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Children with and without dyslexia differ in their behavioral responses to visual information, particularly when required to pool
dynamic signals over space and time. Importantly, multiple processes contribute to behavioral responses. Here we investigated which
processing stages are affected in children with dyslexia when performing visual motion processing tasks, by combining two methods
that are sensitive to the dynamic processes leading to responses. We used a diffusion model which decomposes response time and ac-
curacy into distinct cognitive constructs, and high-density EEG. Fifty children with dyslexia (24 male) and 50 typically developing chil-
dren (28 male) 6-14 years of age judged the direction of motion as quickly and accurately as possible in two global motion tasks
(motion coherence and direction integration), which varied in their requirements for noise exclusion. Following our preregistered
analyses, we fitted hierarchical Bayesian diffusion models to the data, blinded to group membership. Unblinding revealed reduced evi-
dence accumulation in children with dyslexia compared with typical children for both tasks. Additionally, we identified a response-
locked EEG component which was maximal over centro-parietal electrodes which indicated a neural correlate of reduced drift rate in
dyslexia in the motion coherence task, thereby linking brain and behavior. We suggest that children with dyslexia tend to be slower
to extract sensory evidence from global motion displays, regardless of whether noise exclusion is required, thus furthering our under-
standing of atypical perceptual decision-making processes in dyslexia.
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Significance Statement

Reduced sensitivity to visual information has been reported in dyslexia, with a lively debate about whether these differences
causally contribute to reading difficulties. In this large preregistered study with a blind modeling approach, we combine state-
of-the art methods in both computational modeling and EEG analysis to pinpoint the stages of processing that are atypical in
children with dyslexia in two visual motion tasks that vary in their requirement for noise exclusion. We find reduced evidence
accumulation in children with dyslexia across both tasks, and identify a neural marker, allowing us to link brain and behavior.
We show that children with dyslexia exhibit general difficulties with extracting sensory evidence from global motion displays,
not just in tasks that require noise exclusion.
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Introduction
It has long been suspected that visual processing relates to the
reading difficulties characterizing developmental dyslexia (e.g.,
Hinshelwood, 1896; Lovegrove et al., 1980). One visual function
that develops atypically in those with dyslexia is visual motion
processing: an important ability contributing to scene segmenta-
tion, depth perception and object recognition (Braddick et al.,
2003). Difficulties in global motion tasks requiring integration
over space and time have been widely reported in dyslexia
(Benassi et al., 2010). Typically, participants are required to
detect or discriminate coherently moving signal dots among
randomly moving noise dots (Newsome and Paré, 1988). In
this “motion coherence” task, dyslexic individuals tend to
have elevated psychophysical thresholds, requiring higher
proportions of signal dots to perform at the same level of
accuracy as those without dyslexia (Benassi et al., 2010).
The nature of the relationship is still being debated, with
some researchers proposing a causal relationship between
motion sensitivity and reading ability (Boets et al., 2011;
Gori et al., 2016; but see Olulade et al., 2013; Goswami,
2015; Joo et al., 2017; Piotrowska and Willis, 2019).

Atypical global motion processing in dyslexia may reflect
reduced sensitivity to rapid temporal information originating
from deficiencies in the magnocellular system (Livingstone et al.,
1991; Stein and Walsh, 1997; Stein, 2001, 2019) or related dorsal
stream (Hansen et al., 2001; Braddick et al., 2003), which are par-
ticularly specialized for motion perception (Livingstone and
Hubel, 1988). Alternative accounts suggest that dyslexic individ-
uals have difficulty filtering out the randomly moving noise dots
in motion coherence tasks (“noise exclusion”) (Sperling et al.,
2006; Conlon et al., 2012) or difficulties integrating over space
and time (Raymond and Sorensen, 1998; Hill and Raymond,
2002; Benassi et al., 2010).

Despite focusing on the sensory parameters of visual motion
stimuli, these accounts give little consideration to the dynamic
processes leading to atypical behavioral responses in dyslexia, and
particularly, whether decision-making processes are affected. Here
we explicitly modeled the decision-making process using a popular
cognitive model of accuracy and response time (RT): the diffusion
model (Stone, 1960; Ratcliff, 1978; Evans and Wagenmakers, 2020).
The decision is modeled as a noisy evidence accumulation process
from a starting point toward one of two decision bounds (Fig. 1).
This modeling approach will help identify the locus of atypical proc-
essing in dyslexia, with two further advantages: (1) the resulting pa-
rameters may be more sensitive to group differences than accuracy
or RT alone (Stafford et al., 2020); and (2) the parameters relate well
to neural measures (Kelly and O’Connell, 2013; Turner et al., 2015;
Manning et al., 2021a). Accordingly, we combined the diffusion
model with a neural measure sensitive to the dynamic processes
contributing to behavioral responses (EEG), bridging brain and
behavior.

The diffusion model was recently applied to motion coher-
ence performance in children with varying reading abilities
(O’Brien and Yeatman, 2021). Poorer reading was related to
lower drift rates, wider decision bounds, and more intra-individ-
ual variability in starting point and nondecision time. Therefore,
poor readers accumulated motion evidence more slowly and
responded more cautiously than good readers.

Here, we used diffusion models to identify the processing
stages affected in children with dyslexia across two global motion
tasks. The first task was a standard motion coherence task (com-
parable to O’Brien and Yeatman, 2021). The second task was a
direction integration task not used before with dyslexic

individuals, whereby dot directions are sampled from a Gaussian
distribution, with difficulty manipulated via the SD of the distri-
bution. In this task, the optimal strategy is to average over all dots,
with no noise exclusion requirement. The reason for presenting
both tasks to children with dyslexia was to determine whether dif-
ferences in model parameters are found for both motion tasks, sug-
gesting a general motion-processing deficit (i.e., magnocellular/
dorsal deficit) (Stein, 2001; Braddick et al., 2003), or whether differ-
ences in model parameters are found particularly for the motion co-
herence task, reflecting noise exclusion difficulties (Sperling et al.,
2006; Conlon et al., 2012).

Materials and Methods
Preregistration
We preregistered our inclusion criteria and analysis plan before complet-
ing data collection and before commencing analyses (https://osf.io/
enkwm). When analyzing the data, we used a blind modeling approach to
ensure that modeling decisions were not biased by our hypotheses. Our
preregistered primary research questions and hypotheses were as follows:

1. Do children with dyslexia have reduced drift rates in a motion co-
herence task compared with typically developing children?. We
hypothesized that children with dyslexia would have reduced drift rates
in the motion coherence task compared with typically developing chil-
dren, in line with the results of O’Brien and Yeatman (2021) and reports
of reduced motion coherence sensitivity in dyslexic individuals (Benassi
et al., 2010).

