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Abstract

The future of radiology is disproportionately linked to the applications of artificial intelligence 

(AI). Recent exponential advancements in AI are already beginning to augment the clinical 

practice of radiology. Driven by a paucity of review articles in the area, this article aims to discuss 

applications of AI in non-oncologic IR across procedural planning, execution, and follow-up 

along with a discussion on the future directions of the field. Applications in vascular imaging, 

radiomics, touchless software interactions, robotics, natural language processing, post-procedural 

outcome prediction, device navigation, and image acquisition are included. Familiarity with AI 

study analysis will help open the current ‘black box’ of AI research and help bridge the gap 

between the research laboratory and clinical practice.
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Introduction

Discussions on the future of radiology are often primarily centered around the revolutionary, 

future impact of artificial intelligence (AI). AI advancements, including the applications of 

machine learning, and more recently, deep learning, constitute a large section of research 

in radiology. It is important to distinguish between AI and machine learning (ML), often 

incorrectly used interchangeably. AI is broadly defined as the science of making intelligent 

machines, using varying techniques including statistical analysis and ML.1 While ML, 

a sub-section of AI, is defined as techniques used to design and train algorithms to 
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learn from available data, and improve its performance.1 The implementation of ML was 

previously limited by the scarcity of high-quality healthcare data. However, the recent 

explosion of digital healthcare data (in terms of clinical data from electronic health records, 

real-time clinical monitoring signals, genetic sequencing, and imaging data) has led to 

large data sets, well-suited for the training of ML algorithms.2–4 These large data sets 

are available to researchers and can be customized to study different topics via a set of 

inclusion and exclusion criteria. Although there are some caveats involved, namely the 

data is usually single-institutional, and the data is not easily accessible to the non-clinician 

researcher. Also, data available for ML algorithms has increased with the advent of genomic 

sequencing, and increased imaging utilization by the healthcare system.5 With research 

advancing at such a staggering pace, review articles have been necessary to inform the 

practicing radiologist about the development of clinically relevant research that allows for 

predictive clinical recommendations and personalized medicine. Increasing utilization of 

complex AI algorithms has also been enabled by the increased availability of inexpensive 

high-performance computing. AI has the potential to transform every step of the clinical 

process including diagnosis, therapeutic decision choice, intra-procedural guidance, and 

follow-up imaging. Work is also advancing in non-interpretive uses of AI in radiology 

including for scanner utilization, workflow, and billing.6,7

Much of the literature in the field of interventional radiology (IR) has centered on 

applications of AI in interventional oncology. These studies (including review articles) 

primarily focus on optimizing patient identification and selecting prognostic predictors of IR 

procedure efficacy for treating cancers.8–13 Research in AI has transformed the prevailing 

paradigm by using large data sets to uncover hidden associations and build predictive models 

that would be very difficult to do via the traditional technique of conducting prospective 

clinical trials. While clinicians are often familiar with the intricacies of logistic regression 

and hazard ratios, AI research has inherent complexity and specialized nomenclature that 

makes it difficult for many clinicians to critically analyze AI literature. Without some 

background, clinicians may be unable to determine the research’s potential utility or clinical 

impact. Also, it can be difficult to explain the functioning of AI methods – they appear to be 

‘black boxes,’14 – and this can further widen the gap between the AI research laboratory and 

clinical practice.

The purpose of this article is to firstly provide an overview and brief definitions of some 

terminology involving ML, including recent advances in the field. Next, applications of AI 

in non-oncologic IR across procedural planning, execution, and follow-up, are described. 

Finally, potential future applications of AI in the field are proposed.

