) in the F1–F2 coordinates, and (b) the angle between
centroids. The ε–æ distance and angle were used to define
participant-specific formant perturbations in the adaptation
task. Additionally, to increase the accuracy of the Audapter’s
formant tracking algorithm, we used the F1 and F2 of the
centroid of /ε/ as participant-specific initial values for formant
tracking in the adaptation task.

Adaptation Task
The adaptation task consisted of 105 trials. In each

trial, a consonant–vowel–consonant word containing /ɛ/
(“hep,” “head,” and “heck”) was presented on the moni-
tor. The order of the words was randomized. As shown in
Figure 2B, this task consisted of a baseline phase (30 trials),
a hold phase (45 trials), and an end phase (30 trials). In the
baseline phase, participants received normal (unperturbed)
auditory feedback. In the hold phase, participants received
perturbed auditory feedback. The perturbation was de-
signed using each participant’s ε–æ distance and angle
(calculated in the pretest task). The perturbation was de-
signed to shift a given participant’s /ε/ toward her /æ/ by
increasing F1 and decreasing F2 (see Figure 2C). In other
words, the perturbation magnitude was equal to the Eu-
clidean distance between the participant’s centroids of /ε/
and /æ/ in the F1–F2 coordinates. The average perturba-
tion magnitude was 269.5 Hz (SD = 116.9 Hz) across all
participants. Note that both formant tracking and formant
perturbation were designed to initiate at the onset of the
vowel. In the end phase, participants received normal, un-
perturbed auditory feedback.

Data Analysis
We used a MATLAB script to inspect the accuracy

of the Audapter’s formant tracking by displaying formants
on the spectrogram of each production. Additionally, all
productions were inspected to exclude trials with produc-
tion errors (e.g., mispronunciations). Using the spectro-
gram and time-domain waveform, we manually selected
the onset and offset of the vowel for each production. We
then extracted F1 and F2 trajectories between the onset
time and the offset time. As mentioned earlier, the responses
at time points immediately after the onset of a perturbation
are mostly influenced by the feedforward control mecha-
nisms, and responses at time points later than ~150 ms
from the onset of the perturbation are influenced by both
the feedforward and feedback control mechanisms. For
each of the F1 and F2, we averaged formant values within
three time windows: early, mid, and late. The early time
window was placed on the first 80 ms of the vowel, the mid
time window was placed at 110–190 ms, and the late time-
window was placed at 220–300 ms. The early and late time
windows were most suited to test our hypotheses; however,
for consistency purposes, we included the results for the
mid time window in Supplemental Material S1. The rationale
for leaving 30 ms between two subsequent time windows
was to ensure that the data in the time windows do not over-
lap. Although participants were instructed to produce vowels
with a duration longer than 400 ms (see the Training Task),
several participants had vowel durations shorter than 400
ms. Therefore, we focused our analysis on the first 300 ms
and excluded all trials that had a vowel duration of less
than 300 ms. Approximately 7.83% (SD = 4.67%) of all
Daliri: Feedback and Feedforward Control Systems 1845



trials of the adaptation task were excluded. In the adap-
tation task, perturbations were parallel to a line connect-
ing each participant’s /ɛ/ to /æ/ (i.e., perturbation line).
Similar to our previous studies (Daliri, Chao, & Fitzgerald,
2020; Daliri & Dittman, 2019), we projected the extracted
F1 and F2 in each trial to the participant-specific perturba-
tion line (adaptation response) and to a line orthogonal to
the perturbation line (deviation response). Both adaptation
response and deviation response were calculated relative to
the participant-specific centroid of /ɛ/ (reference point). Pos-
itive adaptation responses were in the direction toward /æ/,
and positive deviation responses were in the direction toward
the outside of the vowel space.

Because the target words were in the context of /hɛC/
(“hep,” “head,” and “heck”), the three target words had
different formant transitions at the end of the vowel (due
to articulatory constraints of the consonant). Given the pri-
mary hypotheses of the study, we were interested in the
difference between formant values in the late window and
early window. Thus, to minimize the potential effects of
formant transition on the adaptation and deviation responses,
we corrected both the early and late responses based on
their average responses in the baseline phase on a word-
specific basis. Lastly, because perturbation magnitudes
were participant specific, to be able to compare responses
across participants, we normalized responses by dividing
them by the participant-specific perturbation magni-
tude (i.e., participant-specific ɛ-æ distance). We used the ad-
aptation response as the dependent variable for statistical
analysis. Although adaptation responses were more appro-
priate for testing our hypotheses, we also examined devia-
tion responses for consistency purposes (see Supplemental
Material S2).
Computational Modeling
In our previous study (Daliri & Dittman, 2019), we

developed a state-space model to estimate the contributions
of the feedforward control system in an adaptation para-
digm. Our model was based on state-space models that have
been used in studies of limb motor learning (Shadmehr &
Mussa-Ivaldi, 2012). The model assumes that, in a given
trial (n), we produce a feedforward motor command (FFF)
to achieve a specific auditory target (FT) based on our
estimate of potential perturbations (XP) in the current trial.
In other words, XP is our current prediction regarding the
magnitude of the perturbation before we generate a feed-
forward motor command.

FFF nð Þ ¼ FT −XP nð Þ: (1)

FAF nð Þ ¼ FFF nð Þ þ FP nð Þ: (2)

After the execution of the feedforward motor com-
mand, we receive the auditory feedback (FAF) that consists
of the auditory consequences of the motor commands and
formant perturbations (FP). We then calculate the predic-
tion error in the current trial by comparing the auditory
1846 Journal of Speech, Language, and Hearing Research • Vol. 64 •
feedback with the auditory target, which can be further
simplified using Equations 1 and 2.

E nð Þ ¼ FAF nð Þ−FT ¼ FP nð Þ−XP nð Þ: (3)

Based on this simplification, the prediction error is the differ-
ence between the perturbation in the current trial and our
current estimate of the perturbation. After calculating the
prediction error, we update our estimate of the perturba-
tion using a weighted sum of our current estimate of the
perturbation (i.e., current prediction) and the prediction
error.