2. Do children with dyslexia have reduced drift rates in a direction
integration task compared with typically developing children?. If

Figure 1. Schematic representation of the decision-making process in the diffusion model
for a trial with rightward motion. Decision-making process represented as a noisy accumula-
tion of evidence from a starting point, z, toward one of two decision bounds. In our motion
tasks, the decision bounds correspond to left and right responses. Boundary separation, a,
represents the width between the two bounds and reflects response caution. Wider decision
boundaries reflect that more evidence is required before making a decision (i.e., more cau-
tious responses). Drift rate, v, reflects the rate of evidence accumulation, which depends on
both the individual’s sensitivity to a stimulus and the stimulus strength. Nondecision time,
ter, is the time taken for sensory encoding processes before the decision-making process and
response generation processes after a bound is reached.

Table 1. Demographics of participants included in final dataseta

Typically developing (n= 50) Dyslexia (n= 50)

Age 10.65 (2.34); 6.55-14.98 11.08 (1.87); 7.81-14.53
PIQb 109.26 (11.53); 81-145 99.40 (15.29); 72-141
Verbal IQ 110.60 (8.42); 95-127 98.56 (10.60); 77-118
Full-scale IQ 111.36 (9.02); 89-132 98.70 (12.85); 75-132
TOWRE-2 PDE 111.18 (16.53); 81-153 79.16 (9.45); 51-99
WIAT-Spelling 105.74 (10.21); 80-127 77.86 (7.96); 58-99
Composite score 108.46 (12.15); 89.5-138.0 78.51 (7.46); 54.5-89.0
aData are mean (SD); range.
bPIQ, performance IQ.
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children with dyslexia show difficulties with all global motion tasks
(in line with impaired magnocellular/dorsal stream functioning)
(Stein, 2001; Braddick et al., 2003), then we would expect children
with dyslexia to have a reduced drift rate in this task as well.
Instead, if the performance of children with dyslexia in a motion
coherence task is limited solely by difficulties with noise exclusion
(Sperling et al., 2006; Conlon et al., 2012), we would expect to see
no difference between children with and without dyslexia in this
task, as it does not require segregating signal dots from randomly
moving noise dots.

3. Do children with dyslexia show increased boundary separation?.
We hypothesized that children with dyslexia would have wider boundary
separation compared with typically developing children in both tasks,
following O’Brien and Yeatman (2021).

4. Do children with dyslexia show increased nondecision time?.We
hypothesized no group differences in overall nondecision time in either
task, following O’Brien and Yeatman (2021).

Participants
We collected data from 50 children with dyslexia and 60 typically devel-
oping children who met our inclusion criteria. Specifically, participants
were required to be 6-14 years (inclusive) of age, have verbal and/or per-
formance IQ (PIQ) scores .70 (measured using the Wechsler
Abbreviated Scales of Intelligence, Ed 2 [WASI-2]) (Wechsler, 2011),
and to have normal or corrected-to-normal acuity, as measured using a
Snellen acuity chart (with binocular acuities of 6/9 or better for children
6-8 years of age and 6/6 or better for children 9-14 years of age).
Children in the dyslexia group were required to have a dyslexia diagnosis
(or be in the process of obtaining one, n=1), and to have a reading and
spelling composite score of �89, which was computed by averaging the
standard scores for the spelling subtest of the Wechsler Individual
Achievement Test (WIAT-III) (Wechsler, 2017) and the Phonological
Decoding Efficiency subtest of the Test of Word Reading Efficiency
(TOWRE-2) (Torgesen et al., 2012). A cutoff of 89 was chosen to corre-
spond to 1.5 SDs below the mean of typically developing children in a
similar study (Snowling et al., 2019a,b). Children in the typically devel-
oping group were required to have composite scores .89 and to have
no diagnosed developmental conditions. Datasets from an additional 4
typically developing children were excluded because of poor visual acuity
(n= 1), having a composite score of �89 (n= 2), or failing to pass crite-
rion on the task (n=1), and datasets from an additional 11 children with

dyslexia were excluded because of poor visual acuity (n= 2) or having a
composite score.89 (n= 9).

We then selected 50 typically developing children to best match the
children with dyslexia in terms of age and PIQ using the RMatchIt pack-
age (Ho et al., 2011), so that the final dataset included 50 children with
dyslexia (24 male) and 50 typically developing children (28 male). As
shown in Table 1, the children with dyslexia had slightly higher ages and
lower IQ values on average than the typically developing children. EEG
data were collected during task performance in 47 typically developing
and 44 children with dyslexia (although EEG data were available only in
the motion coherence task for one child with dyslexia and one typically
developing child). The EEG data from these participants were included
in a paper investigating responses locked to the onset of coherent motion
in typically developing children and children with autism or dyslexia

Figure 2. Schematic representation of trial procedure. The trial started with an initial fixation period that was followed by a random motion period consisting of random, incoherent moving
dots, which was in turn followed by a stimulus containing leftward or rightward global motion. The child was asked to report the direction using a response box. After the response or after
the maximum stimulus duration elapsed (2500 ms), the stimulus remained on the screen for a short offset period. Arrows (indicating movement) and dotted lines (marking the square stimulus
region) are presented for illustration only. The stimulus shown here is from the motion coherence task, where a proportion of dots move coherently. In the direction integration task, dot direc-
tions were taken from a Gaussian distribution. Figure reproduced from https://osf.io/wmtpx/ under a CC-BY4.0 license.

Figure 3. Scalp topographies and temporal dynamics for the most reliable component in
the motion coherence and direction integration tasks. Topographic visualizations of the for-
ward-model projections of the most reliable component (left) reflecting the weights given to
each electrode following reliable components analysis on data from all participants pooled
across difficulty level, for the motion coherence task (top) and direction integration task (bot-
tom). The waveforms (right) show the temporal dynamics of the component.
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(Toffoli et al., 2021), and the larger group of 60 typically developing chil-
dren were used to form the comparison group in an autism study
(Manning et al., 2021b).

Apparatus
The tasks were presented on a Dell Precision M3800 laptop (2048 -
� 1152 pixels, 60 Hz) using the Psychophysics Toolbox for
MATLAB (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). EEG sig-
nals were collected using 128-channel Hydrocel Geodesic Sensor
Nets connected to Net Amps 300 (Electrical Geodesics) and
NetStation 4.5 software. A photodiode attached to the monitor inde-
pendently verified stimulus presentation timing. Participants used a
Cedrus RB-540 response box (Cedrus).

