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A B S T R A C T   

Catastrophic incidents can significantly disrupt supply chains, but most of these disruptions remain localized. It 
was not until the onset of COVID-19 that a disruption in our lifetimes achieved a global magnitude. In order to 
contain the pandemic, governments around the world resorted to closing borders, shutting down manufacturing 
plants, and imposing lockdowns, which resulted in disrupted production capabilities and weakened consumer 
spending. The effects of these measures have been clearly visible in global transport networks, where disruptions 
ripple through the system and serve as a precursor to the disruptions in the broader economy. In this study, we 
use liner shipping schedule cancellations, a form of serious transport network disruption, as distress signals of the 
pandemic's impact on global supply chains. Our study applies a three-stage approach and provides insights into 
operator behaviors when under distress. We show that the pandemic challenged service network integrity and 
that network disruptions first clustered in Asia before rippling along main trade routes. Agile liner shipping 
operations, aided by planned service suspensions, prevented the collapse of the global maritime transport net
works and indicated the maritime industry's ability to withstand even major catastrophic incidents.   

1. Introduction 

Disasters are generally localized and seldom reach global pro
portions. However, the pneumonia cases first reported by China's 
Wuhan Municipal Health Commission on the 31st December 2019 
caused a global emergency that can be characterized as a catastrophic 
incident.1 The novel coronavirus and its accompanying disease, COVID- 
19, were declared a pandemic in March 2020 (WHO, 2020). In April 
2020, the Sustainable Development Group, a United Nations organiza
tion, concluded that the ‘COVID-19 pandemic is far more than a health 
crisis: it is affecting societies and economies at their core’ (UNSDG, 2020 
p.3). 

In the attempt to contain the virus, countries resorted to temporary 
border closings, manufacturing plant shutdowns, and mandated social 
distancing (i.e., a risk-mitigation strategy to lessen human interactions) 
(De Vos, 2020; Hotle et al., 2020). Such measures impacted supply and 
constrained global consumer demand (World Economic Forum, 2020). 
The pandemic's geographical spread started in mainland China, the 
World's manufacturing hub, and quickly impacted global 

importers—depleting stocks and significantly impacting transport net
works (Ivanov, 2020). 

Since the onset of the pandemic, a rich literature has emerged 
regarding the impact of this catastrophic incident on transport networks 
and operations. Initial research highlighted the impact of the pandemic 
on local networks, most notably on public transport and leisure travel 
(De Vos, 2020; Borkowski et al., 2021; Chang et al., 2021; Wang et al., 
2021). As the pandemic spread across international boundaries, 
research started to focus on the passenger and cargo air transport in
dustries (e.g., Bombelli, 2020; Sobieralski, 2020; Suau-Sanchez et al., 
2020). 

Similarly, research in the shipping industry initially focused on the 
cruise segment, which was heavily affected at the beginning of the crisis 
because of high on-board infection rates and eventually had to halt 
operations completely (e.g., Gilmour et al., 2020; Ito et al., 2020). The 
cargo shipping segments did not sustain a complete network breakdown, 
but were nonetheless heavily disrupted. 

Seminal studies (e.g., Verschuur et al., 2021; March et al., 2021; 
Zheng et al., 2021; Guerrero et al., 2022), which were primarily based 
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on ship position and ship status information, confirmed how shipping 
networks were affected during the pandemic's initial phases. However, 
these studies were unable to identify patterns in the disruptions. Dis
ruptions occurred for various reasons, ranging from the difficulty in 
performing crew changes to port restrictions, but also to the sudden 
reduction in consumer demand and the collapse of industrial production 
in many parts of the world (United Nations, 2021). These disruptions 
resulted in shipping network changes. 

In contrast to other shipping networks (e.g., tramp or industrial 
shipping), liner shipping operates on fixed schedules (i.e., liner ser
vices), which constitute the service networks that are designed to be 
scalable and interconnected. Correspondingly, these networks are 
vulnerable to cascading failures, as a disruption in one node in the call 
sequence impacts subsequent nodes. Due to this characteristic, liner 
shipping networks can carry a distress signal once disruptions occur. In 
order to develop robust responses to future catastrophic incidents and 
design resilient networks, it is crucial to understand the network dy
namics during the pandemic's initial phases. 