Xp nþ 1ð Þ ¼ α�XP nð Þ þ βFF � E nð Þ;
0 ≤ α ≤ 1; 0 ≤ βFF ≤ 1:

(4)

The weight (α) that we assign to our current prediction de-
termines the similarity between our prediction of the pertur-
bation in the next trial and the current perturbation. This
parameter is often called the “decay factor” or “forgetting
factor” (Daliri & Dittman, 2019; Shadmehr & Mussa-Ivaldi,
2012). Here, we use the term prediction sensitivity, as this
term more accurately reflects the function of the parameter.
The weight that we assign to the prediction errors (βFF) cor-
responds to our sensitivity to prediction error—a large βFF
means a high error sensitivity. Stated differently, we use
the weighted prediction error and the weighted estimate
of the perturbation to update our estimate of the perturba-
tion that will be used to develop a feedforward motor com-
mand in the next trial; thus, βFF corresponds to the error
sensitivity of the feedforward control system. Because pre-
diction errors are also used in the feedback control system
(Guenther, 2016; Kearney et al., 2020; Parrell & Houde,
2019), we developed the state-space model to include a feed-
back component (FFB).

FFB nð Þ ¼ −βFB � E nð Þ; 0 ≤ βFB ≤ 1: (5)

We developed our online corrective responses to perturba-
tions based on the prediction error and the sensitivity of
the feedback control system to prediction errors (i.e.,
feedback error sensitivity; βFB). Because the contribution
of the feedback control system is minimal during the early
time points of a given speech token, we used responses at
early time points (FEarly) as an estimate of the contribution
of the feedforward control system. However, responses at
time points later than ~150 ms (FLate) are influenced by both
the feedforward and feedback control systems (Guenther,
2016; Kearney et al., 2020; Parrell & Houde, 2019), and
thus, the difference between the late and early responses can
be used as an estimate of the feedback control system.

FEarly nð Þ ¼ FFF nð Þ: (6)

FLate nð Þ ¼ FFF nð Þ þ FFB nð Þ: (7)

We used the “fmincon” function of MATLAB to fit the
model to each participant’s adaptive responses. The “fmin-
con” function is based on a gradient-based optimization
1841–1854 • June 2021



method that finds the minimum value of a constrained
nonlinear multivariable cost function. The computational
model included three parameters (α, βFF, and βFB) with a
range of 0–1. The optimization started with a set of random
values for the parameters; we calculated simulated early
and late responses based on the parameter values; then,
we calculated the root-mean-square of the difference be-
tween the participant’s early and late adaptive responses
and the simulated early and late responses. The “fmincon”
function used this error to iteratively find a set of parame-
ters that minimizes the difference between measured and
simulated responses. It should be noted that we supplied
the function with the lower bound of 0.001 and the up-
per bound of 0.999. This was because we needed to logit-
transform the parameters for statistical analyses, and the
logit transform cannot be calculated for 0 and 1. Because
we assumed the model’s parameters (α, βFF, and βFB) are
not influenced by the consonantal environment, we used
adaptive responses for all trials (words) to fit the model.
We used a procedure similar to our previous study (Daliri
& Dittman, 2019) for the optimization (10,000 iterations;
optimality tolerance of 10−6). For each participant, we (a)
extracted the optimized parameters (α, βFF, and βFB), (b)
calculated the simulated early and late responses based on
the optimized parameters, and (c) calculated the goodness of
fit for the optimized model (using r-squared).
Statistical Analysis
We used R Version 3.5.1 (R Core Team, 2018) to

conduct the statistical analyses. We entered the adaptation
responses that were calculated based on the early and late
time windows into the statistical analyses. For each of the
early and late responses and for each word, we calculated
the average responses in the baseline phase (30 trials; 10
per word), the last 30 trials of the hold phase (10 per word),
and the end phase (30 trials; 10 per word), as dependent
variables (see gray-shaded areas in Figure 3A). To examine
the adaptation responses, we used a linear mixed-effect model
implemented in the lme4 package. We used phase (baseline,
hold, and end), time window (early and late), and word
(/hεp/, /hεd/, and /hεk/) as fixed factors and participant as
a random factor (random intercept). To evaluate the sta-
tistical significance of the main effects and interactions, we
used the lmerTest package (Kuznetsova et al., 2017) with
Satterthwaite’s method for approximating the degrees of
freedom. We also conducted post hoc analyses (i.e., pairwise
comparisons) using the emmeans package (Lenth, 2019). We
used Tukey’s method to correct for multiple comparisons
with Kenward-Roger for approximating the degrees of free-
dom. We used the Psych package (Revelle, 2018) to exam-
ine the relationship between the model-based estimates (βFF
and βFB) and data-driven estimates (average early and dif-
ference responses in the hold phase) of error sensitivity of
the control systems. We also examined the relationship be-
tween the error sensitivity of the feedforward and feedback
control systems using Pearson correlation coefficients.
Results
Data-Driven Estimates of Error Sensitivity

Figure 3A shows the group-average trajectories of
the adaptation responses calculated based on the early
(0–80 ms) and late (220–300 ms) time windows. The results
for the mid–time window (110–190 ms) are shown in the
Supplemental Material S1. As mentioned in the introduc-
tion, the early responses were influenced by the feedfor-
ward control system alone, late responses were influenced
by both the feedforward and feedback control systems,
and, thus, the difference responses (the difference between
late and early responses) were influenced by the feed-
back control system alone. For each participant’s early
and late adaptation responses, we calculated average re-
sponses in three phases (baseline, hold, and end) indicated
by the gray-shaded areas in Figure 3A. Examining adap-
tation responses, we found statistically significant main
effects of phase, F(2,833) = 316.629, p < .001, and time
window, F(1,833) = 4.698, p = .030. We did not find
statistically significant main effect of word, F(2,833) =
0.642, p = .526, Phase × Word interaction, F(4,833) =
0.338, p = .853, Time Window × Word interaction,
F(2,833) = 0.911, p = .403, and Phase × Time Window ×
Word interaction, F(4,833) = 0.586, p = .673. The Phase ×
Time Window interaction was statistically significant,
F(2,833) = 4.207, p = .015. As shown in Figure 3B, this
interaction indicated that late responses were larger than
early responses in the hold phase (p = .004) but not in the
baseline phase (p = .999) and the end phase (p = .999). It
should be noted that, out of all 50 participants, 30 partici-
pants showed this pattern in the hold phase (i.e., larger late
responses than early responses).