Stimuli
Stimuli were 100 white, randomly positioned dots (diameter 0.19°) mov-
ing at 6°/s within a square aperture (10° � 10°) on a black background,
with a limited lifetime of 400ms. Each trial had a fixation period, a ran-
dom motion period, a stimulus period, and an offset period, with a red
fixation square (0.24° � 0.24°) presented throughout (Fig. 2). By pre-
senting random (incoherent) motion before the stimulus period, we
could dissociate evoked responses to directional motion from pattern-
and motion-onset evoked potentials. The start of the stimulus period
was highlighted to participants with an auditory tone. In the motion co-
herence task, directional motion (leftward or rightward) was introduced

in a proportion of “signal” dots, while the remainder of the dots contin-
ued to move in random directions. In the direction integration task, the
directions of dots in the stimulus phase were distributed according to a
Gaussian distribution with a mean leftward or rightward direction. The
fixation period, random motion period, and offset period had jittered
durations within a fixed range, while the stimulus period was presented
until a response or 2500ms had elapsed. The offset period continued the
directional motion to temporally separate motion offset from the
response.

Experimental task procedure
Children completed motion coherence and direction integration tasks
within child-friendly games (based on Manning et al., 2019, 2021a).
Using animations, participants were told that fireflies were escaping
from their viewing boxes, and they were asked to tell the zookeeper
which way the fireflies were escaping. There were 10 “levels” of the
game. Levels 1-5 corresponded to one task (either motion coherence or
direction integration), and Levels 6-10 corresponded to the other task,
with the order of tasks being counterbalanced across participants. Levels
1 and 6 were practice phases, and the remaining four levels for each task
were experimental blocks. In the motion coherence task, difficulty was
manipulated by varying the proportion of coherently moving dots; and
in the direction integration task, difficulty was manipulated by varying
the SD of the Gaussian distribution from which the dot directions were
sampled.

Figure 4. Group average stimulus-locked and response-locked evoked potentials for the motion coherence task. Average (61 SEM) stimulus-locked (top) and response-locked (bottom)
evoked potentials for typically developing children (gray) and children with dyslexia (blue) in the motion coherence task for difficult and easy levels. Left column represents nondeconvolved
group average waveforms. Middle column represents deconvolved group average waveforms (without regularization). Right column represents deconvolved group average waveforms with reg-
ularization (ridge regression). Vertical line at 0 ms indicates when the stimulus phase started (stimulus-locked) or when the response was made (response-locked).
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In the practice phases, four demonstration trials were presented with
no random motion phase and an unlimited stimulus phase, so that the
experimenter could explain the task. Participants reported stimulus
direction using a response box. The first two demonstration trials were
“easy” (100% coherence or 1° SD), and the last two were more difficult
(75% and 50% coherence, or 10° and 25° SDs). Following the demonstra-
tion trials, there were up to 20 criterion trials with a coherence of 95% or
an SD of 5°. These trials introduced the random motion phase.
Participants were told that the fireflies would be going “all over the
place” at first, and that they must wait for an alarm (auditory beep)
before deciding which way the fireflies were escaping. A time limit was
enforced, with visual feedback presented on the screen if participants did
not respond within 2500ms (“Timeout! Try to be quicker next time!”).
Feedback on accuracy was given for responses made within the time
limit (“That was correct!”, or “It was the other way that time”). When
participants met a criterion of four consecutive correct responses, no
more criterion trials were presented. Next, there were eight practice trials
of increasing difficulty (motion coherence task: 80%, 70%, 60%, 50%,
40%, 30%, 20%, 10%; direction integration task: 5°, 10°, 15°, 20°, 30°, 40°,
50°, 60°) with feedback as before. Level 1 was repeated for one typically
developing child and 2 children with dyslexia who did not meet the cri-
terion of four consecutive correct responses on the first attempt, but
passed on the second attempt.

Levels 2-5 and 7-10 each contained 38 trials, with 9 repetitions of
each of two difficulty levels (motion coherence task: 30%, 75%; direction
integration task: 70°, 30° SD), for each motion direction (leftward,

rightward), and an additional 2 catch trials presenting 100% coherent (0°
SD) motion. The experimental phase for each task therefore consisted of
152 trials. No trial-by-trial feedback was presented during the experi-
mental phase, apart from a “timeout” message if no response was made
within 2500ms after stimulus onset. At the end of each level, participants
were given points for their speed and accuracy in the preceding block
(computed by (1/median RT) � the number of correct responses � 2,
rounded to the nearest integer). If participants obtained a score ,10, a
score of 10 points was given to maintain motivation. Trials were pre-
sented automatically, although the experimenter could pause and re-
sume trial presentation if necessary. The experimental code can be
found here: https://osf.io/fkjt6/.

General procedure
The procedure was approved by the Central University Research Ethics
Committee at the University of Oxford. Parents provided written
informed consent, and children gave verbal or written assent. All chil-
dren took part at the University of Oxford apart from one child with
dyslexia who was seen at school without EEG. During the experimental
tasks, participants sat 80 cm away from the computer screen in a dimly
lit room. For children who participated with EEG, we fitted the net
before the experiment and ensured that electrode impedances were
,50 kV. EEG data were acquired at a sampling rate of 500Hz with a
vertex reference electrode.

Children were closely monitored by an experimenter sitting
beside them. The experimenter provided general encouragement

Figure 5. Group average stimulus-locked and response-locked evoked potentials for the direction integration task. Average (61 SEM) stimulus-locked (top) and response-locked (bottom) evoked
potentials for typically developing children (gray) and children with dyslexia (blue) in the direction integration task for difficult and easy levels. Left column represents nondeconvolved group average
waveforms. Middle column represents deconvolved group average waveforms (without regularization). Right column represents deconvolved group average waveforms with regularization (ridge regres-
sion). Vertical line at 0ms indicates when the stimulus phase started (stimulus-locked) or when the response was made (response-locked).
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and task reminders, pausing before the start
of a trial if needed (e.g., to remind the child
to keep still). Children had short breaks at
the end of each “level” and a longer break at
the end of the first task (at the end of “level
5”). During the longer break, electrode
impedances were reassessed for children
wearing EEG nets. Children marked their
progress through the levels using a stamper
on a record card. The children also com-
pleted a Snellen acuity test, the WASI-2, the
TOWRE-2, and the spelling subtest of the
WIAT-III. The whole session took no lon-
ger than 2 h, and children were given a gift
voucher to thank them for their time.

Diffusion model analysis
Initially, a blinded analysis was conducted
to ensure that modeling decisions were
made without being biased by the hypothe-
ses under test. The first author (C.M.) pre-
pared a blinded dataset in which group
membership was randomly permuted (see
also Dutilh et al., 2017) and one of the
authors (N.J.E.) ran diffusion model analy-
sis on this blinded dataset.