So far, the literature has only paid limited attention to pandemic- 
related service network dynamics in an industry like liner shipping. In 
a series of contributions, (Ivanov et al., 2014; Dolgui et al., 2018, 2020; 
Ivanov and Dolgui, 2021) investigated transport network disruptions 
and identified cascading failures (also referred to as the ripple effect) as 
a structural dynamic involving a downstream disruption propagation. 
Contrary to the more commonly discussed bull-whip effect, the ripple 
effect is a low-frequency and high-impact supply chain disruption. 
However, this concept has not been applied to service network designs. 
Its application would allow one to capture a disruption type as it hap
pens in liner shipping, where affected nodes impact successive nodes in a 
service call sequence. The operations research literature (i.e., Brouer 
et al., 2013; Li et al., 2015, 2016) has proposed theoretical frameworks 
for modeling impaired calls and the subsequent propagation effects, but 
none have been complemented by empirical investigations of cascading 
failures in ocean shipping networks. 

Against that background, the present research poses and explores 
this question: ‘to what extent and in which manner has the pandemic 
impaired liner shipping networks?’ We study operational behavior under 
distress within network structures, shedding light on whether disrup
tions cluster in geographical areas and ripple effects materialize. Our 
goal is to illuminate the factors behind disruption dynamics and global 
service networks. To this end, we used liner shipping schedule can
cellations—a form of serious transport network disruption and a type of 
distress signal by liner operators—to capture disruption dynamics. 

Our study proposes a three-stage design that relies on network theory 
and simulation. The proposed methodology is based on public notices 
issued by liner operators during the pandemic's initial phases from 
January to May 2020. Such notices are published on the operator's 
website to warn shippers that a service can not be provided as indicated 
in the liner schedule. This information is represented graphically to not 
only visualize the network disruption, but also apply network theoret
ical indicators to measure shifting network dynamics. In addition, we 
benchmark the disrupted network against a simulated one to identify 
cascading failures. 

Our work contributes to transport geography research, and in 
particular, the relationship between transport networks and global 
network disruptions caused by catastrophic incidents. We show that, 
although network connectivity was persevered, the pandemic imposed a 
gradually intensifying shock to some geographical clusters that 
emanated from a local disruption. In addition, this study pioneered the 
usage of public notices as a way for researchers to better embed quali
tative information in future studies of network dynamics. Furthermore, 
this study provides various theoretical contributions to the transport 

geography and disruption management literature. This is, in fact, the 
first study to examine global disruption clustering in liner shipping 
networks, as well as utilize a novel simulation-based benchmark index to 
quantify the ripple effect. 

The remainder of the paper proceeds as follows: Section 2 examines 
the literature on disruption types and disruption management in liner 
shipping. Section 3 presents our process sequence, methods, and rele
vant metrics for capturing the pandemic's disruption impact. In addition, 
the section describes the data sourcing and filtering process. Section 4 
visualizes global disruptions and analyzes network aspects. Section 5 
covers the theoretical and managerial implications of our findings. 
Section 6 outlines the limitations of our study and illuminates future 
research avenues. 

2. Literature review 

Our study primarily relates to research in transport geography and 
disruption management. Within these domains, we first reviewed the 
literature on disruptions in ocean shipping networks; secondly, we 
examined the measures proposed to mitigate the disruption impacts. 
Given our focus on the pandemic's initial phases, we paid particular 
attention to ad hoc responses to distress signals in the network. Note that 
the subsequent review presents the conceptual background, while the 
relevant methodological issues are discussed in the methodology section 
(Section 3) in order to avoid duplication and highlight this study's 
methodological novelty. 

2.1. Disruption types in shipping networks 

Shipping networks enable high supply chain performance, but are 
vulnerable to disruptions arising from asset failures, congestion, adverse 
weather conditions, geopolitical turmoil, or natural disasters (Earnest 
et al., 2012). Disruptions interfere with the service schedule and trans
late into diminished product value and trade options (Calatayud et al., 
2017). Overall, 47% of ocean shipping voyages are impacted by these 
schedule deviations (i.e., 53% of voyages arrive according to schedule; 
Notteboom and Vernimmen, 2009). Indeed, most disruptions are the 
result of common operational issues, such as congestion and mechanical 
failures; only a few disruptions have been caused by black swan events, 
such as terrorist attacks, extreme weather events, and other catastrophic 
incidents. As a consequence, most scholarly contributions on disruptions 
in the maritime sector have focused on common operational issues (e.g., 
Brouer et al., 2013; Qi, 2015). 