Overview of Machine Learning Concepts

Generalizations about what ML is ‘under the hood’ are sometimes made, comparing it to a 

combination of ‘if-statements’ and fancy statistics. In reality, ML is an umbrella that covers 

many different techniques, and learning is a property that emerges from a combination of 

several disparate branches of mathematics that can vary based on the approach used. The 

usefulness of ML comes from its ability to serve as a tool to solve problems using data 

by having a computer extrapolate patterns from this data, rather than explicitly creating 
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instructions for the machine to follow. Machine learning allows machines to learn how 

to perform tasks that they were not explicitly programmed to execute.15 Applications of 

ML have been incorporated into every major industry since it can revolutionize any task 

involving data analysis/predictions. Some everyday examples include email spam filters, 

social media advertising, image recognition, and fraud detection.

Much of the recent excitement for machine learning has been due to developments in the 

realm of ‘deep learning’ brought on by the promising results neural networks have yielded 

when faced with increasingly abstract tasks. Inspired loosely by our own biology, neural 

networks consist of many ‘neurons’ connected into layers. Each neuron performs a very 

simple computation: a weighted sum followed by an activation function. There are input 

neurons, output neurons, and those neurons in between found in layers called ‘hidden 

layers.’ Neurons in layers adjacent to one another are connected, with each connection 

having a weight. These weights are learned in a training process using data inputs where the 

correct output is known. The input data features propagate through the hidden layers and are 

output by the final layer. The strength of activation of each neuron in this structure is reliant 

on the degree of activation of the neurons in the layer before it., based on their weighted 

sum. When an input passes through a particular layer, it leads to a web of activations in 

these neurons that layer-by-layer propagate through the entire network. At the output layer, 

a final neuron’s activation represents the network’s response to a given input. While each 

neuron is simple, complex behavior arises due to the use of many neurons in many layers. 

It is difficult to explain a network’s exact behavior in response to an input in terms of its 

connection weights. Instead, its performance can be probed in several ways characterizing 

the network’s strengths and weaknesses and the importance of the input features to reduce 

the perception that the network is a black box.16

There are many variants of neural networks, but two of the most currently relevant 

variants are Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

networks (LSTMs). CNNs have revolutionized computer vision,17 and in doing so are more 

broadly applicable to medicine, especially via computer-aided detection (CAD) systems in 

radiology.18 LSTMs networks, on the other hand, are best applied to inputs that vary in 

time such as in natural language processing.19 In the following sections, applications of both 

types of neural networks in IR will be presented.

It is important to understand, however, that whatever reasoning the network generates 

reflects the training data provided to it. The accuracy of the model in completing its assigned 

task is directly related to its training data being complete, unbiased, and representative of 

the testing set. This means that if the data is sparse, then the model itself will be incomplete 

and bound to miss cases that were unlike those included in its training data. Furthermore, 

if the data is biased, then the model will provide answers in line with these biases instead 

of being a reflection of the truth.20 To combat these pitfalls, the training data needs to be 

large and varied to create robust predictions for cases that may be considered fringe while 

keeping itself as generalized as possible. It is also important for researchers to be aware 

of the limitations of their data, and thus only use their trained models for tasks it was 

adequately trained to complete. Used responsibly, ML methods such as neural networks will 

likely revolutionize the healthcare sector in many ways such as allowing for personalized 
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medicine, testing the efficacy of health policies and clinical trials, and integrating clinical 

care with the behavioral determinants of health.21

Overview of AI-led advances of IR interventions:

Radiomics

First described in 2012, radiomics is the high throughput extraction and analysis of 

data from computed tomography (CT), positron emission tomography (PET), or magnetic 

resonance (MR) imaging.22,23 Radiomics data consists of quantitative imaging features 

in a form that lends itself to building models that relate these imaging features to gene 

and protein signatures and phenotypes. Thus, by treating medical images as more than 

visual aids, these methods harness their potential to provide diagnostic and prognostic 

information.22 The process of radiomics consists of several universal steps, each with unique 

challenges. These steps are image acquisition, identification of the volume of interest, 

segmentation, extraction, and quantification of features, populating databases with these 

features, and mining the data to develop classifier models.22 Image acquisition through CT, 

PET, and MR modalities allows for a wide variation in the acquisition protocol, making 

it difficult to standardize images across institutions, machinery, and patient populations. 