Before modeling, trials with RTs ,200ms
were removed (corresponding to 0.20% of
trials in the typical group and 0.24% of trials
in the dyslexia group). Trials without a response (i.e., no response
made within the 2500 ms deadline) were modeled as nonterminat-
ing accumulation trajectories, with the probability of a nonres-
ponse occurring being the survivor function for the model at the
time of the 2500 ms deadline (Ulrich and Miller, 1994; Evans et al.,
2018; Howard et al., 2020). These trials accounted for 1.02% of the
data in the typical group and 1.26% of the data in the dyslexia
group. We fit the data from each task with hierarchical, Bayesian diffusion
models with five parameters: (1) average drift rate across difficulty lev-
els v.mean, (2) boundary separation a, (3) nondecision time ter, (4) dif-
ference in mean drift rate between difficulty levels v.diff, and (5)
starting point z. The stochastic noise within the model (s) was fixed at
0.1 to solve a scaling problem within the model, as per convention
(Ratcliff, 1978). There were three hyperparameters for each parameter
reflecting the mean (m) and SD (s ) across the two groups and the
difference between groups (d ). Importantly, this parameterization
allowed us to explicitly set priors on the differences between groups,
which was the key effect of interest within the current study. More spe-
cifically, the priors were as follows:

Data level:

ypi;diffusion ap;zp;Terp; vpi; sð Þ

Parameters:

ap;N1 ma 6 d a;s að Þ

zp=ap;TN0;1 mz 6 d z;s zð Þ

Terp;N1 mTer 6 d Ter;sTerð Þ

vp1 � vp2;N mv:diff 6 d v:diff ;s v:diff
� �

vp11vp2
2

;N mv:mean 6 d v:mean;s v:meanð Þ

s ¼ 0:1

Hyperparameters:

ma;N1 0:2; 0:2ð Þ

mz;TN0;1 0:5; 0:2ð Þ

mTer;N1 0:3; 0:3ð Þ

mv:diff;N 0; 0:1ð Þ

mv:mean;N 0:3; 0:3ð Þ

s a;s z;sTer;s v:diff ;s v:mean;C 1; 1ð Þ

d a; d z; d Ter; d v:diff ; d v:mean;N 0; 0:01ð Þ

where y reflects the data, and subscripts p and i reflect the participant and
difficulty level, respectively. The priors for the m and s parameters were
based on those used in previous studies implementing hierarchical diffusion
models (e.g., Evans and Brown, 2017; Evans and Hawkins, 2019; Evans et al.,
2019), and the priors for the d parameters were based on the “moderately in-
formative priors” used for the differences between conditions in Evans
(2019). We used a differential evolution Markov chain Monte Carlo algo-
rithm (Ter Braak, 2006; Turner et al., 2013b) to sample from the posterior
with 15 interacting chains, each with 4000 iterations, the first 1500 of which
were discarded as burn-in. We also implemented a migration algorithm (see
Turner et al., 2013b), where chains were randomly migrated every 14 itera-
tions between iterations 500 and 1100. We calculated Bayes factors (BFs)
through the Savage-Dickey ratio. Where we found evidence of group differ-
ences, we established the population effect size by dividing the posterior of
the group difference (d ) by the posterior of the population SD (s ).

As shown in Table 1, the children with dyslexia were on average slightly
older and of lower IQ than the typically developing children. As preregis-
tered, the first author (C.M.) ran a default Bayesian t test using the
BayesFactor R package (Morey and Rouder, 2018) which revealed weak,
inconclusive evidence for the absence of group differences in age (BF in

Figure 6. Accuracy and median RT for correct trials. Violin plots showing the kernel probability density for each group’s
accuracy (left) and median RT (s) for correct trials (right) for each difficulty level and each task (top: motion coherence; bot-
tom: direction integration). Data for typically developing children and children with dyslexia are presented in gray and blue,
respectively. Dots and vertical lines represent the group mean and61 SEM.
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support of group differences=0.33) (Jeffreys, 1961). As we know that diffu-
sion model parameters change with age (Manning et al., 2021a), and as we
could not conclusively rule out group differences in age, we also ran models
which partialled out the effects of age from all of the parameters (using the
residuals from the line of best fit between age and each of the parameters),
in addition to our standard models. In our preregistered analysis plan, we
decided not to control for PIQ as it may relate to both group membership
and decision-making in cognitively relevant ways (Dennis et al., 2009). The
analysis files were posted on the Open Science Framework before unblind-
ing (https://osf.io/nvwf7/), at which point all models were rerun on the
unblinded dataset with correct groupmembership.

EEG analysis for joint modeling
We ran exploratory analysis on the unblinded dataset to investigate links
between drift rate and EEG activity. EEG data were bandpass filtered
between 0.3 and 40Hz in NetStation and then exported for further proc-
essing in MATLAB using EEGLAB functions (Delorme and Makeig,
2004). We downsampled each participant’s data to 250Hz and selected
only the data between the first fixation onset and the last offset period.
We then bandpass-filtered between 0.3 and 40Hz (because of insuffi-
cient attenuation of low frequencies by NetStation filters) (Manning et
al., 2019) and used EEGLAB’s “clean_artifacts” function to remove bad
channels, identify data segments with SDs over 15 and correct them
using artifact subspace reconstruction (Chang et al., 2018). Missing
channels were then interpolated. We then ran independent components
analysis on 3000ms epochs starting at fixation onset using an Infomax

algorithm and subtracted ocular components from the continuous data.
Finally, we average rereferenced the data. In line with the behavioral
analyses, we excluded triggers for response events made ,200ms or
.2500ms after stimulus onset.

Following previous work, we used a data-driven component decompo-
sition technique to identify spatiotemporally reliable patterns of activity
across trials, which has the effect of maximizing signal-to-noise ratio (reli-
able components analysis) (Dmochowski et al., 2012; Dmochowski and
Norcia, 2015; Manning et al., 2019, 2021a). To do this, we epoched each
participant’s preprocessed continuous data from �600 to 200ms around
each response, and we baselined the data to the last 100ms of the random
motion period. We submitted the baselined epochs for participants in both
groups to reliable components analysis for each task separately. The for-
ward-model projections of the weights for the most reliable component for
each task (which explained 28.7% and 27.1% of the reliability in the motion
coherence and direction integration tasks, respectively) are shown in
Figure 3. This component resembled the most reliable component found
in our previous work (Manning et al., 2021a), which in turn resembles the
centro-parietal positivity (O’Connell et al., 2012; Kelly and O’Connell,
2013). Buildup of activity in this component has been linked to drift rate in
typically developing children (Manning et al., 2021a). To investigate links
with drift rate in the current dataset, we projected each participant’s contin-
uous data through the spatial weights for this component to yield a single
component waveform for each participant for each task.

