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Circulating Free Fatty Acid and
Phospholipid Signature Predicts
Early Rapid Kidney Function
Decline in Patients With Type
1 Diabetes

Diabetes Care 2021,44:2098-2106 | https://doi.org/10.2337/dc21-0737

OBJECTIVES

Patients with type 1 diabetes (T1D) exhibit modest lipid abnormalities as mea-
sured by traditional metrics. This study aimed to identify lipidomic predictors of
rapid decline of kidney function in T1D.

RESEARCH DESIGN AND METHODS

In a case-control study, 817 patients with T1D from three large cohorts were ran-
domly split into training and validation subsets. Case was defined as >3 mL/min/
1.73 m? per year decline in estimated glomerular filtration rate (eGFR), while con-
trol was defined as <1 mL/min/1.73 m? per year decline over a minimum 4-year
follow-up. Lipids were quantified in baseline serum samples using a targeted
mass spectrometry lipidomic platform.

RESULTS

At individual lipids, free fatty acid (FFA)20:2 was directly and phosphatidylcholine
(PC)16:0/22:6 was inversely and independently associated with rapid eGFR
decline. When examined by lipid class, rapid eGFR decline was characterized by
higher abundance of unsaturated FFAs, phosphatidylethanolamine (PE)-Ps, and
PCs with an unsaturated acyl chain at the sn1 carbon, and by lower abundance of
saturated FFAs, longer triacylglycerols, and PCs, PEs, PE-Ps, and PE-Os with an
unsaturated acyl chain at the snl carbon at eGFR =90 mL/min/1.73 m2. A multili-
pid panel consisting of unsaturated FFAs and saturated PE-Ps predicted rapid
eGFR decline better than individual lipids (C-statistic, 0.71) and improved the C-
statistic of the clinical model from 0.816 to 0.841 (P = 0.039). Observations were
confirmed in the validation subset.

CONCLUSIONS

Distinct from previously reported predictors of GFR decline in type 2 diabetes,
these findings suggest differential incorporation of FFAs at the snl carbon of the
phospholipids’ glycerol backbone as an independent predictor of rapid GFR
decline in T1D.

Diabetes is the leading cause of kidney failure in the U.S. and many parts of the
world. Prevention of diabetic kidney disease (DKD) progression requires identification of
high-risk patients at an early stage when the preventive strategies may provide the
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opportunities for preservation of kidney
function. Historically, assessment of kidney
function in clinical care of DKD has been
limited to estimated glomerular filtration
rate (eGFR) and urine albumin excretion,
which have limited accuracy and predictive
power early in diabetes when kidney func-
tion is normal. With the evolution of preci-
sion medicine and the application of
high-throughput data-generating platforms,
interrogation of molecular interplays is a
promising approach to address this chal-
lenge. As such, some recent studies have
identified the predictive role of inflamma-
tory markers in renal function decline that
are shared in both type 1 (T1D) and type
2 diabetes (T2D) (1-5).

Alteration of lipid metabolism is an
integral manifestation of diabetes. In an
earlier study, we showed that alterations
of circulating free fatty acids (FFAs), acyl-
carnitines (ACs), and glycerolipids were
significantly linked to transcriptional regu-
lators of de novo lipogenesis and mito-
chondrial B-oxidation, suggesting a role
for upregulation of de novo lipogenesis
and impaired B-oxidation in DKD progres-
sion in T2D. In T2D, such lipid alterations
are partly mediated by insulin resistance,
which leads to upregulation of acetyl-
CoA carboxylase, a key promoter of de
novo lipogenesis (6). Because patients
with T1D with normal kidney function
and body weight are likely insulin sensi-
tive, we anticipated that the lipidomic
predictors of DKD progression in T1D
would differ from those in T2D. We
hypothesized that a unique pattern of cir-
culating FFAs, ACs, and glycerophospholi-
pids would discriminate the rapid from
slow decliners of GFR in T1D and that this
pattern is different from that in T2D.

