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Abstract

The facility of next-generation sequencing has led to an explosion of gene cata-

logs for novel genomes, transcriptomes and metagenomes, which are function-

ally uncharacterized. Computational inference has emerged as a necessary

substitute for first-hand experimental evidence. PANNZER (Protein ANNota-

tion with Z-scoRE) is a high-throughput functional annotation web server that

stands out among similar publically accessible web servers in supporting sub-

mission of up to 100,000 protein sequences at once and providing both Gene

Ontology (GO) annotations and free text description predictions. Here, we

demonstrate the use of PANNZER and discuss future plans and challenges.

We present two case studies to illustrate problems related to data quality and

method evaluation. Some commonly used evaluation metrics and evaluation

datasets promote methods that favor unspecific and broad functional classes

over more informative and specific classes. We argue that this can bias the

development of automated function prediction methods. The PANNZER web

server and source code are available at http://ekhidna2.biocenter.helsinki.fi/

sanspanz/.
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1 | INTRODUCTION

Climate change, environmental problems, new emerging
pathogens and the growing human population have cre-
ated new critical research questions. Lowering sequenc-
ing costs have made it reasonable to study relevant
species, linked to these research questions, with next-
generation sequencing projects. Genome and trans-
criptome projects have sequenced various agricultural
plants, microbes used in biochemical processing or bio-
fuel generation, animal and human pathogens, or
microbes used in food processing.1–4 These genome pro-
jects generate massive amounts of sequences. Often the
most relevant set of sequences are the predicted genes,
extracted from the sequenced genomes. These extracted
genes lack any information on what they actually
do. Therefore, in order to make this new genome data

useful, these genes must be associated with the relevant
biological features. Functional annotations can be used
to generate hypotheses how the studied agricultural plant
reacts to pathogens or what differentiates a multidrug-
resistant bacterium from its relative strains. Annotations
could be done manually, but even with one genome,
often with 20,000–30,000 genes, it is too overwhelming a
task. Therefore, we need Automated Function Prediction
methods (AFP methods) that can automatically predict
these features.

The goal of the AFP methods is to predict the func-
tions for the studied sequences and communicate these
generated predictions to end-users. This function can be
presented in a number of ways: (i) the sequence can have
a short descriptive text, (ii) the sequence can have a lon-
ger more detailed description, (iii) the sequence can be
classified to a sequence family with conserved function,5
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and/or (iv) the sequence can be classified to known sig-
naling or reaction pathways. Short descriptions give a
quick summary on the sequence, especially when one is
working with FASTA sequence files. They are also
required for submitting the sequences to a database. Lon-
ger detailed descriptions, presented by databases like
SwissProt6 and RefSeq,7 are comprehensive descriptions
on various sequence functions including literature cita-
tions. Sequences can be also classified to various func-
tional classification hierarchies, with Gene Ontology
(GO)8 being the most popular. The classes (also referred
to as terms) in GO represent varying levels of information
on the gene's function. Still, even the most specific classes
often lose some details on the protein function, when
compared to a free text description. Classes still have ben-
efits. One sequence can have multiple functions and
these can be represented with multiple classes. Further-
more, the classes also allow studies on groups of
sequences, where scientists can look for over-represented
functions from the set of sequences. Finally, the function
can be presented with various signaling and reaction
pathways. These can be used similarly to the aforemen-
tioned classes. Here the KEGG (Kyoto Encyclopedia for
Genes and Genomes9) pathway database is the most com-
monly predicted pathway collection. Most of these data
types can be predicted with AFP tools.