Using responses in the hold phase, we examined the
relationship between the adaptation responses. As shown
in Figure 3C, early responses statistically significantly cor-
related with late responses, r = .856, p < .001; however, as
shown in Figure 3D, there was not a significant relationship
between early and difference responses, r = .122, p = .399.
Model-Based Estimates of Error Sensitivity
To estimate the error sensitivity of the feedforward

and feedback control systems, we fitted the state-space
model (see Computational Modeling section) to the early
and late responses of each participant. Figure 4A shows the
group-average modeled trajectories for early, late, and dif-
ference responses. Our analyses of the goodness of fit of the
models showed that, on average, the model explained 58.9%
(SD = 21.5%; Mdn = 62.1%) of the variance of the adapta-
tion data (r-squared ranged from .125 to .917). Based on the
fitted model for each participant, we extracted three pa-
rameters: prediction sensitivity (α), feedforward error sen-
sitivity (βFF), and feedback error sensitivity (βFB). Because
the model’s parameters were bounded between 0 and 1, we
transformed the parameters to normalize their distributions
for statistical analyses, using a logit transform (logit(α) =
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Figure 3. (A) The group-average trajectories for early, late, and difference responses (the difference between early and late adaptation responses).
For each participant’s early and late responses, we calculated average responses in three phases (baseline, hold, and end) indicated by the gray-
shaded areas in A. (B) Average-group and individual data for early versus late responses in all three phases. The late responses were larger than
the early responses in the hold phase. The difference trajectories in A showed a sudden negative change after the start of the perturbation
(Block 11) and a sudden positive change after the perturbation was removed (Block 26). We used average responses in the hold phase to
examine the relationship between the adaptation responses. (C) Early responses statistically significantly correlated with late responses; however,
there was not a significant relationship between early and difference responses (D). Error bars correspond to ± 1 standard error, and asterisks
correspond to p < .01.
log(α / (1-α)); e.g., logit(0.5) = 0). The average of nontrans-
formed prediction sensitivity was 0.733, and it ranged from
0.028 to 0.999. The average nontransformed βFF was 0.058
(range: 0.002–0.372) and the average nontransformed βFB
was 0.141 (range: 0.001–0.550). The transformed βFF was
statistically smaller than the transformed βFB, t(49) = −2.187,
p = .033. As shown in Figures 4B–4D, we examined the re-
lationship between the three parameters of the model. Pre-
diction sensitivity statistically significantly correlated with
the feedforward error sensitivity (r = −.434, p = .002) and
feedback error sensitivity (r = .429, p = .002). However, feed-
forward error sensitivity did not correlate with feedback er-
ror sensitivity (r = −.065, p = .656).
The Relationship Between Model-Based
and Data-Driven Estimates of Error Sensitivity

We used the average early adaptive responses (in
the last 30 trials of the hold phase) as a data-driven esti-
mate of the error sensitivity of the feedforward control
system, and the average difference responses (in the last
30 trials of the hold phase) as an estimate of the error
sensitivity of the feedback control system. We used the
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feedforward error sensitivity (βFF) and feedback error
sensitivity (βFB) as model-driven estimates of error sensitivity
for the participant. Our correlational analyses indicated that
(a) transformed feedforward error sensitivity significantly
correlated with early responses, r = −.437, p = .002 (see
Figure 5A), (b) transformed feedback error sensitivity
significantly correlated with the late responses, r = −.587,
p < .001 (see Figure 5B), and with the difference responses,
r = −.479, p < .001 (see Figure 5C).
Discussion
The speech motor system uses feedforward and feed-

back control mechanisms that are both reliant on predic-
tion errors (i.e., discrepancies between sensory prediction
and sensory feedback). In this study, we developed a state-
space model to estimate the error sensitivity of the feedfor-
ward and feedback control systems. We also conducted an
auditory perturbation experiment to examine whether the
state-space model’s parameters can be used as estimates of
the error sensitivity of the feedforward and feedback con-
trol systems. Participants completed an adaptation paradigm
in which formants of their /ε/ were shifted toward their /ӕ/
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Figure 4. We fitted the state-space model to each participant’s adaptation responses. A shows the group-average trajectories of the simulated
responses (early, late, and difference). Shaded areas in A correspond to ± 1 standard error. On average, the model explained ~60% of the
variance of the individual adaptation data (r-squared ranged from .125 to .917). Using the fitted models, we extracted three parameters for each
participant: prediction sensitivity (α), feedforward error sensitivity (βFF), and feedback error sensitivity (βFB). Note that we logit-transformed them
to normalize their distributions because model parameters were bounded between 0 and 1. Feedforward error sensitivity did not correlate with
feedback error sensitivity (B). Prediction sensitivity negatively correlated with feedforward error sensitivity (C) but positively correlated with
feedback error sensitivity (D). The gray dashed line in B, C, and D is the identity line (a line with the slope of 1). a.u. = arbitrary unit.
(the formant perturbation was applied suddenly without a
ramp phase; see Figure 2B). We measured early adaptive re-
sponses (within 0–80 ms) to estimate the contributions of the
feedforward control system. We also measured late adaptive
responses (within 220–300 ms) to estimate the contributions
of the combined feedforward and feedback control systems.
We hypothesized that if the feedforward and feedback mecha-
nisms contribute to the late responses, and only the feedfor-
ward mechanism contributes to early responses, then the late
responses would be different from early responses. To deter-
mine model-based estimates of error sensitivity for each par-
ticipant, we fitted the state-space model to the participant’s
adaptive responses and extracted the feedforward (βFF) and
feedback (βFB) error sensitivity. To determine data-driven
estimates of error sensitivity, we used the average early adap-
tive responses as an estimate of the error sensitivity of the
feedforward control system and the average difference re-
sponses (the difference between late and early responses) as
an estimate of the error sensitivity of the feedback control
system. To test whether the model accounts for the error
sensitivity of the control systems, we examined the relation-
ship between the model-based and data-driven estimates of
error sensitivity of the control systems. Additionally, because
both feedforward and feedback control systems rely on pre-
diction errors, we examined the relationship between error
sensitivity in the feedforward and feedback control systems.