RESEARCH DESIGN AND METHODS
Cohorts

Cohort design and sample selection are
presented elsewhere (7). In brief, 817
patients with a history of T1D and avail-
able fasting plasma samples were selected
from three established cohorts, including
the Steno Diabetes Center Copenhagen
study (Steno, n = 398), the Epidemiology

of Diabetes Complications study (EDC, n =
139) and the Coronary Artery Calcification
in Type 1 Diabetes study (CACTI, n = 281),
and were randomly split in to training and
validation subsets, aimed at validating the
findings of the training subset (Supplementary
Fig. 1). Samples were gathered from
participants examined between 1995
and 2011 and stored at —80°C. Inclu-
sion criteria were eGFR =30 mL/min/
1.73 m2 at baseline, follow-up of at
least 4 years, at least 3 longitudinal
eGFR measurements, and baseline
plasma sample availability. Rapid decline
of eGFR (case group) was defined as an
annual decline in eGFR =3 mL/min/1.73
m2, and slow decline (control group) was
defined as having no decline or <1 mL/
min/1.73 m2 annual decline in eGFR.

Lipids Studied

Using plasma samples obtained at base-
line, we applied an untargeted lipidomic
platform to identify the lipid classes
with the highest number of differentially
quantified lipids between the slow and
rapid eGFR decliners using previously
published methods (6,8,9). Next, using a
targeted lipidomic platform, we quanti-
fied 324 lipids, including free fatty acids

(FFAs, n = 13), lysophosphatidylcho-
lines (LPCs, n = 16), sphingomyelins
(SMs, n = 14), phosphatidylcholines
(PCs, n = 59), triacylglycerols (TAGs,

n = 65), diacylglycerols (DAGs, n = 10),
cholesteryl esters (n = 11), phosphati-
dylethanolamines (PEs, n = 40), PE-Os
(PE with alkyl ether substitute at sn-1
carbon of the glycerol backbone, n =
21), PE-Ps (PE with alkenyl ether substi-
tute at sn-1 carbon, n = 46), and ACs
(n = 29) (Supplementary Table 1), using
previously described mass spectrometry--
based quantification methods (6,8-11),
with details described in the Supplementary
Materials and Methods.

Statistical Methods

We used mean + SD and count with rela-
tive frequency (%) to describe normally
distributed continuous and categorical vari-
ables, respectively. When describing skewed
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variables, we used median and interquartile
range. We applied the Student t test to
compare normally distributed continuous
variables, the Kolmogorov-Smirnov test to
compare skewed continuous variables, and
the x? test to compare categorical variables
between two groups. We applied an esti-
mation maximization algorithm using the
patients’ characteristics and laboratory val-
ues for imputation of clinical covariates,
which imputed 15% of the missing data on
background variables.

After quantification, the lipids were
intraclass sum normalized, logit trans-
formed, and z-score standardized for
downstream analyses. To identify the
top differentially measured lipids, we
applied a compound-by-compound t
test with false discovery rate correction
using the Benjamini-Hochberg proce-
dure (12). We applied principal compo-
nent analysis (PCA) to reduce the
number of lipids of the FFA, TAG, PC,
PE, PE-O, PE-P, and SM to subclasses
using orthogonal varimax rotation. The
rationale for use of PCA was to build sec-
ondary variables with increased coverage
of total variance predictive power com-
pared with that of individual lipids as
well as to decrease multiplicity and false
discovery (6,8,13).

To identify independent lipidomic pre-
dictors of rapid eGFR decline, we
used separate logistic regression models
including 1) top differentially regulated
lipids that were validated in the valida-
tion subset as predictors, and 2) principle
components as predictors. Both models
were built without and with adjusting for
clinical variables (age, sex, race, duration
of diabetes, history of hypertension, use
of antihypertensive and lipid-lowering
medications, baseline hemoglobin A,
[HbA;.], eGFR, and albumin-to-creatinine
ratio [ACR]), with deletion of nonsignifi-
cant covariates in the adjusted models.
We compared the C-statistic of a panel
of lipids predicting rapid decline when
added to clinical variables and replicated
the finding in the validation subset with
coefficients that were developed in the
training subset using the Wilk likelihood
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ratio test to prognostic gain. Subgroup
analysis was performed by categories of
eGFR and albuminuria (ACR cutoff of 30
mg/g). In a subgroup analysis, we com-
pared the alteration of lipid factors by
eGFR categories and their interaction
terms using a two-way ANOVA and the
likelihood ratio tests in both the training
and the validation subsets. We compared
the abundance of lipid factors in rapid
versus slow decliners of eGFR stratified
by eGFR categories in both the training
and the validation subsets. We used a lin-
ear mixed model to test the significance
of lipid alteration in fast eGFR decline by
eGFR categories. Statistical analyses were
performed separately on both the train-
ing and validation subsets. Using a meta-
analysis, we showed the pooled effect
of alterations in lipid factors associ-
ated with rapid eGFR decline.