None of the existing AFP methods invents the func-
tion for a novel sequence out of nowhere. They rather
use mainly classifiers on various sequence and interac-
tion network derived features,10,11 pre-annotated protein
families12–14 and/or K-nearest sequence principles.15,16

Altogether, AFP methods often look for various similari-
ties, between the sequences with known function and the
query sequence, and next transfer the function(s) to the
query sequence if the similarities are strong enough
(Figure 1). This means that even the most advanced AFP

methods are only as good as the available training data
they use. Most of the existing annotations cumulate to
model organisms. Therefore, a more exotic species, with
no closely related model organism, is likely to get weakly
annotated by all methods. Annotation efficiency is
skewed across the different functions and different spe-
cies. One solution to the lack of data is to use predicted
functions also as an input in our predictions. Unreviewed
GO annotations are tagged as such, allowing their inclu-
sion or exclusion from the training data. Inclusion has its
pros and cons. Over 99% of the current GO annotations
for Uniprot are predictions, making our training data sig-
nificantly larger. The drawback is the inclusion of wrong
predictions into the training data. Thus, the repetitive use
of predictions could generate a cascade of decisions,
where a prediction is used as an input for prediction,
which in turn is used as an input for a prediction, leading
to error propagation.17

The hierarchical structure of the GO means that any
sequence, annotated with GO term X, will automatically
also get annotated with parent terms of X. For a
sequence, predicted to belong to ribosome, the GO hier-
archy implies, among others, the following classes: ribo-
some, translation, protein metabolic process, organic
substance metabolic process, cellular metabolic process
(http://amigo.geneontology.org/amigo/term/
GO:0044391#display-lineage-tab). Notice how informa-
tion, related to function, decreases as we go forward on
the list. These broader classes represent parent terms.
This hierarchical GO structure causes less informative
GO terms to be more frequent in any training or testing
datasets. This in turn causes AFP methods to easily
report only unspecific, vague GO terms. Therefore, many
AFP methods have been based on enrichment statis-
tics.15,16 Rather than looking what GO classes are fre-
quent in the neighborhood of the query sequence, they
look for annotations that are more frequent in the
sequence neighborhood than in the whole database. The
hierarchical structure of GO also complicates the evalua-
tion of AFP methods. There is ongoing debate how to
properly evaluate AFP models.18 One of the biggest issues
with the evaluation metrics is that one can get very good
results, with some evaluation metrics, by simply
reporting the GO classes in decreasing order of their fre-
quency in the database, for every tested gene.19,20 This
baseline model, often referred as the naïve model,21 con-
stitutes no information to end user.

We have developed PANNZER, a weighted K-nearest
neighbor classifier for protein function prediction. This
paper demonstrates the use of PANNZER and recently
added features (taxonomic filtering and gene name pre-
diction), future plans and challenges. We present two
case studies to illustrate problems related to data quality
and AFP method evaluations. We point out that some

FIGURE 1 Weighted K-nearest neighbor approach. A query

sequence (star in center) is associated with sequence neighbors.

Sequence proximity and database background are taken into

account by enrichment statistics. Random mislabels can be

rejected—systematic mislabels cannot
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used evaluation metrics and used evaluation datasets pro-
mote methods that favor unspecific and broad classes
over more informative and specific classes. We argue that
this can bias the development of AFP methods.

2 | METHODS

PANNZER is a fast and fully automated tool and web
server for the AFP task. PANNZER is one of the few
annotation tools that allow genome sized queries
(Table 1). PANNZER can predict short sequence descrip-
tion to any species (plants, bacteria, animals). PANNZER
outperformed other tools in our comparisons across all
datasets (8–45% higher Fmax scores, for example22). In
addition, PANNZER has performed well in the interna-
tional competitions, organized for the AFP methods
(ranked overall 3rd in 2013 and frequently between 5th
and 7th in 201921,23,24) and also in comparisons done by
other groups.25–27

2.1 | Inputs

The inputs are FASTA formatted protein sequences.
These sequences can be translated coding sequences from
a genome project. Bacterial protein coding genes can be
predicted from the genomic sequence using, for example,
Prodigal.28 Eukaryotic gene prediction is more compli-
cated. Gene models can be cross-mapped from a related
genome, guided by homologous proteins or RNA-seq
data, or predicted ab initio.29 RNA-seq data should be
either mapped to a reference genome, or assembled de
novo and translated to peptides using, for example, Trin-
ity and TransDecoder.30

2.2 | Parameters

PANNZER2 uses a fast suffix array neighborhood search
(SANSparallel31) to find homologous sequences in the
UniProt database. We refer to homology search results as
the sequence neighborhood. By default, PANNZER2 uses
a maximum of 100 database hits. As we are transferring
annotations based on sequence similarity, it is necessary
for sequence matches to meet several criteria for inclu-
sion in the sequence neighborhood. Search results must
have at least 40% sequence identity, 60% alignment cover-
age of both the query and target sequences, and a mini-
mum of 100 aligned residues. We refer to this step as
sequence filtering. The criteria for sequence filtering can
be changed from the Advanced parameters on the web
form. Shorter alignment lengths and relaxed coverage
requirements can be useful in situations where the query
sequences are short fragments or come from an exotic
organism.