Consistent with our hypothesis, we found that the
late adaptation responses were larger than early adaptation
responses in the hold phase. These results suggested that
early responses were influenced by the feedforward system,
whereas the late responses were influenced by both the
feedforward and feedback systems. Thus, the difference re-
sponses included the contributions of the feedback control
system. As shown in Figure 3A, the difference responses
changed immediately after the start of the perturbation in
the hold phase and again immediately after the removal
of the perturbation in the end phase. These results are
convincing evidence that the difference response (i.e., the
output of the feedback control system) is driven by audi-
tory prediction error. In the context of our state-space
model, the auditory prediction error is zero during the baseline
phase; immediately after the perturbation starts in the hold
phase, participants experience a large auditory prediction
error (i.e., the discrepancy between auditory target and audi-
tory feedback; see Equation 3). Based on this large prediction
error, the feedback control system generates a large corrective
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Figure 5. As data-driven estimates of error sensitivity of the
feedforward and feedback control systems, we used the average
early adaptation responses during the last 30 trials of the hold phase
and the average difference responses (the difference between late and
early responses) in the last 30 trials of the hold phase, respectively. As
model-based estimates of error sensitivity, we used (logit-transformed)
feedforward and feedback error sensitivity (βFF and βFB) of the fitted
state-space models. Our correlational analyses indicated that
transformed feedforward error sensitivity significantly correlated
with early responses (A), and transformed feedback error sensitivity
significantly correlated with the late responses (B) and with the
difference responses (C). a.u. = arbitrary unit.
response (see Equation 5), which explains the large change
in difference responses at the beginning of the hold phase.
However, the feedforward control system uses the error to
update its estimate of the perturbation (see Equation 4)
and to modify the feedforward motor commands in subse-
quent trials (see Equation 1). Over the course of trials in the
hold phase, the feedforward gradually updates its estimate of
the perturbation and adjusts its motor commands to decrease
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auditory prediction errors. Immediately after the perturba-
tion is removed in the end phase, participants again experi-
ence a large prediction error—participants expect to receive
auditory perturbations, but they receive no perturbations. This
large prediction error again suggests a large corrective re-
sponse, which explains the large change in the difference
responses at the beginning of the end phase. During the end
phase, the feedforward system continues adjusting its motor
commands to reduce the prediction error gradually. Overall,
these results suggest that (a) contributions of feedforward and
feedback control systems can be measured in one task using
early responses and late responses and (b) the state-space
model can be used to explain how feedforward and feedback
control systems use auditory prediction errors to generate
adaptive and corrective responses in auditory perturbation
paradigms.

Although we interpreted the difference between early
and late responses in the context of auditory prediction
error, one could argue that the difference between late
and early responses is due to the formant transitions (coar-
ticulatory effects) at the end of the vowel. Late responses
were closer to the end of the vowel and are more likely to
be influenced by the formant transitions imposed by the ar-
ticulatory constraints of the next consonant. Both early and
late responses were baseline-corrected on a word-specific
basis such that, for each word, we subtracted the average
responses during the baseline trials from all trials. Thus,
changes in the difference between early and late responses
throughout trials are unlikely to be primarily driven by for-
mant transitions. However, the magnitude of the corrective
responses implemented by the feedback control system
(i.e., the difference responses) can be modulated by the
articulatory constraints of the next consonant (in addition
to prediction errors). That is because to implement the cor-
rective responses, participants would need to change their
articulatory configurations during the vowel, but the extent
of this change may be constrained by the articulatory con-
figurations of the next consonant. In fact, the results of our
previous compensation study (Daliri, Chao, & Fitzgerald,
2020) indicated that the magnitude of corrective responses
might be influenced by articulatory constraints. However,
in the current study, the main effect of word and interactions
involving the word factor were not statistically significant.
This discrepancy may be explained by the fact that we
measured corrective responses based on the time window
of 220–300 ms, whereas in the previous study, we measured
corrective responses based on the time window of 300–400 ms
(i.e., when corrective responses are larger). Overall, while the
difference responses are primarily driven by auditory predic-
tion errors (induced by the auditory perturbations), we cannot
completely rule out the potential effects of the articulatory
constraints of consonantal environments on the magnitude
of the difference responses.

One of the goals of this study was to test whether the
state-space model accounts for the error sensitivity of the
control systems. Toward this goal, we examined the rela-
tionship between the model-based estimates of error sensi-
tivity and data-driven estimates of error sensitivity of the
1841–1854 • June 2021