RESULTS

Baseline Characteristics

Overall, the distribution of baseline char-
acteristics in both the training and the
validation subsets were comparable. In

the training subset, rapid eGFR decliners
were younger, had a higher baseline
eGFR, and were more likely to have a
urine ACR >30 mg/g, a pattern that was
replicated in the validation subset (Table
1). In the validation subset, the rapid
decliners were younger and more likely
to be women, White, have hypertension,
higher baseline eGFR, and use an ACE
inhibitor at baseline. The rest of the base-
line clinical characteristics were not signif-
icantly different between the rapid and
slow eGFR decliners in the two subsets.

Compound-by-Compound Analysis

The median and interquartile range of
the lipids (in micromoles per liter) in
rapid and slow decliners in the entire
subsets as well as stratified by eGFR cat-
egories and presence or absence of
albuminuria (urine ACR>30 mg/g) in
both the training and validation subsets
are shown in Supplementary Table 2. In
total, 47 lipids were significantly differ-
ent between the rapid and slow
decliners, passed the false discovery
rate threshold of <0.05 in the training
set, and were replicated in the
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validation subset based on a univariate
compound-by-compound analysis (Supplem-
entary Fig. 5). The top 10 are shown in Fig.
1A. Plasma concentrations of FFA(20:2),
FFA(24:3), and FFA(18:2) were higher at
baseline in rapid decliners, and plasma
concentrations of other complex lipids
were lower compared with slow decliners.
Unadjusted logistic regression models
showed each 1-SD higher concentration of
FFA(20:2), FFA(24:3), or FFA(18:2) was asso-
ciated with significantly higher odds of rapid
decline (P < 0.0003) in the training subset,
an observation which was replicated in the
validation subset (P = 0.007) (Fig. 1A). In
contrast, each 1-SD higher concentration of
other complex lipids was associated with
lower odds of rapid decline. After adjusting
for age, sex, duration of diabetes, baseline
mean arterial pressure, HbA,. levels, eGFR,
and ACR, the significant association of most
lipids with rapid decline disappeared or
decreased toward null. Only FFA(20:2), FFA
(24:3), and FFA(18:2) continued to remain
associated with a significantly higher odds
of fast progression and PE(P-18:0/20:5),
cholesteryl ester(20:5), PC(16:0/22:6), PE
(P-18:1/20:5), and PC(16:0/20:5), with a

Table 1—Comparing baseline characteristics of slow and rapid decline of eGFR in patients with type 1 diabetes in the training

and validation subsets

Training subset

Validation subset

Variables Slow decline (n = 284) Fast decline (n = 123) Slow decline (n = 283) Fast decline (n = 127)
Age, years 47 + 13 39 + 12* 46 + 13 41 + 11*
Male sex 152 (53.5) 57 (46.3) 156 (55.1) 46 (36.2)*
White race 281 (98.9) 119 (96.7) 278 (99.3) 118 (93.7)*
Duration of diabetes, years 29 + 14 26 + 11 28 + 13 28 + 11
Height, m 1.72 £ 0.09 1.72 £ 0.08 1.73 £ 0.09 1.71 £ 0.09
Weight, kg 76 + 16 77 + 15 77 + 15 73 + 15
BMI, kg/m2 256 £ 4.1 26.1 £ 43 25.8 £+ 3.8 25.8 + 4.8
Smoking 39 (13.7) 28 (22.8) 34 (12.0) 19 (15.0)
Blood pressure, mmHg

Systolic 128 + 19 125 + 19 126 + 18 127 + 20

Diastolic 75 + 10 76 + 10 75 + 10 76 + 11
Hypertension 88 (31.0) 48 (39.0) 72 (25.4) 61 (48.0)*
Proliferative retinopathy 158 (55.6) 58 (47.2) 151 (53.4) 67 (52.8)
Use of ACE inhibitors 96 (33.8) 45 (36.6) 70 (22.7) 48 (37.8)*
Use of lipid-lowering agents 39 (13.7) 17 (13.8) 39 (13.8) 13 (10.2)
HbA;., % 84+10 86+16 83+09 87+15
eGFR, mL/min/1.73 m? 89 + 19 100 + 27* 89 + 18 98 + 27*
AeGFR, mL/min/year 0.6 +1.7 —4.9 + 2.2* 0.8+19 —6.0 + 7.2*
Urine ACR >30 mg/g 63 (22.2) 60 (48.8)* 64 (22.6) 63 (49.6)*
eGFR categories