Output is usually reduced to only one predicted
description and to non-redundant GO terms (see
Figure 2). PANNZER ranks GO predictions according to
an enrichment statistic, which compares the frequency of
a GO class in the sequence neighborhood to its frequency
in the database.15,22 The nonredundant subset removes
all GO classes that have a higher scoring parent or
descendant.

Sometimes homology transfer results in biologically
implausible annotations such as predicting an organ in
plants that only exists in animals. Per a user request, we
have implemented a set of taxonomic branch specific GO
subsets. These limit the GO predictions only to GO terms
occurring in manually curated annotations in fungi,
plants, vertebrates, arthropods or bacteria, respectively.
This branch specific GO filter is off by default.

TABLE 1 Feature comparison between selected annotation servers

Server
schedule

GO
prediction

DE
prediction

>1,000 query
sequences

Open
source

Last database
update/update schedule

ARGOT Yes No Yes No Nov-2016

eggNOG Yes Yes Yes Yes Jan-2019

FFpred Yes No No Yes Unknown

FunFam Yes No Yes (API) Yes Daily

INGA Yes No No No Feb-2019

NetGO Yes No By request No Unknown

PANNZER2 Yes Yes Yes Yes Jun-2021/bimonthly

PFP Yes No No No Sep-2020

Note: DE prediction stands for free text protein descriptions. Last database update is taken from explicit statements on annotation servers (at time of writing
13/07/21). The web servers were accessed at URLs http://www.medcomp.medicina.unipd.it/Argot2-5/, http://eggnog-mapper.embl.de/, http://bioinf.cs.ucl.ac.
uk/psipred/, http://cathdb.info/search/by_sequence, https://inga.bio.unipd.it/, https://issubmission.sjtu.edu.cn/netgo/, http://ekhidna2.biocenter.helsinki.fi/

sanspanz/, https://kiharalab.org/pfp.php.
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2.3 | Outputs

Pannzer predicts short descriptions (DE), GO-terms, gene
names, EC classes and KEGG pathways. The web server
produces nested tables for browsing (Figure 2) and a tab-
ular format for downloading. PANNZER returns Positive
Predictive Value, PPV, as a reliability estimate. PPV esti-
mates the probability of the annotation being correct.
Here, correct descriptions are a short TF-IDF distance
(see15) from the most precise terms in the ground truth
as given by the Uniprot database. The Uniprot database
only reports the most specific terms of a protein, leaving
out the implicit parent terms. Pannzer predictions for a

query protein are targeted to these biologically most
informative GO terms. Note that our definition of correct
annotations differs from the probability of class member-
ship of any and all GO classes in the GO hierarchy,
which is evaluated, for example, in CAFA.21,23,24

2.4 | Web server

PANNZER2 provides a fast, publically accessible web
server for functional annotation.22 PANNZER2 uses
SANSparallel for high-performance homology searches,
making bulk annotation based on sequence similarity

FIGURE 2 Output of Pannzer web server for test case. This view is for browsing; users can also download the results in a parseable

format. Upper part: Nonredundant result obtained using default parameters presents a filtered view. Bottom: sequence neighborhood opens

on clicking the “Search” link. Lower part: Result with parameter settings “show only one DE” off and “show only non-redundant GO terms”
off. This view shows alternative predictions ordered by reliability. Inset: GO hierarchy plotted with QuickGO (https://www.ebi.ac.uk/

QuickGO/slimming)
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practical. It accepts query sets up to 100,000 protein
sequences. Its throughput exceeds 1 M query sequences
per day, roughly corresponding to 200 bacterial genomes
or 10 eukaryotic transcriptomes. The results can be either
downloaded for local post-processing or browsed via a
web application. PANNZER2 outputs both GO and DE
predictions. The web server front-end provides links to
homology search results for each query sequence,
enabling users to see how predictions were derived.