This presents a challenge in radiomics, as it is crucial to extract data that can be directly 

compared (Figure 1).

In radiomics, ‘volumes of interest’ often refer to tumors and suspected tumors. Radiomics 

also allows for the identification of sub-volumes within these regions, which gives radiomics 

its high prognostic potential.24 Segmentation of volumes of interest can be challenging, 

as these volumes can be indistinct. It is generally agreed upon that computer-aided border 

detection and manual fine-tuning is the best approach to accurate segmentation. The actual 

features that are extracted can be either semantic or agnostic. Semantic features include size, 

shape, vascularity, etc. while agnostic features include mathematical, quantitative descriptors 

such as histograms, textures, and Laplacian transforms.23,24 The larger a radiomics dataset, 

the more power it has because the mining process involves discovering patterns across a 

large amount of data. This process can involve machine learning approaches, statistical 

approaches, neural networks, and Bayesian networks.24

Radiomics is most widely applied in the field of oncology, largely owing to support from 

the National Cancer Institute.25 The use of radiomics in oncology has led to advancements 

in the ability to diagnose cancer, determine tumor prognosis, and assess treatment options.24 

While radiomics has mostly been used for interventional oncological applications at this 

time, its use in image segmentation and diagnoses bodes well for future applications in 

non-oncologic IR as well.24

Touchless Software Interaction

In the operating room and the interventional radiology suite, physicians face challenges 

interacting with computers during procedures within the confines of a sterile environment. 

Touchless human-computer interaction technologies have the potential to decrease the 
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possibility of error and inefficiency during procedures by offering physicians an alternative, 

smoother method for interacting with medical software in sterile environments.

Machine learning has emerged as an important approach for streamlining these touchless 

software-assisted interactions using voice and gesture commands. Machine learning 

frameworks can be trained to classify voice commands and gestures that physicians may 

employ during a procedure. These methods can contribute to better recognition rates of these 

actions by cameras, speakers, and other touchless devices.26,27

In one study, inertial sensors worn on the head and body produced data that was collected 

and classified as low-dimensional body gestures.28 These sensors eliminate the problems 

associated with cameras such as ensuring adequate illumination or the need to perform 

the gestures in the camera’s line-of-sight.29 These are both common problems in a dimly 

lit interventional suite with multiple moving parts. These gestures were then learned and 

parameterized by machine learning software, which produced a 90% recognition rate.28 

Another study extended this technique to include the option of voice-based or switch-based 

activation of gesture recognition, with both options achieving a precision of within 2–4% of 

the parameter range.29

Such gesture recognition principles have also been applied to IR procedures, such as 

percutaneous nephrostomies.30 In this application, the physician interacts with ultrasound 

visualization software to determine a needle entry and exit trajectory into the renal pelvis. 

Physicians were asked to produce five fixed gestures, and angular information for each 

gesture was manually determined to train and optimize the algorithm to recognize these 

gestures with 92–100% accuracy. Furthermore, the mean placement error in selecting the 

target on the ultrasound snapshot was 0.55 ± 0.30 mm.30

Natural Language Processing

Natural Language Processing (NLP) is broadly defined as the field of ML dedicated to the 

analysis, manipulation, restructuring, and generation of spoken and written language. NLP 

has special applications in the field of diagnostic radiology to generate standardized reports 

from the automated extraction of large amounts of clinically relevant information found in 

the radiologist’s reports.31 Owing to the increased diversity of NLP applications in clinical 

medicine, it naturally impacts how IR is practiced as well.