=90 mL/min/1.73 m? 139 (48.9) 83 (67.5)* 142 (50.2) 86 (67.7)*

60-89 mL/min/1.73 m? 131 (46.1) 29 (23.6) 129 (45.6) 29 (22.8)

<60 mL/min/1.73 m* 14 (4.9) 11 (8.9) 12 (4.2) 12 (9.4)

Data are presented as mean + SD or n (%). *Statistical significance of P < 0.01 when comparing fast vs. slow decline subgroups.
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Figure 1—A: The top 10 lipids with differential levels in patients with fast vs. slow progression of kidney disease in the training set and replicated in
the validation set. Mean change is shown as standardized mean difference. Logistic regressions (LR) are unadjusted or adjusted univariate models
for each one lipid at a time, but listing all of the covariates listed below. B: Individual lipids predictors of fast progression independent of the top
seven significant validated lipids are shown unadjusted and adjusted with clinical covariates. Adjustment was for age, sex, race, duration of diabe-
tes, hypertension, use of ACE inhibitor or angiotensin receptor blocker, use of lipid-lowering agents, baseline mean arterial pressure, HbA,., eGFR,
and urine ACR. CE, cholesteryl ester; FDR, false discovery rate; OR, odds ratio.

significantly lower odds of fast progression
for each 1-SD increase in their levels both
in the training and the validation subsets
(Fig. 14).

Next, we used a multiple logistic
regression model that included all three
FFAs and five complex lipids associated
with fast progression in both the train-
ing and validation subsets independent
of clinical covariates. Only FFA(20:2) and
PC(16:0/22:6) remained significantly asso-
ciated with fast progression independent
of the other lipids, so that each 1-SD
increase in FFA(20:2) was associated with
a 1.65-fold higher odds of fast progres-
sion (95% Cl 1.28-2.12; P < 0.0001), and
each 1-SD increase in PC(16:0/22:6) was
associated with a 0.69-fold (95% CI
0.55-0.87; P = 0.001) lower odds of
rapid decline. After adjusting for clinical
covariates, these values were 1.54 (95%
Cl 1.16-2.05; P = 0.003) and 0.74 (95%
Cl 0.56-0.97; P 0.028), respectively.
Similarly, each 1-SD increase in FFA(20:2)
in the validation subset was associated
with a 1.54-fold higher odds of rapid
decline (95% ClI 1.21-1.95; P = 0.0004),
and each 1-SD increase in PC(16:0/22:6)
was associated with 0.61-fold (95% CI
0.49-0.76; P < 0.0001) lower odds of
rapid decline. After adjusting for clinical

covariates, these odds remained significant
at 1.36 (95% Cl 1.03-1.79; P = 0.029) and
0.68 (95% Cl 0.52-0.90; P 0.006),
respectively (Fig. 1B).

PCA

We reduced the lipids to secondary var-
iables composed of primarily saturated
versus unsaturated FFAs, AC =12 car-
bons versus =14 carbons, shorter TAGs
versus longer TAGs, and saturated com-
plex phospholipids at the snl carbon
versus unsaturated complex phospholi-
pids at the snl carbon (Supplementary
Fig. 6). Using multiple logistic regression
models adjusted for clinical covariates,
we found that each 1-SD decrease in
saturated FFAs and increase in unsatu-
rated FFAs was independently associ-
ated with rapid eGFR decline (Fig. 2A).
Neither the short nor the long ACs were
inversely associated with rapid decline
(Fig. 2B). An abundance of longer TAGs
was inversely and independently associ-
ated with rapid decline (Fig. 2C). Each
1-SD increase in unsaturated snl PCs
(PCs with an unsaturated acyl at the
snl carbon) and unsaturated sn1 PE-Ps,
and each 1 SD decrease in saturated
snl PCs, snl PEs, snl PE-Ps, and snl
PE-Os was associated with higher odds

of DKD progression independent of clin-
ical covariates (Fig. 2D—F).