2.5 | Software

PANNZER2 is implemented in a Python framework
called SANSPANZ. The SANSPANZ framework frees
method developers from data management, as homol-
ogy searches and fetching metadata can be delegated to
remote servers, though it is also possible to install the
servers locally. The framework includes “functors” per-
forming computations on data frames. For example,
SANSPANZ includes implementations of the scoring
functions from ARGOT,16 BLAST2GO32 and
PANNZER,15 as well as hypergeometric enrichment
and best informative hit. Novel application workflows
are implemented by chaining “functors” one after
another. PANNZER215 and AAI-profiler for taxonomic
profiling33 are fully integrated into SANSPANZ, while
LazyPipe for virus identification34 is partly built on
it. SANSPANZ is open source (http://ekhidna2.
biocenter.helsinki.fi/sanspanz/#tab-2).

2.6 | Data servers

Both the SANSparallel server and DictServer are
maintained by our group. The SANSparallel server takes
a protein sequence as input and returns a list of similar
sequences from the Uniprot database. Both GO annota-
tions and free text descriptions are gathered for each
search result by calling the DictServer. The DictServer is
a store of key/value pairs. The servers work locally as a
client–server or they can be accessed remotely via CGI.
We keep a local copy of the databases used by PAN-
NZER2 (Appendix A). The databases are updated on a
regular schedule, ensuring that predictions benefit from
new data. Our database update cycle is synchronized
with the bimonthly new releases of the Uniprot data-
base. The Uniprot database is mirrored from EBI, inde-
xed and imported to the SANSparallel server. GOA
annotations, the GO structure and taxonomy lists are
downloaded and imported to the DictServer with rec-
omputed background statistics for DE and GO enrich-
ment analysis.

3 | RESULTS

3.1 | Case study 1: data conflicts

Database annotations have varying quality. Here, we
have deliberately chosen an example, which does not run
smooth in Pannzer analysis. The example is a predicted
L-galactonate dehydratase-like protein from the cork oak
(Quercus suber) genome assembly CorkOak1.0.35 The pro-
tein sequence (Appendix B) was submitted to the Pan-
nzer web server (Figure 2). Clicking the “search” link in
the web server output calls the SANSparallel server and
displays the sequence neighborhood on which the predic-
tions are based. Surprisingly, the sequence neighborhood
consists of proteins from unexpected taxa: they are all
fungi. This is not an isolated case, either. Taxonomic pro-
filing by PANNZER2's companion tool, AAI-profiler,33

shows that 21% of the proteins predicted from the cork
oak genome have a closest match in fungi. The proteome
is 97% complete with respect to BUSCO's single-copy
ortholog set for Ascomycota and 96% complete with
respect to that for eudicots.36 We conclude that the cork
oak genome assembly includes a fungal co-isolate.

Gene names and descriptions are free text. Pannzer
applies spam filters and clustering to identify informative
entries with the most support in the data. The gene name
is identified as lgd1 (Figure 2, column 2). This gene was
first characterized in Trichoderma reesei and shown to
convert L-galactonate to 2-dehydro-3-deoxy-L-galactonate
and to be required for growth on D-galacturonate.37 lgd1
occurs eight times in the sequence neighborhood; all
other gene names are unique genomic locus identifiers
typified by the use of underscores (these are ignored).
Free text descriptions fall into three clusters (Figure 2b,
column 3). The alternative descriptions represent differ-
ent levels of evolutionary classification. Galactonate
dehydratase is a subgroup of the mandelate racemase/
muconate lactonizing (MR/MLE) family, which in turn
belongs to the broad, functionally diverse enolase super-
family.38 L-galactonate dehydratase is the preferred
description based on sequence similarity weighting. The
MR/MLE family and enolase superfamily annotations
are based on InterPro profile matches.5 Phylogenetic
analysis confirms that our test example is firmly embed-
ded in the L-galactonate dehydratase subgroup
(Figure 3).