In our paradigm, stimulus-locked and response-locked activity over-
laps temporally, with the degree of overlap relating to the participant’s

Figure 7. Model fits. Defective cumulative density function plots for each of the four models, for typically developing children (top rows) and children with dyslexia (bottom rows) for difficult
and easy levels. Green represents correct responses and red represents error responses, at each of 9 quantiles. Dots represent the observed data. Crosses with connecting lines represent the
model fit. The dots and crosses at 2.5 s represent the observed and model predicted misses.
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reaction time. Importantly, the extent of
overlap could vary between groups and/or
conditions (Ehinger and Dimigen, 2019).
Thus, to obtain an EEG measure for
inclusion in our model that reflects the
decision-making process as purely as
possible, and fully separate the contribu-
tions of stimulus-locked and response-
locked activity, we used a linear deconvo-
lution method to unmix overlapping stim-
ulus-locked and response-locked activity in
our component waveform using the Unfold
toolbox (Ehinger and Dimigen, 2019). We
modeled the conti-nuous waveform for
each participant by selecting a time win-
dow of �1000 to 1000ms around each
stimulus event or response event. We
specified a design matrix with predictors
for each difficulty level (difficult, easy) for
each event type (stimulus, response). We
then time-expanded the design matrix by
adding a predictor for each time point
sampled (i.e., every 4ms from �1000 to
1000ms) for each event type. The reason for
this “time-expansion” is that each regressor in
the resulting design matrix models the evoked
response (either stimulus-locked or response-
locked) at a particular point in time (Smith
and Kutas, 2015; Ehinger and Dimigen, 2019);
this is equivalent to the “finite impulse
response” approach to analysis of fMRI times-
eries (Henson et al., 2001). The predictors are
therefore simply “boxcar” functions at each
point in time, rather than information relat-
ing to the stimulus display. Having con-
structed the design matrix, we identified
segments with amplitudes .6250mV using
a sliding 2000ms segment in 100ms steps,
and excluded these segments from the design
matrix (motion coherence task: mean 2.36% of data for each participant,
range: 0 to 19.50%; direction integration task: mean 2.19% of the data for
each participant, range: 0 to 21.17%). We then fit the deconvolution model
resulting in regression weights (betas) for each of the 2 event types, 2 diffi-
culty levels, and 500 time points, which we used to construct regression
waveforms (see Figs. 4 and 5). Comparing the left and middle columns of
Figures 4 and 5 shows that deconvolution led to reduced amplitudes
(which is expected as the nondeconvolved waveform contains a mix of
overlapping stimulus-locked and response-locked activity).

The nondeconvolved waveforms showed amplitude differences between
difficult and easy levels (Figs. 4 and 5, left column), as to be expected for an
EEG measure which reflects the decision-making process. However, these
differences across difficulty levels were not evident in the deconvolved wave-
forms (Figs. 4 and 5, middle column). The fact that the difference between
difficulty levels changed as a result of deconvolution could suggest that the
overlap between stimulus- and response-locked activity differs between dif-
ficulty levels, because of different RT distributions in each difficulty level.
However, we found a difficulty level difference in the nondeconvolved
waveforms even when matching the RT distributions for the easy and diffi-
cult levels, so that difficulty level differences could not be purely attributed
to different RT distributions. We therefore suspected that the b estimates
may be noisy and that the deconvolution technique was overfitting the
noise. Therefore, in the final step where we selected EEG measures for
inclusion in the diffusion model, we reran the deconvolution model using a
regularization method which penalizes the squaredmagnitude of the regres-
sion coefficients (ridge regression) (Kristensen et al., 2017) to minimize
noise. Using this approach retained the difficulty level differences while
minimizing the noise in the waveforms (Figs. 4 and 5, right column).
Specifically, we found the best regularization parameter for each participant
using cross-validation, and then took the mode across all participants and

constrained the regularization parameter to ensure that differences in regu-
larization did not contribute to group differences in resulting waveforms.
The modal parameter value was 10 for the motion coherence task (5.5 and
10 for the typically developing children and children with dyslexia, sepa-
rately) and 5 for the direction integration task (5 and 4.5 for the typically
developing children and children with dyslexia, separately). We then fit a
regression slope to each participant’s average deconvolved waveform for
each difficulty level between�200and 0ms around the time of the response
to obtain a slope measure which we entered into the diffusion model and
related to drift rate.

To assess the relationship between drift rate and the EEG component
discussed above, we used a joint modeling approach (Turner et al., 2013a,
2015, 2016; Evans et al., 2018; Knowles et al., 2019). Specifically, we esti-
mated additional hyperparameters for the correlation between the v.mean
parameter and the average of the EEG measure (slope of centro-parietal
component activity between�200and 0ms before response) over difficulty
levels (EEG.mean), and between the v.diff parameter and the difference in
the EEGmeasure between difficulty levels (EEG.diff). Specifically, this meant
that the structure of the original hierarchical model (with age partialled out)
was only different for the drift rate parameter, which was now a bivariate
normal with the EEGmeasure as follows:

vp1 � vp2;EEGp1 � EEGp2½ �;
BN mv:diff6d v:diff ;mEEG:diff6d EEG:diff

� �
;

�

s 2
v:diff ;s v:diffs EEG:diffq;s EEG:diffs v:diffq;s

2
EEG:diff

h i
Þ

ðvp11vp2Þ=2; ðEEGp11EEGp2Þ=2
� �

;
BN mv:mean6d v:mean;mEEG:mean6d EEG:mean½ �;ð

s 2
v:mean;s v:means EEG:meanq;s EEG:means v:meanq;s

2
EEG:mean

� �Þ
mEEG:diff;N 0; 0:5ð Þ

Figure 8. Prior and posterior density distributions. Prior (green) and posterior (purple) density distributions for the group-level
parameters reflecting group differences in each of the five model parameters (v.mean, mean drift rate across difficulty levels; a,
boundary separation; ter, nondecision time; v.diff, difference in mean drift rate between difficulty levels; z/a, relative starting
point) for each task. Top inset, Schematic of the model parameters shown. Leftmost columns represent the results of the standard
model. Rightmost columns represent the results of the model with age partialled out. Negative values reflect lower parameter
values in the dyslexia group compared with the typically developing group. BF, Savage-Dickey BFs in favor of the alternative hy-
pothesis (H1) over the null hypothesis (H0). BF. 1 support H1.
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mEEG:mean;N 0; 1ð Þ
s EEG:diff ;s EEG:mean;C 1; 1ð Þ

d EEG:diff ; d EEG:mean;N 0; 0:01ð Þ
q;U �1; 1ð Þ

where q refers to the correlation between drift rate and the EEG mea-
sure. We again used a differential evolution Markov chain Monte Carlo
algorithm with 15 interacting chains to sample from the posterior of the
joint model, although because of the greater computational burden of
the model, we used 3000 iterations, of which the first 1000 were dis-
carded as burn-in and no migration algorithm was implemented.
Furthermore, we estimated two different variants of this joint model:
one where the correlations were constrained to be the same across
groups, which would allow for the estimation of more precise posteriors
because of the limited sample size, and another less constrained version
where the correlations were estimated separately for each group.