Using a multilipid panel, defined as
12 principal components (Fig. 2A—F) in a
logistic regression model, we found
unsaturated FFAs and saturated snl PE-
Ps were associated with rapid decline
independent of other lipids (Fig. 2G and
H). In the training set, each 1-SD increase
in unsaturated FFA was associated with
1.41-fold higher odds of rapid decline
(95% ClI 1.09-1.82; P = 0.008), and each
1-SD increase in saturated snl PE-P (the
main effect variable) was associated with
0.45-fold lower odds of rapid decline
(95% ClI 0.32-0.63; P < 0.0001).

Alteration of Lipid Factors by
Albuminuria and Categories of eGFR
Overall, the lipid alterations were not
different by the presence or absence of
albuminuria in the training or validation
subsets. In addition to stratified analysis
by presence or absence of microalbumi-
nuria, all of the downstream models
were adjusted by ACR. In the training
subset, although FFAs and ACs did not
differ significantly in the rapid or slow
decliners by eGFR categories (Fig.
3A-D), the rapid decliners at eGFR =90
mL/min/1.73 m?> had a higher
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Figure 2—A—F: Odds of eGFR decline by each 1-SD difference in the level of the corresponding lipids in single-lipid panels using multiple logistic
regression models adjusted for baseline eGFR, urine album-creatinine ratio, HbA,, age, sex, race, duration of diabetes, hypertension, and use of
ACE inhibitor and lipid-lowering agents, with elimination of nonsignificant covariates from the model, and interaction of the lipid with eGFR categories. G
and H: Odds of eGFR decline by each 1-SD difference in a multilipid panel using multiple logistic regression with a main effect of saturated PE-P and inter-
action effects of saturated PE-P and unsaturated FFA by eGFR categories with eGFR =90 mL/min/1.73 m? as the reference category. OR, odds ratio.

abundance of unsaturated FFAs (P <
0.001) (Fig. 3B) and a relatively lower
abundance of phospholipids containing
a saturated acyl chain at the snl carbon
(P < 0.001) (Fig. 3G and I-K). When the
abundance of lipids in the two groups
of fast and slow decliners was com-
pared by categories of eGFR, we noted
a higher abundance of both shorter
(P < 0.001) (Fig. 3E) and longer (P =
0.007) (Fig. 3F) TAGs in rapid decliners
at lower eGFR categories, while there
were not any significant changes in
TAGs by eGFR decline in slow eGFR
decliners (Fig. 3E and F). Similarly, in
rapid decliners, there was a higher

abundance of saturated snl PCs (P <
0.001) (Fig. 3G), snl PEs (P < 0.001)
(Fig. 3/), sn1 PE-Os (P < 0.001) (Fig. 3J),
and snl PE-Ps (P < 0.001) (Fig. 3K), but
a lower abundance of unsaturated snl
PCs (P < 0.001) (Fig. 3H) and snl1 PE-Ps
(P < 0.001) (Fig. 3L) by worsening cate-
gories of eGFR. There was no significant
difference in the abundance of unsatu-
rated snl PE by eGFR categories. The sig-
nificance of changes in lipid abundance
by eGFR categories was replicated in the
validation subset (Supplementary Fig.
7A-L). When the interaction term of sat-
urated snl PE-Ps by eGFR categories was
tested and compared with eGFR =90

mL/min/1.73 m? as the reference cate-
gory, each 1-SD increase in saturated
PE-P was associated with 2.36-fold higher
odds of rapid decline in patients with eGFR
of 60-89 mlL/min/1.73 m* (95% Cl 1.40-
3.97; P = 0.001) and 10.7-fold higher odds
of rapid decline in patients with eGFR <60
mL/min/1.73 m? (95% Cl 3.02-38.1; P <
0.0003) (Fig. 2G). Similar findings were repli-
cated in the validation subset (Fig. 2H).

System-Based Lipid Alterations

Supplemental Fig 8 illustrates system-
based integrated alterations of individ-
ual lipids by lipid class and by acyl chain
and saturation status in rapid and slow
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Figure 3—A-L: Comparing principal components representative of saturated and unsaturated FFA, AC, TAG, PC, and PE in rapid vs. slow eGFR
decliners stratified by baseline eGFR categories in the training subset. Trend P values of lipids by eGFR categories were <0.001 for shorter TAGs,
0.007 for longer TAGs, and =0.001 for other phospholipids in rapid decliners.

decliners across eGFR categories. In
patients with eGFR >90 mL/min/1.73
m?, rapid decliners exhibited higher
unsaturated FFAs and unsaturated PCs
at the snl carbon but a low abundance
of saturated phospholipids at the snl
carbon. They also showed inverse corre-
lations between unsaturated FFAs and
phospholipids containing a saturated

acyl chain at the snl carbon (P < 0.001)
(Supplementary Fig. 8A). In patients
with eGFR 60-89 mL/min/1.73 m?
rapid decliners exhibited a relatively
higher abundance of saturated FFA and
saturated phospholipids at their snl car-
bon but a lower abundance of unsatu-
rated phospholipids at their sn1 carbon.
They also showed inverse correlations

between unsaturated FFAs and phospholipids
containing saturated acyls at their snl car-
bon (Supplementary Fig. 8B).