The second surprise is that, at first glance, the
predicted description and predicted GO classification
contradict each other (Figure 2, column 3 vs. column 5).
L-galactonate dehydratase activity is a sister class of the
predicted L-fuconate dehydratase activity in GO's molec-
ular function ontology. The GO prediction has high con-
fidence, because 97 of 100 entries in the sequence
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neighborhood are annotated with L-fuconate dehydratase
activity. Perusal of the literature shows that neither of
these predictions is wrong.

L-galactonate dehydratase (gaaB) and L-fuconate
dehydratase (fucD) are promiscuous, accepting both L-
fuconate and L-galactonate as substrate.39,40 L-Galactonate
and L-fuconate have a similar chemical structure; the only
difference is that L-fuconate has no hydroxyl group at the
C6. The source material for Pannzer's GO predictions con-
sisted solely of annotations automatically inferred using
Interpro2GO. The experimentally characterized proteins
fall outside the sequence neighborhood of our test exam-
ple, which was restricted to 100 hits. The GO annotations
for the Lgd1 protein are inferred from direct assay (IDA) as
carbonate dehydratase activity and D-galacturonate cata-
bolic process, a descendant of carboxylic acid catabolic pro-
cess (cf. Figure 2b, column 4). These annotations have not
propagated as far in the database as the gene name or
description, which were picked up by Pannzer.

L-fuconate catabolism has not been demonstrated in
fungi.39 Accordingly, if the taxonomic branch specific GO
filter for fungi is activated in Pannzer, L-fuconate
dehydratase activity is not reported and the parent term
hydro-lyase activity becomes the top prediction and also
the KEGG pathway prediction (Figure 2, column 7) drops
away. Here, the taxonomic filter is set to fungi based on
the previous taxonomic observations.

PANNZER results presented on the web page
(Figure 2) are hyperlinked to sequences, metadata, and
sequence databases with further links to literature. This
facilitates tracking down the origins of unexpected results
as illustrated here.

3.2 | Case Study 2: comparison of results
by AFP methods

Our second example represents results from various web
servers for a query sequence KAG7012684.1 (Appendix
B). This is a ribosomal protein from a recently sequenced
pumpkin genome (GenBank date 16-JUN-2021).41 This
should be clearly an easy case for AFP methods, as
(a) there are several reasonably well annotated plant
genomes available and (b) ribosome is well annotated
across species. So here we look what different methods
report in quite a trivial case. All the compared AFP
methods of Table 1 have been among the top 10 in CAFA
competitions. In addition, we tested also eggNOG,14 a
popular annotation tool. The results (Table 2) also
include the naïve model. The naïve model does not use
any information on the sequence. It simply reports the
frequency of each GO term in the whole database.

The results show different behavior of methods:
PANNZER,22 ARGOT16 and PFP42 report a group of

FIGURE 3 Phylogenetic tree of

example test sequence (red) with seed

sequences of the L-galactonate

dehydratase (green) and L-fuconate

dehydratase (yellow) subgroups of

SFLD.58 Tree generated by MAFFT,59

displayed in iToL60
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informative GO term as their top predictions. These are
linked to ribosomal RNA binding and to ribosome as
expected. By default, PANNZER shows a non-redundant
list of GO terms; without the GO filtering, it also shows
parent or child terms of the strongest predictions.
FunFam12 maps the query sequence to superfamilies,
which include functionally diverse members. FunFam
predictions included mRNA 30/50-UTR binding and
ubiquitin ligase binding activities, as well as the rather
ubiquitous Protein Binding. EggNOG14 surprisingly did
not predict any GO classes. INGA43 reports a bag of GO
classes with the same score. NetGO10,44,45 shows different
behavior from other methods. NetGO is most confident
in predicting the root class and classes close to root
resembling, in some ways, the naïve model. Indeed,
NetGO uses the naïve model as one of its information
sources. This kind of result ranking will improve perfor-
mance in CAFA competitions, when the evaluation is
done with traditional evaluation metrics. These near root
classes convey, however, little information to end users.
NetGO was actually the clear winner, with some evalua-
tion metrics, in the recent CAFA3 competition.23 Our dis-
cussion covers this topic more in detail. Altogether, these
results illustrate how different methods find and empha-
size different GO terms.