Data and code availability
Analysis scripts are available at https://osf.io/nvwf7/. Data and output
files are available on the United Kingdom Data Service at http://doi.org/
10.5255/UKDA-SN-855236.

Results
Diffusion modeling of behavioral data
Figure 6 summarizes the accuracy and RT data subjected to dif-
fusion modeling. This figure shows that the children with dys-
lexia had slightly slower median RTs compared with typically

developing children, on average, and were
slightly less accurate in the direction integra-
tion task, particularly on the difficult trials.
However, there was substantial overlap
between the groups with considerable variabil-
ity within each group. These behavioral data
were well fit by our diffusion models, as
shown by the cumulative density functions in
Figure 7. All chains were well converged, as
reflected by Gelman-Rubin diagnostic values
(Gelman and Rubin, 1992) close to 1 (mean =
1.00, range=1.00-1.07).

Figure 8 shows the prior and posterior dis-
tributions for the group-level parameters that
reflect the difference between groups for each
of the five parameters (v.mean, a, ter, v.diff,
b ), along with BFs. BFs .1 reflect more evi-
dence for the alternative hypothesis of group
differences compared with the null hypothesis,
whereas BFs ,1 reflect relatively more evi-
dence for the null hypothesis than the alterna-
tive hypothesis. We use the heuristic that BFs
between 1/3 and 3 constitute only weak,
inconclusive evidence (Jeffreys, 1961).

In support of our first hypothesis, children
with dyslexia had reduced drift rates in the
motion coherence task compared with typi-
cally developing children, as shown by the left-
ward shift in the posterior distribution of v.
mean in Figure 8. When age was partialled
out, there was moderate evidence in favor of
group differences (BF=4.57, population effect
size mean = –0.18, 95% CI: [–0.40, 0.02]). The
evidence was weaker when age was not parti-
alled out (BF=1.75). Interestingly, the same
pattern was found in support of our second
hypothesis, with children with dyslexia also

showing reduced drift rates in the direction integration task com-
pared with typically developing children. Again, there was moderate
evidence for group differences when age was controlled for (BF =
4.28, population effect size mean = –0.21, 95% CI: [–0.45, 0.02]),
but weak evidence when age was not controlled for (BF=1.71).

Our third hypothesis was that children with dyslexia would
show increased boundary separation. Although children with
dyslexia did have slightly higher boundary separation compared
with typically developing children (indicated by a small right-
ward shift in the posterior distribution of a in Fig. 8), particularly
in the motion coherence task, the evidence remained inconclu-
sive, even when controlling for age. Our final hypothesis was that
there would be no group differences in nondecision time (ter) in
either task. Figure 8 shows little difference between the groups in
this parameter, but the BFs are close to 1, suggesting inconclusive
evidence. Therefore, more data would be required to make firm
conclusions regarding these hypotheses.

These preregistered analyses did not control for PIQ because
it could be meaningfully related to both decision-making param-
eters and group membership, and investigating its contribution
to both was beyond the scope of our multilevel modeling
approach. However, as there was an indication of a relationship
between PIQ and drift rate (Fig. 9), and as both PIQ and drift
rate differed between the groups, we investigated these links fur-
ther with an exploratory analysis, which partialled out the effects of
both age and PIQ (Fig. 10). In brief, BFs of 2.3 and 2.38 in the two

Figure 9. Scatterplots plotting individual parameter estimates against PIQ. Maximum likelihood estimates contained
within the posterior for each participant’s mean drift rate across difficulty levels (v.mean), boundary separation (a), nonde-
cision time (ter), difference in drift rate between difficulty levels (v.diff), and starting point (z/a), plotted as a function of
PIQ, for the motion coherence task (left column) and direction integration task (right column). Gray represents typically
developing children. Blue represents children with dyslexia.
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tasks continue to provide weak evidence for group differences in
mean drift rate when both age and PIQ are controlled for.

Joint modeling of EEG and behavioral data
Figure 11 shows the distribution of slope measures that were
extracted from each participant’s deconvolved (with regularization)
response-locked waveform, which were used in joint modeling to
explore links between EEG and model parameters. While there was
considerable between-participants variability, the children with dys-
lexia had shallower slopes than the typical children, on average. A
Bayesian repeated-measures ANOVA in JASP (JASP Team, 2020)
showed that, in the motion coherence task, the best model of EEG
slope measures included the within-participants factor of difficulty
level, the between-participants factor of group, and an interaction
term. When averaging across models, there was strong evidence for
including a main effect of group (BFincl = 14.70) and a group by dif-
ficulty level interaction (BFincl = 4.65). Yet in the direction integra-
tion task, the best model of EEG slope measures included only the

within-participants factor of difficulty, with inconclusive evidence
for including a main effect of group (BFincl = 0.70) or a group by
difficulty level interaction (BFincl = 0.49). Therefore, it seems that
the buildup of activity in the centro-parietal component is clearly
reduced in children with dyslexia in the motion coherence task, but
the reduction is not compelling in the direction integration task.

Next, we established whether this EEG measure was related to
drift rate across the whole sample, estimating a single correlation
for both groups, with the effects of age partialled out. For both tasks,
the EEGmeasure was positively related to the mean drift rate across
difficulty levels, although the evidence was only weak in the case of
the direction integration task (motion coherence: posterior mean
r=0.44, 95% credible intervals (CI) = [0.26, 0.6], BF=8869.49;
direction integration: posterior mean r=0.25, CI = [0.03, 0.45],
BF=1.65). The posterior means were in the direction of a positive
relationship between the difference in EEG measure and the differ-
ence in drift rate between difficulty levels, although the evidence
was inconclusive with relatively more evidence for the null hypothe-
sis (motion coherence: posterior mean r=0.22, CI = [–0.02, 0.44],
BF=0.73; direction integration: posterior mean r=0.17, CI = [–
0.08, 0.4], BF=0.43; for scatterplots, see Fig. 12).