With the rise of widely available devices such as the Microsoft Kinect and the Google 

Home, a new wave of research is aimed at re-deploying these pre-fabricated, relatively 

cheap devices to the procedural suite.27,32 In one particular application for device sizing and 

compatibility in IR, a Google Home speaker was outfitted with an NLP implementation.27 

Input queries were processed and sent to the cloud which contained data on 475 IR devices 

for sizing and compatibility (e.g. what size sheath is required for a particular Amplatzer 

plug).27 Once the solution was determined, it was played back to the operator using the 

smart speaker, with technically satisfactory outcomes.27 Expanding on prior work on the use 

of ML in touchless software interaction, standardized machine learning frameworks have 

allowed for the use of LSTMs in NLP (as mentioned previously) for multimodal gesture 

recognition that outperforms other state-of-the-art.33
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NLP can revolutionize IR outside of the procedural suite as well. In one study, scientists 

developed a virtual text-based radiology assistant/consultant.34 It was developed to serve 

as the communications point-of-contact between referring providers and IR. The program 

simulates conversation on a traditional text-based platform. Once queries are entered into 

the system, relevant information (in the form of infographics and websites) are sent back 

to the provider.34 This tool allows clinicians to focus on patient care and reduces the time 

spent on repetitive communications tasks.34 On the referring provider’s end, this tool allows 

them to obtain information quickly without any wait time for a provider to be available. 

Further quality control needs to be performed to make sure the system forwards queries to 

the provider reliably when it receives questions outside of the data it was trained on.

Post-Procedural Outcomes

One of the most basic examples of ML is the decision tree, well known even outside 

of computer science. Originally used in the field of statistics to help predict outcomes 

using decisional probabilities, decision trees have influenced an entire branch of ML. This 

approach’s branching logic is simple enough to be followed and recreated by hand. A 

robust example of decision trees in ML, known as the Random Forest, is an ‘ensemble’ or 

collection of many decision trees working together. The notion is that many weak learners 

(or weak predictors) can be combined to create a stronger one.35,36 A technique like the 

random forest can find relationships in high dimensional data that are likely beyond the 

scope of what an individual researcher with the help of traditional statistical methods 

could do themselves. The random forest, and other similar methods, can incorporate all the 

measurable data that a patient possesses. It also incorporates complex nonlinear interactions 

between these variables and use this information to support decision making and can solve 

unique problems in patient care, such as advanced prediction of patient outcomes to more 

personalized plans of care.35,36

In IR, this approach has been successfully utilized to predict iatrogenic pneumothorax after 

CT-guided transthoracic biopsy (TTB), in-hospital mortality after transjugular intrahepatic 

portosystemic shunt (TIPS), and occurrence of length of stay >3 days after uterine artery 

embolization (UFE).36 These applications are particularly enabled by the availability of 

large sets of patient-associated clinical data from the adoption of electronic health records.36 

One of the major strengths of this study is the fact that all of the variables that are 

input to the model are pre-admission values.36 This method would allow for patient-care 

optimization based on risk-stratification performed at the time of admission.

Vascular Imaging

The field of vascular imaging has been significantly improved by the applications of AI. 

These advances extend both to peripheral arterial disease (PAD),37 as well as to neuro-

interventional radiology (NIR).38–40

In PAD, an ML-based model outperformed a traditional statistical model using stepwise 

logistic regression both for the identification of PAD (p=0.03) and predicting future 

mortality (p=0.10).37 Limitations of this study included PAD defined just by clinical metrics 

(ankle-brachial indices) instead of symptom metric and a short follow-up time. The ability 
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to seemingly ‘throw’ a series of metrics at an ML algorithm and allowing it to construct 

a model that outperforms statistical techniques is a hallmark of ML-based research. This 

allows for risk-stratification, not possible with other techniques. In the setting of acute 

ischemic stroke, advanced age is associated with higher morbidity and mortality. One study 

utilized an ML algorithm to optimize the selection of elderly patients, who would benefit 

the most from an endovascular thrombectomy (ET).40 This study was particularly important, 

given the fact that elderly patients have been under-represented in clinical trials on ET. ML 

techniques have also been used to predict the outcomes for endovascular embolization of 

brain arteriovenous malformations.38

Device Navigation

In medicine, there has been a general move towards minimally invasive surgery to reduce 

patient morbidity and mortality. Percutaneous procedures particularly rely on a high degree 