control systems. We found that feedforward error sensitiv-
ity (βFF) correlated with the average early responses, and
feedback error sensitivity (βFB) correlated with the average
difference responses. Close examination of the fitted models
showed that, on average, the model explained ~60% of the
variance of the individual adaptive responses—r-squared,
as a measure of goodness of fit, ranged from .125 to .917.
These results suggested that the state-space model did, in
fact, capture the dynamics of adaptive responses, and the
model’s parameters can be used to estimate each partici-
pant’s error sensitivity. However, given the large variability
of the goodness of fit and the large individual variability in
the adaptive responses (see Figure 3B), there may be other
contributing factors to adaptive responses that were not in-
cluded in the model (e.g., characteristics of participants or
auditory perturbations). We also examined the relationship
between error sensitivity parameters (βFF and βFB) and pre-
diction sensitivity parameter (α). In our computational
model (see Equation 4), α is the weight assigned to the
participant’s prediction of the magnitude of the pertur-
bation. The model uses the weighted prediction error
and the weighted estimate of the perturbation in the cur-
rent trial to update the estimate of perturbation, which
is used to modify the feedforward motor command in
the next trial. In other words, prediction sensitivity de-
termines the similarity of our prediction of the perturbation
in the next trial with the current prediction of the perturba-
tion (Daliri & Dittman, 2019; Shadmehr & Mussa-Ivaldi,
2012). Our analyses showed that prediction sensitivity cor-
related negatively with feedforward error sensitivity (see
Figure 4C; r = −.434): participants who relied more on
their prediction (higher prediction sensitivity) tended to
rely less on prediction error (lower feedforward error sen-
sitivity). Interestingly, we found a positive correlation be-
tween prediction sensitivity and feedback error sensitivity
(see Figure 4D; r = .429): Participants who relied more
on their prediction tended to generate larger corrective
responses. These results may indicate that the feedforward
and feedback control systems are distinct and use prediction
errors differently. Finally, as shown in Figure 4, there were
larger individual variabilities for prediction sensitivity and
feedback error sensitivity, whereas there was a relatively
small individual variability for feedforward error sensi-
tivity. These results may suggest that at least in adaptation
paradigms without a ramp phase, the large individual vari-
abilities in early adaptive responses may be less related to
individual variability in feedforward error sensitivity and
more related to individual variability in prediction sensitiv-
ity (in addition to other factors such as sensitivity to mato-
sensory errors). Overall, our computational model accounts
for the error sensitivity of the feedforward and feedback
control systems and can provide insights about individual
variability in responding to auditory perturbation errors.

Another goal of this study was to examine the rela-
tionship between error sensitivity in the feedforward and
feedback control systems, given their reliance on prediction
errors. Examining data-driven measures of error sensitivity,
we found that the average early responses did not correlate
with the average of difference responses. Similarly, there
was no significant relationship between model-based mea-
sures of error sensitivity (feedforward and feedback error
sensitivity). These results suggested that, despite the reli-
ance on auditory prediction error, the feedforward and
feedback systems operate independently and use the pre-
diction error differently. In other words, participants with
higher feedforward error sensitivity do not necessarily have
higher feedback error sensitivity. These results are also con-
sistent with the results of several previous studies that used
adaptation and compensation tasks to separately measure
feedforward and feedback control systems’ responses to au-
ditory errors (Franken et al., 2019; Hawco & Jones, 2009;
Lester-Smith et al., 2020; Parrell et al., 2017; Scheerer &
Jones, 2018). Our results are especially consistent with the
results of a recent study by Franken et al. (2019). They ex-
amined early responses (time window of 50–150 ms) and
late responses (time window of 1000–1500 ms) when partic-
ipants experienced frequent and infrequent auditory pertur-
bations (in two different paradigms). They reported a lack
of correlation between within-trial corrective responses and
adaptive responses, suggesting that the processes underlying
these responses are distinct and independent. Collectively,
our results indicated that the feedforward and feedback
control systems use prediction errors but independently
transform the error to adaptive and corrective responses
and have uncorrelated error sensitivity.

To estimates corrective responses in a given trial, we
used the difference between late and early responses. Early
and late responses depend on the specific time windows
that are used to extract the responses. In this study, we used
the early time window of 0–80 ms and the late time window
of 220–300 ms (see the Supplemental Material S1 for results
of the time window of 110–190 ms). The rationale for
using these time windows was based on previous studies
that have reported that corrective responses start within
100–200 ms (typically around 150 ms) from the onset of
perturbations and gradually increase up to at least 400 ms
after the onset of perturbations (Daliri, Chao, & Fitzgerald,
2020; Niziolek & Guenther, 2013; Parrell et al., 2017).
Therefore, responses at time points before 100 ms are
primarily influenced by the feedforward control system,
whereas responses at time points after 200 ms are influenced
by the feedforward and feedback control systems. In support
of this argument, we found a strong correlation between
early and late responses (see Figure 3C). Although participants
were trained to produce vowels longer than 400 ms, several
participants produced vowels that were shorter than 400 ms;
thus, we selected 220–300 ms as the late time window to
limit the number of excluded trials (i.e., trials with dura-
tion less than 300 ms). This choice of time window could
influence the magnitude of late responses and, therefore,
the difference responses. Additionally, because the models
were fitted to the early and late responses, the model’s
parameters—especially the feedback error sensitivity—
are influenced by choice of the time window. We specu-
late if the late time window was at later time points (e.g.,
300–400 ms), the difference responses and feedback error
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sensitivity may have been larger (as the corrective responses
gradually increase). It should be noted that our current
computational model is based on the assumption that the
early and late time windows are distinct and located before
and after a time point where the feedback control system
generates a response (e.g., ~150 ms). The model can be fur-
ther developed in future studies to be able to use all data
points in a trial (rather than data from early and late time-
windows). Based on such models, one could examine whether
or not the onset of the responses generated by the feedback
control system changes over the course of an auditory pertur-
bation paradigm.

Although a comprehensive comparison between the
state-space model and previous models is beyond the scope
of this study, it is important to acknowledge the limitations
of the state-space model in relation to previous models.
The structure of the state-space model that we developed
in this study is similar to those of the previous models
(Guenther, 2016; Houde & Nagarajan, 2011; Kearney
et al., 2020; Parrell & Houde, 2019). The state-space
model is particularly similar to the “simpleDIVA” model
that was recently developed by Guenther and colleagues
(Kearney et al., 2020). Both the state-space model and the
simpleDIVA model include the feedforward and feedback
control systems and use prediction errors. To qualitatively
compare the two models, we fitted the simpleDIVA to the
adaptive responses of each participant. The average simulated
responses of all participants are shown in Supplemental
Material S3. These results showed that the two models per-
formed similarly with one noticeable difference: The differ-
ence responses at the end of the hold phase appeared to be
smaller (or nonexistent) for the simpleDIVA. This qualita-
tive difference may be related to a key difference in how the
feedforward motor commands are calculated and updated
across trials in the two models. In the simpleDIVA, the out-
put of the feedback component (i.e., corrective response) is
used to modify the feedforward commands (i.e., adaptive
response). In the state-space model, the prediction error is
used to update the estimate of the perturbations, and this
estimate is used to calculate the feedforward motor com-
mands. The simpleDIVA’s approach implies that the
feedback and feedforward control systems are linked;
however, our results along with the results of previous
studies (Franken et al., 2019; Hawco & Jones, 2009; Lester-
Smith et al., 2020; Parrell et al., 2017; Scheerer & Jones,
2018) suggest that the feedforward and feedback control
systems may function independently. Another key differ-
ence between the two models is that whereas the simple-
DIVA model calculates both auditory and somatosensory
prediction errors, the state-space model includes the audi-
tory prediction errors only. Given the importance of so-
matosensory feedback (Daliri et al., 2013; Guenther, 2016;
McGuffin et al., 2020), this is a major limitation of the cur-
rent state-space model that needs to be addressed in future
versions of the model.