Next, we fit joint models in which we estimated a separate corre-
lation coefficient between drift rate and the EEG measure for the
children with dyslexia and typical children (Fig. 13). Our intention
was not to explicitly test for differences in correlations between
groups, but rather to see if the previous findings seem to hold for
each group; any separation between the groups below is intended to
merely describe our estimated posterior distributions. A positive
correlation can be seen for both groups in the motion coherence
task for the mean drift rate across difficulty levels (typical: posterior
mean r=0.41, CI = [0.13, 0.63], BF=7.45; dyslexia: posterior mean
r=0.43, CI = [0.15, 0.64], BF=12.75). The posterior means were in
the direction of a positive relationship for the difference in drift rate
between difficulty levels, but the evidence was inconclusive with rel-
atively more evidence for the null hypothesis (typical: posterior
mean r=0.18, CI = [–0.2, 0.51], BF=0.39; dyslexia: posterior mean
r=0.20, CI = [–0.12, 0.49], BF=0.46). The strength of correlations
was weaker in the direction integration task, particularly for the typ-
ical children, for whom the BFs suggested moderate evidence for no
relationship (mean drift rate across difficulty levels: posterior mean
r=0.10, CI = [–0.22, 0.4], BF=0.29; difference between difficulty
levels: posterior mean r=0.04, CI = [–0.31, 0.38], BF=0.24). The
strength of the correlations in children with dyslexia was slightly
stronger than in the typical children, with the mean drift rate across
difficulty levels showing weak evidence for a relationship, although
the difference in drift rate between difficulty levels showed weak evi-
dence for no relationship (mean drift rate across difficulty levels:
posterior mean r=0.34, CI = [0.04, 0.58], BF=2.59; difference
between difficulty levels: posterior mean r=0.24, CI = [–0.09, 0.53],
BF=0.61).

Discussion
We analyzed the performance of children with dyslexia and typi-
cal children in two global motion tasks using diffusion modeling,
to identify the processing stages that are altered in dyslexia. In
both the motion coherence and direction integration tasks, chil-
dren with dyslexia accumulated sensory evidence more slowly
than typical children, on average, once controlling for age.
Moreover, we found a neural correlate of this evidence accumu-
lation process that was attenuated in dyslexia in the motion co-
herence task, thus linking brain and behavioral measures with a
latent model parameter.

Figure 10. Exploratory analyses: prior and posterior density distributions for model with
age and PIQ partialled out. While our preregistered analysis did not control for PIQ, we con-
ducted an exploratory analysis to investigate whether group differences in drift rate were still
apparent when controlling for PIQ. The figure shows prior (green) and posterior (purple) den-
sity distributions for the group-level parameters reflecting group differences in each of the
five model parameters (v.mean, mean drift rate across difficulty levels; a, boundary separa-
tion; ter, nondecision time; v.diff, difference in mean drift rate between difficulty levels; z/a,
relative starting point) for each task, when both age and PIQ and their interaction are parti-
alled out. Negative values reflect lower parameter values in the dyslexia group compared
with the typically developing group. BF, Savage-Dickey BFs in favor of the alternative hy-
pothesis (H1) over the null hypothesis (H0). BF. 1 support H1. As in Figure 8, the posterior
distribution for v.mean is shifted leftwards, reflecting lower mean drift rate in the dyslexia
group than the typically developing group. The corresponding BFs are smaller in these analy-
ses, indicating weaker evidence for group differences. As we reflect on in Discussion, the de-
cision to partial out PIQ should not be taken lightly, as PIQ seems to contribute to both
decision-making variables (drift rate) and group differences, so it is likely that partialling out
PIQ removes some of the variance related to the group differences we are interested in.
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The finding of reduced evidence accumulation for children
with dyslexia during the motion coherence task echoes O’Brien
and Yeatman (2021) and helps to explain previous reports of ele-
vated motion coherence thresholds in dyslexia (Benassi et al.,
2010). Importantly, the current study goes further by showing
that reduced evidence accumulation is also found in a direction
integration task that does not require segregating signal dots
from noise dots. This result suggests that dyslexic individuals
have general difficulties with extracting global motion informa-
tion, rather than solely difficulties with noise exclusion (in

contrast to Sperling et al., 2006; Conlon
et al., 2012), in line with reports of atypi-
cal performance in an illusory motion
task without noise exclusion require-
ments (Gori et al., 2015, 2016). These
general difficulties could reflect reduced
temporal and/or spatial integration of
motion signals (Raymond and Sorensen,
1998; Hill and Raymond, 2002; Benassi
et al., 2010). This conclusion does not
negate the possibility that dyslexic indi-
viduals face additional difficulties when
segregating signal from noise, as we sug-
gested based on stimulus-locked analyses
using a similar dataset (Toffoli et al.,
2021).

By supplementing our diffusion mod-
eling analysis with EEG, we identified a
neural index of reduced evidence accu-
mulation in dyslexia. Specifically, we
used a data-driven component decompo-
sition technique to find a centro-parietal
component previously linked to deci-
sion-making (O’Connell et al., 2012;
Kelly and O’Connell, 2013; Manning et
al., 2021a), and then “unmixed” overlap-
ping stimulus- and response-locked ac-
tivity. In the motion coherence task, we
found that children with dyslexia showed
a shallower buildup in the response-
locked centro-parietal component com-
pared with typical children, and the gra-
dient of the buildup was positively
correlated with drift rate in the joint
model. While the EEG analysis was ex-
ploratory, the results are consistent with
an earlier study of typically developing
children (Manning et al., 2021a) and fol-
low our hypothesized pattern (https://
osf.io/enkwm). Similarly, Stefanac et al.
(2021) reported reduced centro-parietal
buildup in children with dyslexia com-
pared with chronological and reading
age-matched controls. Yet, in our direc-
tion integration task, we found no compel-
ling evidence for reduced centro-parietal
buildup in children with dyslexia, and the
evidence for a relationship between this
EEG measure and drift rate was weaker.
This suggests that the magnitude of the
centro-parietal positivity and its association
with drift rate may be group- and task-de-
pendent, to some extent (see also Lui et al.,
2021).

Alongside reductions in drift rate, we hypothesized that
children with dyslexia would show wider boundary separation
compared with typically developing children, reflecting more
cautious responses, and no differences in nondecision time. We
found some evidence for increased boundary separation in chil-
dren with dyslexia in the motion coherence task, but this was
inconclusive. There was also inconclusive evidence for group dif-
ferences in nondecision time. These results are not at odds with
O’Brien and Yeatman (2021) but suggest that more data are

Figure 11. EEG slope measure extracted for inclusion in the joint model. Violin plots showing the kernel probability density for the
EEG slope measure extracted for inclusion in the joint model for each group (gray represents typically developing; blue represents dys-
lexia) for each difficulty level. The extracted measure was the slope of a linear regression line fitted to each participant’s deconvolved
(with regularization) response-locked waveform, from 200ms before the response to the response (see shaded area of schematic
response-locked waveform in inset). Dotted line indicates a flat slope. Dots and vertical lines represent the group mean and61 SEM.