of accuracy to ensure appropriate placement of devices inside the body, and to guarantee 

that the surrounding tissue is left undamaged. This level of precision is provided by accurate 

image-guidance. For this task, 2-D fluoroscopic guidance, as well as 3-D guidance using 

intra-procedural cone beam CT is utilized.41 The primary advantages secured by utilizing AI 

include automated landmark recognition, compensation for motion artifact, and generation/

validation of a safe needle trajectory.41 Fritz et al., have shown the efficacy of an augmented 

reality system for a variety of IR procedures performed on cadavers, including spinal 

injection and MR-guided vertebroplasty.42,43

Auloge et al. performed a 20 patient randomized clinical study to test the efficacy of 

percutaneous vertebroplasty, for patients with vertebral compression fractures.41 Patients 

were randomized to 2 groups: procedures performed with standard fluoroscopy and 

procedures augmented with AI-guidance.41 The metrics studied included trocar placement 

accuracy, complications, trocar deployment time, and fluoroscopy time. All procedures in 

both groups were successful with no complications observed in either group. No statistically 

significant differences in accuracy were observed between the groups. Fluoroscopy time was 

lower in the AI-guided group while deployment time was lower in the standard-fluoroscopy 

group.41 Further research needs to be performed to be able to generalize these results to the 

whole spectrum of percutaneous procedures.

Robotics

The increased utilization of robotic assistance in IR has been reviewed in the literature.44,45 

The greatest impact offered by existing robotic surgery is increased precision and accuracy, 

along with an increase in degrees of freedom.44 In IR, the use of robotics also allows for 

radiation protection by limiting the operator’s exposure to radiation during procedures.44 

Applications of computer vision can reduce the tissue trauma prevalent in both traditional 

open surgery, as well as endoscopic procedures. Using sensors located at the catheter tip, 

Fagogenis et al. created an autonomous robotic navigation system with haptic (touch-based) 

vision, for utilization in an aortic paravalvular leak closure.46 ML and image processing 

algorithms used the sensor data to provide information on the type of tissue that the 

catheter tip is touching (e.g. blood, cardiac tissue, valve) and the level of force applied. 

Autonomous control was found to be faster than joy-stick controlled robotic navigation.46 
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In an article published in Nature Machine Intelligence, Chen et al. described an autonomous 

robotic guidance system for obtaining vascular access.47 This deep learning system utilizes 

near-infrared and duplex ultrasound imaging to steer needles or catheters into submillimeter 

vessels with minimal supervision.47 This system can autonomously compensate for the 

patient’s arm motion, as well as identify the success or failure of the cannulation attempt 

based on ultrasound and force feedback.47

Image Acquisition

The goal of this collection of techniques is to optimize image acquisition without a loss 

of image quality. Metrics to be reduced include radiation48, contrast dose49, and image-

processing time50. Altered image appearance and artifacts have limited the utilization of 

this technology in the past. However, deep learning algorithms have been shown to perform 

well in terms of structural fidelity and are faster as compared to the competing state-of-art 

methods. Routinely obtained as a part of IR procedures, imaging optimization can improve 

the clinical practice of IR while reducing risk (through contrast-injection and radiation) to 

the patient.

One study used a deep convolutional neural network to map low-dose CT images to their 

respective normal-dose images in a patch-by-patch fashion.50 This method enables the 

algorithm to minimize artifacts while preserving the structure of the image. In the field of 

nuclear imaging, deep learning has been used to reduce radiotracer requirements for amyloid 

PET/MRI without sacrificing diagnostic quality.48 This model used low-dose PET images 

and simultaneously acquired multimodal MRI sequences as input. This technique allows for 

ultra-low-dose imaging, which reduces patient radiation exposure to levels close to those 

found during a transcontinental flight.48

Future Directions and Conclusion

AI has been already been applied in a variety of applications in IR, ranging from procedural 

optimization to workflow optimization. In this section, ways in which AI can further impact 

the field are proposed.