Disruptions in ocean transportation can be classified into regular and 
irregular occurrences. The first classification includes instances—such 
as congestion in the passageways/ports or asset failures—that can be 
managed through an Operational Control Center (OCC) that coordinates 
real-time decisions (Brouer et al., 2013). The OCC assesses the risk (e.g., 
the risk that cargo is hindered from passing through the transport 
network) and manages potential adverse consequences. Operators’ risk 
awareness and ability to quantify risk allows firms to generally estimate 
congestion and waiting times and thus schedule recovery time (e.g., 
Wang and Meng, 2012; Li et al., 2015, 2016). The second classification 
includes extreme weather conditions, geopolitical turmoil, or natural 
disasters. The disruptive Fukushima disaster (Dolgui et al., 2018), 
Hurricane Sandy (Verschuur et al., 2020) or the Suez blockage in 2021 
fit into this category—and now, so does the COVID-19 pandemic. 

Discussing such disruptions, Wu et al. (2019) investigated the 
extreme case of maritime channel interruptions. The vulnerability 
analysis showed that those occurrences would significantly raise voyage 
length due to the high dependency on these chokepoints Ducruet (2016) 
in network designs. Earnest et al. (2012) simulated disruptions to the 
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trade network by an unspecified terrorist attack in order to evaluate 
network weaknesses and resilience. The results indicated a negative 
relation between efficiency and robustness (vice versa for efficiency and 
resilience). Rousset and Ducruet (2020) used three case studies (the 
Hanshin-Awaji earthquake, the 9/11 World Trade Center attack and 
Hurricane Katrina) to analyze irregular occurrences with an exogenous 
shock that significantly impacted maritime infrastructures, similar to 
COVID-19. The cases illustrate the adverse impact of catastrophic events 
on interlinked structures close to the source of disruption, while further 
away structures are less affected or even serve as backup systems (i.e., 
showcasing higher economic activity). Another case study, which 
assessed the destruction of the port of Kobe in 1995 due to an earth
quake, presented similar results (i.e., in the post-earthquake period, 
interlinked ports with Kobe were able to gain traffic) (Kosowska-Sta
mirowska, 2020). 

Due to the pandemic's unique disruption risks and exogenous 
nature—a local source spreading to adjunct networks (Ivanov, 2020; 
Ivanov and Dolgui, 2020)—it is critical that liner operators utilize ad 
hoc responses to avoid a network breakdown. The subsequent section 
outlines an array of mitigation strategies that have been observed in 
practice. 

2.2. Disruption response in liner shipping 

Shipping networks’ response to distress depends on the disruption's 
severity and duration. Operators respond to severity and duration at 
various hierarchical levels (i.e., strategic adjustments to the fleet, alli
ance membership or network design, tactical adjustments routing and 
scheduling, or operational adjustments to cargo commitments). 

In reference to a disruption's initial phases, this study reviews 
operational adjustments to network dynamics. Operational responses 
refer to crew scheduling, ad hoc ship rescheduling, cargo booking, or 
cargo routing. Service pricing, managing cargo, and handling sudden 
occurrences are governed under a short-term horizon (Pesenti, 1995; 
Christiansen et al., 2004; Agarwal and Ergun, 2008). 

As a response on the operational level, operators can cancel a service 
commitment by either canceling or omitting a port call. But this 

generates another disruption source, such as causing network connec
tivity problems for the liner operator and interrupting the shippers’ just- 
in-time planning schedules. Thanks to parallel lines on critical services 
(Lam and Yap, 2011), rolled cargo (i.e., cargo that has not been loaded 
onto the vessel it was meant to sail on) is then picked up under another 
service at the same berth in the next service cycle. Liner operators within 
alliances can use horizontal inter-organizational flexibility to roll cargo 
to other members (Mason and Nair, 2013a,b). An alternative means of 
avoiding rolling cargo is to defer a ship's departure (Brouer et al., 2013). 
It should be noted that in liner shipping, there are no penalties associ
ated with rolled cargo, as contractual agreements do not generally cover 
shipper penalties imposed on operators for schedule deviations (Fransoo 
and Lee, 2013). 