Across the entire training subset, satu-
rated lipids from different classes had
highly significant direct correlations with
each other. Similarly, we noticed highly
significant direct correlations between
different classes of unsaturated lipids. In
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contrast, saturated and unsaturated
lipids were significantly and inversely
correlated, a pattern that was repli-
cated in the validation set (Supplementary
Fig. 9A).

Classification

In the training set, the C-statistic of the
FFA(20:2) and PC(16:0/22:6) was 0.610
(95% Cl 0.555-0.664) (Supplementary
Fig. 9B). On the other hand, the C-statistic
of principal component-derived multipanel
lipid factors consisting of unsaturated FFA
and saturated PE-P (Fig. 2G) was 0.707
(95% ClI 0.652-0.763) (Supplementary Fig.
9B). When added to a clinical model with
C-statistics of 0.816 (95% Cl 0.771-0.861),
the full model had an incremental C-statis-
tic up to 0.841 (95% ClI 0.799-0.883) in
the training set (P < 0.0001 compared
with individual lipids, and P = 0.039 com-
pared with clinical model). Using the coef-
ficients developed in the training subset,
we found the incremental C-statistic of the
corresponding model was replicated in the
validation subset (Supplementary Fig. 9B).

CONCLUSIONS

At individual lipids, higher FFA(20:2)
and lower PC(16:0/22:6), also known as
PC(38:6), were independently associ-
ated with higher odds of rapid eGFR
decline. At the class level, higher levels
of unsaturated FFAs, and PCs and PE-Ps
with an unsaturated acyl at the snl car-
bon, and lower saturated FFAs and PCs
and PEs (PE, PE-P, and PE-O) with a sat-
urated acyl at snl were associated with
higher odds of rapid eGFR decline. We
also observed low or unchanged levels
of shorter TAGs and low levels of
longer-chain TAGs in rapid decliners
without any evidence of decrease in
short- or long-chain ACs. When strati-
fied by eGFR categories, rapid decliners
with an eGFR =90 mL/min/1.73 m? had
a higher abundance of unsaturated FFA
and a lower abundance of phospholi-
pids containing saturated snl acyl
chains. Conversely, rapid decliners with
an eGFR of 60-89 mL/min/1.73 m* had
a relatively lower abundance of unsatu-
rated FFAs and a higher abundance of
phospholipids containing saturated snl
acyl chains. With worsening eGFR cate-
gories, rapid decliners showed increased
abundance of longer-chain TAGs and
phospholipids (PC, PE, PE-O, and PE-P)
containing a saturated acyl at the snl
position and decreased abundance of

phospholipids (PC and PE-P) containing
an unsaturated acyl at snl (Supplementary
Fig. 10A).

We also noted that the rapid decliners
were younger. One explanation might be
that younger age was a surrogate of a more
severe disease that started earlier in life and
contributed to faster decline of eGFR in this
age group. Although, lipiduria is a known
complication of nephrotic range protein-
uria or nephrotic syndrome, urinary lipid
loss in microalbuminuria is minimal. In this
study, all patients with albuminuria had
microalbuminuria. Furthermore, multivariate
adjustments by ACR did not alter the associ-
ation of lipids with fast eGFR decline, sug-
gesting that associations were independent
of ACR and microalbuminuria. Dysregulation
of glycerophospholipids in patients destined
to develop T1D precedes the appearance of
islet cell autoantigens, T1D, or kidney dys-
function as diagnosed by eGFR (14-20). For
example, La Torre et al. (14) reported
decreased abundance of PEs and PCs,
including PC(38:6), one of the top two inde-
pendent candidates in our study, in the cord
blood of children who subsequently devel-
oped T1D compared with a control group.
In another study among individuals with
T1D from Denmark, the serum, PC(0-34:2),
PC(0-34:3), SM(d18:1/24:0), SM(d40:1), and
SM(d41:1) were associated with a lower risk
of the combined kidney end points of
=30% decline in eGFR, end-stage kidney dis-
ease, and all-cause mortality (21). All of
these studies observe associations at a single
lipid level, while the current study provides
further insight on lipids at a system biology
level. Overall, the pattern of reduced TAGs
and PCs along with increased polyunsatu-
rated phospholipids associated with T1D
reported by other studies (14-20) is aligned
with our findings where a similar pattern
was associated with eGFR decline.