Operator inefficiency is often caused due to the need for repetitive verbal communication 

between the proceduralist and the circulating nurse for the manipulation of the hardware or 

software in the room. One study successfully used a voice recognition interface to adjust 

various parameters during laparoscopic surgeries.51 These include hardware related tasks 

such as the initial set-up of the light sources and the camera, as well as procedural steps 

such as the activation of the insufflator.51 In IR, a similarly significant delay is caused by the 

proceduralist having to wait for the circulator to manipulate the C-arm as well as reposition 

the patient on the table. A voice-recognition based system would allow for significantly 

lower delays during procedures. Furthermore, studies have used eye-tracking to optimize 

training during surgical procedures.52 A tangentially related use of this technology could be 

applied for fluoroscopy beam collimation in IR. An algorithm’s analyses of operator eye 

fixation and gaze patterns could automate collimation, thereby narrowing the fluoroscopy 

beam and reduce the total radiation dose that the patient is exposed to. This technique could 
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automate this process instead of being reliant on communication between the operator and 

circulating nurse for a task that is often left to an afterthought.

With the increasing clinical nature of IR, ML applied to widely available data from 

electronic health records can be used to manage complications. Contrast-induced acute 

kidney injury (AKI) is a well-documented cause of nephropathy after interventional 

procedures that utilize contrast media.53 The extent of renal impairment is often difficult 

to assess due to limited prior laboratory values. Without these values, it is difficult to obtain 

a sense of the acuteness of the changes in the patient’s creatinine. ML has been successfully 

been applied to the intensive care unit (ICU) setting, to accurately predict pre-admission 

hemoglobin and creatinine in patients.54 The model uses clinical data commonly available 

within the first few hours of ICU stay, with predictions averaging within 0.3–0.4mg/dl of 

actual creatinine values.54 Having accurate predictions of a patient’s baseline creatinine 

would be indispensable to guide the modality as well as the intensity of treatment.

An important issue in the use of AI to inform the clinical practice of radiology is the 

potential propagation of bias inherent in the data.55 An initially equitable algorithm can be 

made biased by prejudiced data/human decisions.56 Some suggestions to prevent this bias 

from affecting AI performance include: making it a fundamental requirement to be able to 

explain and interpret the output of every clinical AI system, to eliminate the ‘black box’.55 

Additionally, transparency about removing existing biases in raw data used in an algorithm 

and avoiding adding new biases should be included in the model description.55

The use of ML in robotics and augmented reality systems have also been studied for 

use in trainee education, and have been proposed for future use in IR.13 For example, 

researchers in urology have utilized ML to process procedural data in robot-assisted 

radical prostatectomy to evaluate performance and predict outcomes.57 This study collected 

automated performance metrics (obtained from the surgical robot system) such as camera 

idle time, dominant instrument moving time, and camera moving time. These metrics were 

successfully used to predict an extended length-of-stay for patients’ post-procedure, utilizing 

a random forest model.57 Furthermore, certain metrics of performance such as surgery 

time and foley catheter duration as predicted were also significantly associated with the 

actual measured values.57 One way ML can be used in robotics in IR can be by the use 

of biomechanical algorithms to predict an interventionalist’s motion based on posture and 

weight distribution. The use of lead aprons for radiation protection is known to cause 

a variety of musculoskeletal issues.58 The use of predictive human biomechanics would 

allow for a weight-bearing exoskeleton to better predict and replicate the movements of an 

interventionalist in real-time. This would allow for weight offloading and thereby, reduced 

stresses on the operator’s body.

With further advancement of the field, there is a significant space for AI to further optimize 

channels in IR, ranging from trainee education to risk stratification, to fundamentally alter 

the clinical paradigm of the field.
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Figure 1: 
Schematic Showing the different Applications of Artificial Intelligence in Non-Oncologic 

Interventional Radiology

Based on the literature, different aspects of the applications of artificial intelligence in 

non-oncologic interventional radiology were identified and illustrated schematically using a 

Circle-Spoke diagram
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