With reference to the impact of COVID-19 on ocean transportation, 
most liner shipping operators cancelled service commitments during the 
pandemic's initial phases—first in response to the operational disrup
tions caused by the pandemic and then due to dwindling demand. The 
idle capacity was laid up in anchorage and vessels were diverted on 
longer routes (i.e., avoiding the Suez Canal and favoring the journey 
around the Cape of Good Hope) in an attempt to reduce operational 
capacity and maintain higher ship utilization rates, which are at the core 
of any carrier's bottom line (Pooler, 2020; Pooler and Hale, 2020). 

In sum, this review illustrates the different disruption types that 
occur in liner shipping, as well as the adhoc disruption management 
responses in liner shipping networks. The following section outlines the 
information set used to construct the network and the three-stage 
approach used to investigate ad hoc ship rescheduling. 

3. Research design, data description and methodology 

3.1. Research design 

The objective of our work is to provide insights into the disruptions 
caused by COVID-19 during the pandemic's initial phases and study their 
network effects using public notices. Given the limited amount of 
research on catastrophic incidents in liner shipping, and the absence of 
any study linking catastrophic incidents to public notices, our study is an 

Fig. 1. Methodology process.  
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exploratory analysis that combines qualitative and quantitative 
methods. Our research design makes use of visual and descriptive ap
proaches along with network benchmarking metrics, as well as quan
tifies the ripple effect by means of a benchmark with a simulated 
network. We designed a three-stage research approach as outlined in 
Fig. 1. Our research approach is hence based on (i) visualizing disruption 
dynamics by reconstructing disrupted service trajectories and clustering 
impacted onshore infrastructure; (ii) providing descriptive insights into 
network shifts along the observation horizon; and (iii) constructing a 
simulation-based benchmark index to identify how failures cascade 
along the network. As our research is built on data that has been 
analyzed for the first time, it is expedient to illustrate the characteristics 
of the data and how various databases have been combined before 
providing the details of each method. 

3.2. Data description 

This study utilizes liner operators’ public notices (so-called blank 
sailing notices) and operational liner shipping schedules. This informa
tion enabled us to map the disrupted and undisrupted network (i.e., the 
network that remained operational according to schedule). Since public 
notices show suspended services, they can be used to assess operations 
under distress. Such an information set overcomes the drawbacks 
associated with the use of high-frequency information, such as Auto
matic Identification System data, which indicates ship position but omits 
references to the actual operational state or cause of idling (March et al., 
2021; Verschuur et al., 2021; Zheng et al., 2021; Guerrero et al., 2022). 

Liner schedules are similar to a bus itinerary. The schedule estab
lishes a call sequence, defines the intervals between calls, and assigns 
resources to service the operation. The customers to be served are 
notified (in the liner shipping case, several months ahead) so that pro
duction can be managed. The information sharing between ocean car
riers, logistics providers and shippers is critical for supply chain 
foresight and a fundamental enabler of global supply chain relations. 
Although liner shipping operations can refer to the transport of various 
types of cargo, the term is primarily used as a synonym for container 
shipping. In this sector, most operations are carried out under a 
schedule, in contrast to tramp shipping (where ships seek available 
cargoes without a fixed itinerary) or industrial shipping (in which ships 
and cargo are owned by the same stakeholder) (see Christiansen et al. 
(2004, 2013, 2020) for a discussion of the differences among these types 
of shipping). 

In cases where a schedule disruption occurs as a result of a node 
becoming inaccessible within the call sequence (whether due to opera
tional reasons or even a lack of cargo), the ship operator issues a public 
notice so that cargo owners have an opportunity to reevaluate their 
logistic chain decisions. Against this background, public notices or blank 
sailings refer to the liner operator's ad hoc decision to cancel a service 
commitment. Rescheduling or cancelling a service is a common tool that 
operators use to reduce operational supply and achieve better capacity 
utilization, and thereby maintain service competitiveness and protect 
their bottom line. 