Figure 12. Scatterplots showing relationship between drift rate and EEG. Left panels, Maximum likelihood estimates con-
tained within the posterior for each participant’s mean drift rate across difficulty levels (v.mean) plotted against the slope of
EEG activity averaged across difficulty levels (EEG.mean) for the motion coherence (top) and direction integration (bottom)
tasks. Right panels, Estimates for each participant’s difference in drift rate between difficulty levels (v.diff) plotted against the
difference in slopes of EEG activity between the two difficulty levels (EEG.diff), for each task. Gray represents typically develop-
ing children. Blue represents children with dyslexia.
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required to reach a firm conclusion regarding
these parameters. Seemingly, any group dif-
ferences in these parameters are more subtle
than group differences in drift rate. We note
that the inferential method used by O’Brien
and Yeatman (2021) differed from our own:
while they also fit a hierarchical Bayesian
model, they then extracted point estimates of
diffusion model parameters for each individ-
ual to draw statistical inferences. Importantly,
this means that O’Brien and Yeatman (2021)
ignored the uncertainty in the individual-level
parameters, which can inflate the evidence in
favor of the winning model (Boehm et al.,
2018; Evans and Wagenmakers, 2019).

Together with the results from stimulus-
locked analyses using a similar dataset (Toffoli et
al., 2021), our results suggest that early sensory
encoding of motion information is not altered in
children with dyslexia. While differences in drift
rate cannot completely tease apart sensory and
decision-making processes, in the current study
we found no evidence of group differences in
nondecision time, a measure that includes the
time taken for sensory encoding. Moreover,
Toffoli et al. (2021) showed that early peaks
reflecting motion-specific processing were simi-
lar in children with dyslexia and typically devel-
oping children, with differences arising only
after ;430ms following stimulus onset, specifi-
cally in the motion coherence task. The current
analyses suggest that differences in dyslexia arise
because of the efficiency with which evidence is
extracted from global motion stimuli and inte-
grated toward a decision bound, which is often attributed to parietal
areas (Shadlen and Newsome, 1996, 2001; Hanks et al., 2006; de
Lafuente et al., 2015). Without a comparable form task, it is unclear
from the current study whether reduced evidence accumulation is re-
stricted to tasks that tax the dorsal stream. However, we suggest that,
within the magnocellular/dorsal stream, early sensory processing is
unaffected in dyslexia with group differences emerging only at later
processing stages, including those involved in decision-making.
While this conclusion contrasts studies indicating early alterations of
the magnocellular pathway in dyslexia (Livingstone et al., 1991; Stein
andWalsh, 1997; Stein, 2001, 2019; Giraldo-Chica et al., 2015; Perani
et al., 2021), the global motion tasks used in the current study are not
ideally placed to isolate magnocellular processes (Skottun and
Skoyles, 2006, 2008; Skottun, 2011, 2016). Future work will be
required to determine how specific reduced evidence accumulation
in dyslexia is to visual motion processing. Slower responses have
been reported in dyslexia for other tasks (Nicolson and Fawcett,
1994; Catts et al., 2002), which could reflect pervasive reduced evi-
dence accumulation, and reduced global integrative processes have
been reported in static tasks in children with dyslexia (Franceschini
et al., 2017a). However, slowed responses could arise for different rea-
sons (e.g., increased nondecision time, wider boundary separation),
so diffusionmodel decompositions on various tasks are required.

A number of future research directions emerge. What cognitive
skills other than magnocellular/dorsal stream processing contribute
to reduced drift rate in dyslexia? General processing speed is a
unique predictor of word reading and comprehension (Christopher
et al., 2012); and RAN is a recognized independent contributor to
variation in reading ability, complementing phonological skills (e.g.,

O’Brien and Yeatman, 2021). Future work will need to establish the
extent to which reduced processing speed and slower RAN associate
with reduced drift rate in dyslexia. Additionally, PIQ varied across
our two groups and was associated with drift rate. Exploratorymod-
els revealed that, even when controlling for both age and PIQ, there
was still relatively more evidence for group differences in drift rate
than no group differences. Yet the evidence was weaker than in
models controlling only for age. Importantly, partialling out differ-
ences in PIQ could remove some of the variance related to the
group differences we are interested in, as atypical development
could lead to both dyslexia and reduced IQ (Dennis et al., 2009).
Indeed, PIQ has been shown to strongly predict reading skills, inde-
pendently of phonological skills (O’Brien and Yeatman, 2021).
Future work will need to investigate the contribution of processing
speed and PIQ to decision-making across the spectrum of reading
abilities. Future research will also be required to explain the consid-
erable between-participants variability in model and EEG parame-
ters in children with and without dyslexia.

By combining diffusion modeling and EEG measures that are
sensitive to the multiple processes contributing to motion per-
ception, we have uncovered differences between children with
dyslexia and typically developing children that could not be
observed in behavioral responses alone. Moreover, diffusion
modeling allows motion sensitivity to be measured without con-
founding speed-accuracy tradeoffs. Given that reduced behav-
ioral sensitivity to motion has been reported in a range of other
disorders (Braddick et al., 2003; Chen et al., 2003; McKendrick
and Badcock, 2004), we suggest that diffusion modeling may
provide a useful framework to identify convergence and diver-
gence across different conditions, with implications for

Figure 13. Posterior density plots showing the correlation between drift rate and the EEG measure. Inset, Schematic
representation of the drift rate parameter (v; left) and EEG measure (slope of response-locked waveform from �200 to
0 ms around the response; right) that were correlated in the joint model, where q represents the correlation. Posterior
density plots in the left column reflect the correlation between the mean drift rate across difficulty levels (v.mean) and
the mean EEG slope measure across difficulty levels (EEG.mean). Posterior density plots in the right column reflect the
correlation between the difference in drift rate between difficulty levels (v.diff) and the difference in EEG slope measure
between difficulty levels (EEG.diff). Top row, Plots for the motion coherence task. Bottom row, Plots for the direction
integration task. Orange distribution represents the correlation across all participants. Gray and blue distributions repre-
sent separate correlations estimated for typical children and children with dyslexia, respectively.
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understanding the development of these conditions and their
relationship to other cognitive processes.

Future work should establish whether differences in evidence
accumulation of motion information contribute causally to the
reading difficulties experienced by children with dyslexia. Some
studies have suggested a causal relationship betweenmotion percep-
tion and reading difficulties (e.g., Kevan and Pammer, 2009; Boets
et al., 2011; Qian and Bi, 2015; Gori et al., 2016; Lawton, 2016;
Ebrahimi et al., 2019), so it would be interesting to know whether
evidence accumulation processes can be trained to improve reading
ability. In support of this possibility, action video game training has
been shown to improve motion perception by acting on the evi-
dence accumulation phase (Green et al., 2010) and action video
game training has also been linked to improved reading skills in
children with dyslexia (Franceschini et al., 2013, 2017b; Bertoni et
al., 2019, 2021; Franceschini and Bertoni, 2019). Such causal links
will need to be investigated in future work using training or inter-
vention designs.
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