At the early stage (eGFR >90 mL/
min/1.73 mz) and in the absence of
insulin resistance, increased incorpora-
tion of unsaturated FFAs in construct of
phospholipids at the snl carbon in fast
decliners might be explained by differen-
tial upregulation of phospholipase Al
(PLA1) activity, downregulation of PLA2
activity, or both. Our earlier study in
T2D suggested that upregulation of de
novo lipogenesis and impaired mito-
chondrial B-oxidation mediated by insu-
lin resistance when GFR is >90 mL/min/
1.73 m? might be a putative mechanism
of DKD progression (7). As T1D is charac-
terized by a state of insulin deficiency,
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such a mechanism is unexpected to be
the driving force of DKD progression at
the early stage. In contrast, a relatively
higher abundance of unsaturated FFAs
and polyunsaturated phospholipids with
an unsaturated acyl chain at the sn-1
carbon in rapid decliners suggests intact
elongation and desaturation processes for
FFAs coupled with their use in the construc-
tion of polyunsaturated phospholipids. Circu-
lating TAGs are suppressed as a result
diminished adipose tissue sensitivity to insu-
lin and hence diminished lipolysis (22).
Chronic kidney disease (CKD) progression is
an independent risk factor for insulin resis-
tance (23,24); therefore, with decline of
eGFR, the likelihood of insulin resistance
increases. Increased insulin resistance can
potentially upregulate kidney and systemic
de novo lipogenesis (6), as evidenced by an
increased relative abundance of saturated
FFAs and TAGs in rapid decliners in patients
with eGFR <90 compared with those with
eGFR =90 mL/min/1.73 m? In parallel, a
relatively lower abundance of unsaturated
FFAs and a relatively higher abundance of
phospholipids with saturated acyl chains at
the snl carbon suggests decreased incorpo-
ration of unsaturated FFAs in the construc-
tion of unsaturated phospholipids at the snl
carbon, which may be due to differential
downregulation of PLA2 activity, upregulation
of PLAL activity, or both, in rapid decliners in
the context of worsening insulin resistance
with worsening stage of eGFR category.

The underpinning mechanism of dif-
ferential lipid alterations among rapid
decliners by worsening categories of
eGFR may be explained by graded wors-
ening of CKD-mediated insulin resis-
tance, and altered PLA1/2 activities. At
the early stage when eGFR is =90 mL/
min/1.73 m? and insulin resistance is
minimal, a compensatory upregulation
of elongation and desaturation of fatty
acids and intact or even upregulated
mitochondrial B-oxidation of fatty acids
manifest as relatively lower saturated
fatty acids, higher unsaturated fatty
acids, and their shift in the construct of
polyunsaturated phospholipids. With
CKD stage progression, worsening of
CKD-mediated insulin resistance and
impaired mitochondrial B-oxidation, rel-
ative abundance of saturated fatty acids
and their saturated corresponding phos-
pholipids increase. Early in the course,
diet and hepatic de novo lipogenesis
may be the main sources of saturated
FFAs, but with continued insulin
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resistance, systemic upregulation of de
novo lipogenesis may contribute to fur-
ther insulin resistance.