One aspect of our study design that deserves comment
is the magnitude of the auditory perturbation. We used a
participant-specific perturbation that shifted a participant’s
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/ε/ toward her /ӕ/: the magnitude of shift was equal to the
participant-specific distance between the centroids of /ε/
and /ӕ/. This perturbation would generate a categorical
error, and the brain may integrate such errors differently
in comparison with within-category errors (Chao et al.,
2019; Niziolek & Guenther, 2013). Our current state-space
model does not differentiate between within-category and
cross-category errors and respond to these two types of
errors in the same way. Additionally, the model assumes
the error sensitivity is constant and is not dependent on the
magnitude or relevance of the prediction error. Previous
studies have suggested that the brain evaluates the prediction
errors and adapts less to large or irrelevant errors (Berniker
& Körding, 2008; Daliri & Dittman, 2019; Shadmehr &
Mussa-Ivaldi, 2012). Additionally, in a recent study (Daliri,
Chao, & Fitzgerald, 2020), we showed that corrective re-
sponses to large perturbations are proportionally smaller
than responses to small perturbations. To address these
limitations, the structure of the state-space model needs
to be modified so that the model can evaluate the errors
(e.g., based on the magnitude of the error) and generate
responses based on its error evaluation.

In summary, we examined the contributions of the
feedforward and feedback control systems in an adaptation
paradigm. Toward this goal, we examined early adaptive
responses and late adaptive responses. Given that early
responses are influenced by the feedforward system, and
late responses are influenced by both the feedforward
and feedback systems, we examined the difference between
late and early responses (difference responses) to isolate the
contributions of the feedback control system. Additionally,
we developed a state-space model to estimate the feedforward
and feedback control systems’ error sensitivity. We found that
early responses (estimate of the feedforward system) did
not correlate with difference responses (estimate of the
feedback system), suggesting that the feedforward and
feedback control systems function independently despite
their reliance on prediction error. We also found that model-
based estimates of error sensitivity of the feedforward (βFF)
and feedback (βFB) systems correlated with early responses
and difference responses (data-driven estimates of the feed-
forward and feedback systems). These results suggested that
the state-space model was able to capture the dynamic of
adaptive responses, and the model’s parameters can be used
to estimate each participant’s error sensitivity. Together,
these results showed that it is possible to efficiently and ac-
curately determine the feedforward and feedback control
systems’ sensitivity to prediction errors using early and late
adaptive responses in combination with the state-space
model.
Acknowledgments
This work was supported by National Institutes of Health

Grant R21 DC017563 (awarded to A. Daliri). We thank Damaris
Ochoa and Sara Chao for their contributions to participant re-
cruitment for this project.
1841–1854 • June 2021



References
Abur, D., Lester-Smith, R. A., Daliri, A., Lupiani, A. A., Guenther,

F. H., & Stepp, C. E. (2018). Sensorimotor adaptation of voice
fundamental frequency in Parkinson’s disease. PLOS ONE,
13(1), Article e0191839. https://doi.org/10.1371/journal.pone.
0191839

American Speech-Language-Hearing Association. (1997). Guide-
lines for audiologic screening: Panel on audiologic assessment.

Ballard, K. J., Halaki, M., Sowman, P., Kha, A., Daliri, A., Robin,
D. A., Tourville, J. A., & Guenther, F. H. (2018). An investiga-
tion of compensation and adaptation to auditory perturbations
in individuals with acquired Apraxia of speech. Frontiers in
Human Neuroscience, 12, 510. https://doi.org/10.3389/fnhum.2018.
00510

Berniker, M., & Körding, K. P. (2008). Estimating the sources of
motor errors for adaptation and generalization. Nature Neuro-
science, 11(12), 1454–1461. https://doi.org/10.1038/nn.2229

Cai, S. (2015). Audapter. https://github.com/shanqing-cai/
audapter_matlab

Chao, S.-C., Ochoa, D., & Daliri, A. (2019). Production variability
and categorical perception of vowels are strongly linked. Fron-
tiers in Human Neuroscience, 13, 96. https://doi.org/10.3389/
FNHUM.2019.00096

Daliri, A., Chao, S.-C., & Fitzgerald, L. C. (2020). Compensatory
responses to formant perturbations proportionally decrease as
perturbations increase. Journal of Speech, Language, and
Hearing Research, 63(10), 3392–3407. https://doi.org/10.1044/
2020_JSLHR-19-00422

Daliri, A., & Dittman, J. (2019). Successful auditory motor adap-
tation requires task-relevant auditory errors. Journal of Neuro-
physiology, 122(2), 552–562. https://doi.org/10.1152/jn.00662.
2018

Daliri, A., & Max, L. (2015a). Electrophysiological evidence for a
general auditory prediction deficit in adults who stutter. Brain
and Language, 150, 37–44. https://doi.org/10.1016/j.bandl.2015.
08.008

Daliri, A., & Max, L. (2015b). Modulation of auditory processing
during speech movement planning is limited in adults who
stutter. Brain and Language, 143, 59–68. https://doi.org/10.
1016/j.bandl.2015.03.002

Daliri, A., & Max, L. (2016). Modulation of auditory responses
to speech vs. nonspeech stimuli during speech movement plan-
ning. Frontiers in Human Neuroscience, 10, 234. https://doi.org/
10.3389/fnhum.2016.00234