4 | DISCUSSION

Managing a comprehensive annotation pipeline involves
keeping databases up-to-date and ensuring that growing
disk space and memory requirements are met. This has
made public web servers convenient and popular for
annotation. PANNZER can be used via a web server or
installed locally with programmatic access to our group's
data servers. The benefits of PANNZER include its high
throughput, which has allowed users to run a large col-
lection of genomes in pangenome projects and sequence
collections from metagenome or transcriptome projects.
PANNZER also generates independently DE and GO pre-
dictions. Time-consuming manual curation can focus on
contradictory or borderline predictions and checking if
they can be confirmed. Current weaknesses include the
lack of alternative information sources, like protein–
protein interaction data or gene expression data. Notice
that these are difficult to apply, when we are studying a
novel genome. Large enough collections of interaction
data and gene expression data are mostly available for
model organisms and other well-studied organisms. So,
the analysis should first map the query sequence to a
similar sequence in the interaction database, for example,
after which it can process the actual interaction data.

TABLE 2 Rank of MF predictions by web servers for novel 60S ribosomal protein L5

GO class naive ARGOT FunFam INGA NetGO
PANNZER
filtered

PANNZER
unfiltered PFP Description

GO:0003674 1 1 1 molecular_function

GO:0005198 40 1 3 4 + structural molecule
activity

GO:0003735 49 2 3 1 3 2 3 1 ++ structural
constituent of
ribosome

GO:0005488 3 1 2 9 + binding

GO:0005515 96 1 7 ++ protein binding

GO:0097159 4 1 5 8 ++ organic cyclic
compound binding

GO:1901363 5 1 5 7 5 ++ heterocyclic
compound binding

GO:0003676 7 1 8 6 4 +++ nucleic acid
binding

GO:0003723 37 4 4 1 8 5 ++++ RNA binding

GO:0019843 137 3 1 8 2 2 +++++ rRNA binding

GO:0008097 1229 1 2 1 8 1 1 3 ++++++ 5S rRNA
binding

Note: The NCBI identifier of the query sequence is KAG7012684.1. Subclasses in GO hierarchy are shown by indentation, padded by “+.” Nonredundant
subsets of predictions are bold. Top 10 classes above reliability threshold by any AFP method are included, with the exception of FunFam which had an

aberrant profile. Ranks 1–3 are shaded. We show two versions of PANNZER, with and without the filtering of redundant GO terms. FunFam GO terms were
ranked by the number of annotations in the top family.
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Fortunately, there is currently research on this topic.46–48

Furthermore, various profile alignment based features,
like protein domains and sequence motifs, are expected
to be useful for function prediction. These two sources
are currently missing from PANNZER. We are, however,
currently working on these data sources. In addition, the
recent surge of structural models49,50 should rekindle
research into specificity determining residues.51,52

AFP method development and publishing require
that the results from various AFP methods are compared
and evaluated. PANNZER selects a more informative
level from the GO tree than many competing methods
(see Table 2 for example). Comparison of AFP methods
also requires that we have established a ground truth,
that is, suitable evaluation datasets that contain
sequences with known function. The case study illus-
trated that defining the known function can be a precari-
ous business. The current datasets have practically only
knowledge that a protein has a certain function. We can
rarely state that a protein does not have a certain func-
tion. This is often referred as the positive—unlabeled
learning task. This problem is further heightened by
some very vague annotations that sequences can have in
the databases, like Protein Binding. Any more precise
annotation would be assessed as a wrong prediction.53

Notice that also the biologically correct function predic-
tions will be evaluated as bad predictions, if this function
is absent from the evaluation dataset. Other researchers
have looked at these research questions in detail.54 When
the evaluation dataset has mostly annotations with very
broad unspecific classes, it is better for AFP methods not
to predict specific functions but rather broad and vague
classes. This is why we have used our own evaluation
datasets, with detailed annotations, parallel with the pop-
ular CAFA evaluation datasets.22 Our gold standard has
been a set of GO-annotated sequences, selected from the
UniProt database. We especially required that (a) each
sequence has at least one manually curated GO annota-
tion, (b) these GO annotations must occur in small infor-
mative GO classes, (c) sequences should not have strong
sequence similarities (see22). We have been able to show
that PANNZER shows good performance especially when
the evaluation dataset contains detailed information on
functions.