Insulin resistance causes hypotha-
lamic disruption of satiety and hunger
signals, overconsumption of calories,
and storage of saturated FFAs in adi-
pose tissues. Saturated fatty acids in
adipose tissues recruit macrophages and
promote proinflammatory responses,
which in turn impair insulin signaling in
nonadipose tissues, along with further
release of fatty acids in the blood stream
(25). Sequestration of fatty acids in liver,
kidney, pancreas, skeletal muscle, and
gastrointestinal systems leads to lipotox-
icity, impairment of energy metabolism,
and further progression of kidney dis-
ease (26). Recent reports show that sat-
urated fatty acids can also directly cause
insulin resistance in podocytes (27) and
in tubular epithelial cells (28) and
directly contribute to their impaired
energy metabolism and hence CKD pro-
gression. The clinical implication is that
lipid alteration is dependent on the CKD
stage, and its values should be inter-
preted in the context of the correspond-
ing stage. This explanation is further
supported by lipidomic alterations in
T2D that mimic the patterns observed in
lower eGFR categories in our T1D cohort,
characterized by decreased unsaturated
FFA, long-chain AC, and shorter TAGs,
but increased saturated FFA, longer
TAGs, and unsaturated PEs (Supplementary
Fig. 10B) (6). Such a contrast may be partly
due to the state of insulin deficiency at T1D
and insulin resistance at T2D. The prop-
osed pathophysiology of DKD progression is
shown in Supplementary Fig. 10C.

This study has several strengths. It is a
multicenter observational study from
established cohorts of well-phenotyped
patients with T1D, with a research proto-
col-based high-quality data collection
from multiple cohorts increasing yield of
replication in independent cohorts. The
mass spectrometry-based targeted quan-
tification in multiple reaction monitoring
mode quantified diverse lipids with high
specificity by their molecular characteris-
tics (acyl chain and saturation status) and
furthered pathophysiologic insight to clini-
cal outcome. High resolution with ultra-
sensitive detection led to no missing
data, excellent reproducibility, and mini-
mal batch-to-batch variation. The large
sample size provided adequate power for
most of the analyses, and the availability

of clinical covariates allowed proper mul-
tivariate adjustments. Replication of the
findings in the randomly selected valida-
tion subset confirmed the validity of the
observations.

This study also has limitations. Its
observational nature does not allow
inference of causal effects. Although a
number of studies have shown the detri-
mental kidney effects of saturated FFAs
(especially palmitate) (29-36), lipid
changes in our study likely reflect a
multitude of underpinning mechanisms,
including differential PLA1/2 activities,
elongation, desaturation, lipolysis, and
insulin resistance in fast- versus slow-
progressing DKD and at various stages
of CKD.

The study was underpowered for
subgroup analysis by eGFR categories or
individual cohorts alone. To overcome
this limitation, we tested the interaction
term of lipids by eGFR categories. Up to
14% of the patients were taking lipid-
lowering agents. However, fatty acids
and phospholipids are not the direct
target of these agents, and in absence
of insignificant association with out-
come in adjusted multivariate models,
they are unlikely to have modified the
association of lipids with fast eGFR
decline. Because the cohorts are dis-
tinct, diets are highly likely to be differ-
ent across various cohorts. To minimize
lipid variability attributed to diet, fasting
plasma samples were used.

While providing pathophysiologic insight,
this study suggests that no individual lipid
may adequately represent the complex
interrelationships that define lipid systems
biology. Hence the clinical applicability of
the findings is contingent on feasible quan-
tification of a large array of circulating lipids.
Circulating lipid levels represented the net
effect of systemic alterations of FFA and
phospholipid metabolism, and distinct alter-
ations in individual organs require further
research. In particular, we did not have kid-
ney tissue, and further research investigat-
ing parallel lipid alteration in the kidney
would enhance pathophysiologic under-
standing of the disease process.

In this study, we relied on eGFR to
stratify the patients, which suffers from
lower accuracy compared with mea-
sured GFR (37,38). However, application
of the Chronic Kidney Disease Epidemi-
ology Collaboration equations instead of
the MDRD formula makes the subgroups
less vulnerable to misclassification,
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particularly in the early stage with pre-
served kidney function. Furthermore,
the intraindividual longitudinal alteration
of eGFR, which is used to define rapid
decline, is more likely to reflect a similar
change in measured GFR over time and
less likely to suffer from misclassifica-
tion. Correction of hyperfiltration can
contribute to eGFR decline; however,
stability after hyperfiltration correc-
tion would have precluded their clas-
sification as fast decliners by design
(only those with sustained continuous
decline of eGFR throughout the follow
up were included as fast decliners).

In conclusion, these findings suggest
that DKD progression at the early stage
may involve differential incorporation of
FFAs at the snl glycerol backbone of
phospholipids, pointing to PLA1/2 differ-
ential activities as the underpinning
mechanism, and that a panel of unsatu-
rated FFAs and saturated PE-Ps repre-
senting this mechanism predicts rapid
decline of GFR at the early stage in T1D.
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