Daliri, A., & Max, L. (2018). Stuttering adults’ lack of pre-speech
auditory modulation normalizes when speaking with delayed
auditory feedback. Cortex, 99, 55–68. https://doi.org/10.1016/
j.cortex.2017.10.019

Daliri, A., Murray, E. S. H., Blood, A. J., Burns, J., Noordzij,
J. P., Nieto-Castañón, A., Tourville, J. A., & Guenther, F. H.
(2020). Auditory feedback control mechanisms do not con-
tribute to cortical hyperactivity within the voice production net-
work in adductor Spasmodic Dysphonia. Journal of Speech,
Language, and Hearing Research, 63(2), 421–432. https://doi.
org/10.1044/2019_JSLHR-19-00325

Daliri, A., Prokopenko, R. A., Flanagan, J. R., & Max, L. (2014).
Control and prediction components of movement planning in
stuttering versus nonstuttering adults. Journal of Speech, Lan-
guage, and Hearing Research, 57(6), 2131–2141. https://doi.org/
10.1044/2014_JSLHR-S-13-0333

Daliri, A., Prokopenko, R. A., & Max, L. (2013). Afferent and
efferent aspects of mandibular sensorimotor control in adults
who stutter. Journal of Speech, Language, and Hearing
Research, 56(6), 1774–1788. https://doi.org/10.1044/1092-
4388(2013/12-0134)

Daliri, A., Wieland, E. A., Cai, S., Guenther, F. H., & Chang, S.-E.
(2017). Auditory-motor adaptation is reduced in adults who
stutter but not in children who stutter. Developmental Science,
21(2), Article e12521. https://doi.org/10.1111/desc.12521

Franken, M. K., Acheson, D. J., McQueen, J. M., Hagoort, P., &
Eisner, F. (2019). Consistency influences altered auditory
feedback processing. Quarterly Journal of Experimental
Psychology, 72(10), 2371–2379. https://doi.org/10.1177/
1747021819838939

Fuchs, S., Cleland, J., & Rochet-Capellan, A. (Eds.). (2019). Speech
production and perception: Learning and memory. Peter Lang.
https://doi.org/10.3726/b15982

Guenther, F. H. (2016). Neural control of speech. MIT Press. https://
doi.org/10.7551/mitpress/10471.001.0001

Hawco, C. S., & Jones, J. A. (2009). Control of vocalization at
utterance onset and mid-utterance: Different mechanisms
for different goals. Brain Research, 1276, 131–139. https://
doi.org/10.1016/j.brainres.2009.04.033

Houde, J. F., & Jordan, M. I. (1998). Sensorimotor adaptation in
speech production. Science, 279(5354), 1213–1216. https://doi.
org/10.1126/science.279.5354.1213

Houde, J. F., & Nagarajan, S. S. (2011). Speech production as state
feedback control. Frontiers in Human Neuroscience, 5, 82.
https://doi.org/10.3389/fnhum.2011.00082

Kearney, E., Nieto-Castañón, A., Weerathunge, H. R., Falsini, R.,
Daliri, A., Abur, D., Ballard, K. J., Chang, S.-E., Chao, S.-C.,
Murray, E. S. H., Scott, T. L., & Guenther, F. H. (2020). A
simple 3-parameter model for examining adaptation in speech
and voice production. Frontiers in Psychology, 10, 2995. https://
doi.org/10.3389/fpsyg.2019.02995

Kim, K. S., Daliri, A., Flanagan, J. R., & Max, L. (2020).
Dissociated development of speech and limb sensorimotor
learning in stuttering: Speech auditory-motor learning is im-
paired in both children and adults who stutter. Neuroscience,
451, 1–21. https://doi.org/10.1016/j.neuroscience.2020.10.014

Kim, K. S., Wang, H., & Max, L. (2019). It’s about time: Mini-
mizing hardware and software latencies in speech research with
real-time auditory feedback. Journal of Speech, Language, and
Hearing Research, 63(8), 2522–2534. https://doi.org/10.1044/
2020_JSLHR-19-00419

Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L., & Haith,
A. M. (2019). Motor learning. Comprehensive Physiology, 9(2),
613–663. https://doi.org/10.1002/cphy.c170043

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017).
Imertest Package: Tests in linear mixed effects models. Journal
of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/
jss.v082.i13

Lenth, R. (2019). emmeans: Estimated marginal means, aka least-
squares means (Volume 1.3.3). R package. https://cran.r-project.
org/package=emmeans

Lester-Smith, R. A., Daliri, A., Enos, N., Abur, D., Lupiani, A. A.,
Letcher, S., & Stepp, C. E. (2020). The relation of articulatory
and vocal auditory-motor control in typical speakers. Journal
of Speech, Language, and Hearing Research, 63(11), 3628–3642.
https://doi.org/10.1044/2020_JSLHR-20-00192

Max, L., & Daliri, A. (2019). Limited pre-speech auditory modula-
tion in individuals who stutter: Data and hypotheses. Journal of
Speech, Language, and Hearing Research, 62(8S), 3071–3084.
https://doi.org/10.1044/2019_JSLHR-S-CSMC7-18-0358