The evaluation metric compares the generated predic-
tions to known correct functions. The selection of this
metric for a hierarchical classification like GO is not triv-
ial and it has a strong effect on the results: ranking of the
methods varies drastically between different metrics.20,55

This has been shown also outside the bioinformatics
field.56,57 Our recent work used simulated data to show
that some evaluation metrics fail to separate different
amounts of error in the predictions.19 Furthermore, some

used evaluation metrics ranked earlier discussed naïve
model, among the best predictions. This will lead to situ-
ation where the field is promoting methods that predict
quite uninformative results. This can be corrected by
using more advanced metrics, like weighted Jaccard cor-
relation (SimGIC), term-centric AUCPR, etc.; these met-
rics and further alternatives are explained in Reference
19. We propose that AFP researchers would demonstrate
the results on several evaluation datasets and would use
mainly evaluation metrics that are insensitive to biases in
class sizes.
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APPENDIX A: DATA SOURCES USED BY PANNZER2

Data URL

Uniprot ftp://ftp.ebi.ac.uk/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_{sprot,trembl}.
fasta.gz

Taxonomy https://www.uniprot.org:443/taxonomy/?query=*&compress=yes&format=tab

GO assignments ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/goa_uniprot_all.gaf.gz

GO cross-mappings http://geneontology.org/external2go/{ec,kegg}2go

GO structure http://geneontology.org/ontology/go-basic.obo
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APPENDIX B: TEST SEQUENCES USED IN
THIS WORK

>KAG7012684.1 60S ribosomal protein L5, partial
[Cucurbita argyrosperma subsp. argyrosperma]

MNSPFLELTASMFAFAKAQKTKAYFKRYQVKFKR
RREGKTDYRARIRLINQDKNKYNTPKYRIVVRFSNKDI
TAQIISASIAGDLVLASAYSHELPRYGLEVGLTNYAAA
YCTGLLLARRVLKQLEMDDEYEGNVEATGEDYSVE
PADTRRPFRALLDVGLLKTTTGNRVFGALKGALDGG
LDIPHSDKRFAGFSKDSKQLDADVHRKYIYGGHVAAY
MRTLMEDEPEKYQTHFSEYIKKGIEADDIEGLYKKVH
AAIRADPSVKKSDKPQPKAHKRYNLKKLTYDERKARL
VERLNALNSAANADDDDDDEDDE

>XP_023870721.1 L-galactonate dehydratase-like
[Quercus suber]

MVLITHATTRDVRFPTSLDKTGSDAMNAAGDYSA
AYVMLHSDTSHTGHGMTFTIGRGNEIVCKAISVLAQ
RVEGKQLEDLVADWGKTWRYLVSDSQLRWIGPEKG
VIHLALGAVVNAIWDLWAKVLGKPVWRIVAEMSPQE
FVRCIDFRYITDAITPEEAISMLEKEEAGKAQRIKEAE
QNRAVPAYTTSAGWLGYGEAKMKGLLEETLAKGYK
HFKLKVGTSLEADKQRLAIARDVIGYDNGNVLMVDA
NQVWSVPEAITYMKELARFKPWFIEEPTSPDDVFGH
KAIREALKPYNIGVATGEMCQNRVMFKQLIVQGAIDV
CQIDACRIGGVNEVMAVMLIAKKYGVPIVPHSGGVGL
PEYTQHLSTIDYVVVSGKLSVLEYVDHLHEHFLHPSII
ESGYYVTPTMPGYSVEMKAESMEQYEFPGTEGVS
WWRSAQAKGILEGEKI
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