McGuffin, B. J., Liss, J. M., & Daliri, A. (2020). The orofacial
somatosensory system is modulated during speech planning
and production. Journal of Speech, Language, and Hearing
Daliri: Feedback and Feedforward Control Systems 1853

http://doi.org/10.1371/journal.pone.0191839
http://doi.org/10.1371/journal.pone.0191839
https://doi.org/10.3389/fnhum.2018.00510
https://doi.org/10.3389/fnhum.2018.00510
https://doi.org/10.1038/nn.2229
https://github.com/shanqing-cai/audapter_matlab
https://github.com/shanqing-cai/audapter_matlab
https://doi.org/10.3389/FNHUM.2019.00096
https://doi.org/10.3389/FNHUM.2019.00096
https://doi.org/10.1044/2020_JSLHR-19-00422
https://doi.org/10.1044/2020_JSLHR-19-00422
https://doi.org/10.1152/jn.00662.2018
https://doi.org/10.1152/jn.00662.2018
https://doi.org/10.1016/j.bandl.2015.08.008
https://doi.org/10.1016/j.bandl.2015.08.008
https://doi.org/10.1016/j.bandl.2015.03.002
https://doi.org/10.1016/j.bandl.2015.03.002
https://doi.org/10.3389/fnhum.2016.00234
https://doi.org/10.3389/fnhum.2016.00234
https://doi.org/10.1016/j.cortex.2017.10.019
https://doi.org/10.1016/j.cortex.2017.10.019
https://doi.org/10.1044/2019_JSLHR-19-00325
https://doi.org/10.1044/2019_JSLHR-19-00325
https://doi.org/10.1044/2014_JSLHR-S-13-0333
https://doi.org/10.1044/2014_JSLHR-S-13-0333
https://doi.org/10.1044/1092-4388(2013/12-0134)
https://doi.org/10.1044/1092-4388(2013/12-0134)
http://doi.org/10.1111/desc.12521
https://doi.org/10.1177/1747021819838939
https://doi.org/10.1177/1747021819838939
https://doi.org/10.3726/b15982
https://doi.org/10.7551/mitpress/10471.001.0001
https://doi.org/10.7551/mitpress/10471.001.0001
https://doi.org/10.1016/j.brainres.2009.04.033
https://doi.org/10.1016/j.brainres.2009.04.033
https://doi.org/10.1126/science.279.5354.1213
https://doi.org/10.1126/science.279.5354.1213
https://doi.org/10.3389/fnhum.2011.00082
https://doi.org/10.3389/fpsyg.2019.02995
https://doi.org/10.3389/fpsyg.2019.02995
https://doi.org/10.1016/j.neuroscience.2020.10.014
https://doi.org/10.1044/2020_JSLHR-19-00419
https://doi.org/10.1044/2020_JSLHR-19-00419
https://doi.org/10.1002/cphy.c170043
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://cran.r-project.org/package=emmeans
https://cran.r-project.org/package=emmeans
https://doi.org/10.1044/2020_JSLHR-20-00192
https://doi.org/10.1044/2019_JSLHR-S-CSMC7-18-0358


Research, 63(8), 2637–2648. https://doi.org/10.1044/2020_JSLHR-
19-00318

Merrikhi, Y., Ebrahimpour, R., & Daliri, A. (2018). Perceptual
manifestations of auditory modulation during speech planning.
Experimental Brain Research, 236(7), 1963–1969. https://doi.
org/10.1007/s00221-018-5278-3

Niziolek, C. A., & Guenther, F. H. (2013). Vowel category bound-
aries enhance cortical and behavioral responses to speech feed-
back alterations. Journal of Neuroscience, 33(29), 12090–12098.
https://doi.org/10.1523/JNEUROSCI.1008-13.2013

Parrell, B., Agnew, Z., Nagarajan, S., Houde, J., & Ivry, R. B.
(2017). Impaired feedforward control and enhanced feedback
control of speech in patients with cerebellar degeneration.
Journal of Neuroscience, 37(38), 9249–9258. https://doi.org/
10.1523/JNEUROSCI.3363-16.2017

Parrell, B., & Houde, J. (2019). Modeling the role of sensory
feedback in speech motor control and learning. Journal of
Speech, Language, and Hearing Research, 62(8S), 2963–2985.
https://doi.org/10.1044/2019_JSLHR-S-CSMC7-18-0127

R Core Team. (2018). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://
www.r-project.org/
1854 Journal of Speech, Language, and Hearing Research • Vol. 64 •
Revelle, W. (2018). psych: Procedures for psychological, psycho-
metric, and personality research. Northwestern University.
https://cran.r-project.org/package=psych

Scheerer, N. E., & Jones, J. A. (2018). The role of auditory feed-
back at vocalization onset and mid-utterance. Frontiers in Psy-
chology, 9, 2019. https://doi.org/10.3389/FPSYG.2018.02019

Shadmehr, R., & Mussa-Ivaldi, S. (2012). Biological learning and
control: How the brain builds representations, predicts events,
and makes decisions. MIT Press. https://mitpress.mit.edu/
books/biological-learning-and-control

Stepp, C. E., Lester-Smith, R. A., Abur, D., Daliri, A., Noordzij,
P. J., & Lupiani, A. A. (2017). Evidence for auditory-motor
impairment in individuals with hyperfunctional voice disorders.
Journal of Speech, Language, and Hearing Research, 60(6),
1545–1550. https://doi.org/10.1044/2017_JSLHR-S-16-0282

Tourville, J. A., Reilly, K. J., & Guenther, F. H. (2008). Neural
mechanisms underlying auditory feedback control of speech.
NeuroImage, 39(3), 1429–1443. https://doi.org/10.1016/
j.neuroimage.2007.09.054

Tremblay, S., Shiller, D. M., & Ostry, D. J. (2003). Somato-
sensory basis of speech production. Nature, 423(6942),
866–869. https://doi.org/10.1038/nature01710
1841–1854 • June 2021

https://doi.org/10.1044/2020_JSLHR-19-00318
https://doi.org/10.1044/2020_JSLHR-19-00318
https://doi.org/10.1007/s00221-018-5278-3
https://doi.org/10.1007/s00221-018-5278-3
https://doi.org/10.1523/JNEUROSCI.1008-13.2013
https://doi.org/10.1523/JNEUROSCI.3363-16.2017
https://doi.org/10.1523/JNEUROSCI.3363-16.2017
https://doi.org/10.1044/2019_JSLHR-S-CSMC7-18-0127
https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/package=psych
https://doi.org/10.3389/FPSYG.2018.02019
https://mitpress.mit.edu/books/biological-learning-and-control
https://mitpress.mit.edu/books/biological-learning-and-control
https://doi.org/10.1044/2017_JSLHR-S-16-0282
https://doi.org/10.1016/j.neuroimage.2007.09.054
https://doi.org/10.1016/j.neuroimage.2007.09.054
https://doi.org/10.1038/nature01710