Most rescheduling does not cause major disruptions: During holiday 
periods, for example, cargo demand is lower than usual, and hence 
services can be rescheduled or cancelled with only limited cargo rolling. 
During the Chinese New Year, for example, offices and manufacturing 
plants shut down across China. Migrant workers in the coastal regions 
return to their rural homes, leaving logistic centers understaffed and 
contributing to a reduction in transportation service capacity. This 
causes global trade volumes to diminish, and ship operators respond by 
issuing blank sailings, corresponding capacity-wise to on average 2mil . 
TEU or 94 ultra-large container ships with each able to carry 21,000 
TEUs (DHL, 2021). While disruptions such as the Chinese New Year are 
foreseeable, other disruptions such as those caused by extreme weather 
events, emergency maintenance, or catastrophic incidents also drive 
ocean carriers to adjust operations. 

Public notices are published on the carrier's website or other 
communication channels. They typically include information about the 
impacted service code and the duration of the service commitment 
cancellation. The following is an example of such public notices: 

‘Europe - Middle East & Indian Subcontinent Blank Sailing Announce
ment…April 6 2020…In relation to (’reason’), we have seen a significant 
reduction in demand…blank sailings between (‘X’) service…’2 

In this study, we constructed a baseline network using liner sched
ules (i.e., operated services) that are publicly available for all major 
carriers alongside public notices (i.e., cancelled services). The dataset 
was gathered via online databases maintained by ocean information 
providers that specialize in container tracking (Ocean Insights, 2020) 
and sailing schedules (Linescape, 2020). Moreover, any notices sourced 
via the online database were cross-checked against the liner operators’ 
own public statements. Overall, the samples include 11 different liner 
operators3 with 221 unique suspended service codes (or 1440 overall 
service codes) and scaled on weekly basis {1, 2, …, 22}, i.e., 30th 
December 2019 until 31 st May 2020. Liner operators in the sample 
operated 82.35% (share in TEU capacity) in Q1 2020 and carried out 
most ocean shipping services. 

The sampled data are structured in a similar manner, and include 
information on the liner operator, the service code and direction, and 
the service sequence along the weekly schedule. We used the services 
codes and direction as indices to merge the sailing schedules and public 
notices in order to produce the raw information used in our analysis. A 
data entry example is provided in Table 1. 

The call sequence includes multiple voyages. Individual voyages link 
the nodes, which are captured by a unique code, i.e., United Nations 
Code for Trade and Transport Locations (UN/LOCODE). In the illustra
tion, the first voyage (CNTAO → CNSHA) in the call sequence links the 
Port of Qingdao and Port of Shanghai. Based on the public notice by the 
operator, this service is cancelled in week 18—an operational service 
would be classified as ‘in-operation’. Such classification allows us to 
generate the disrupted and undisrupted networks. 

Due to varying or missing inputs by the operators, we included any 
cancelled service within the aforementioned observation horizon, i.e., 
we disregarded the underlying cancellation reasons, such as non- 
working days, capacity adjustments, or pandemic disruption. Besides, 
we relied on the number of cancelled services as weights rather than 
cancelled capacity due to lacking insights about the withdrawn capacity 

Table 1 
Raw network illustration.  

Type Case 

Sequence CNTAO → CNSHA → CNNGB → KRPUS → USLGB → USOAK 
Path length [393, 139, 498, 5465, 376] 
Carrier MSC 
Service ORIENT 
Direction EB 
Class cancelled 
Week 2020-04-27 - 2020-05-03 

Note: Network nodes and links are based on the service call sequence (UN/ 
LOCODE). Voyages length in nautical miles (nm) within the sequence are esti
mated based on a shortest path algorithm. Services split among eastbound, 
westbound, eastbound and northbound direction. Binary class indicator flags in- 
operation and cancelled services. Scaling based on weekly observations. 

2 Public access via https://www.maersk.com/news/.  
3 Gathered schedule information includes the liner operators: Mærsk, MSC, 

CMA-CGM, Evergreen, Hapag-Lloyd, COSCO, APL, OOCL, Yang Ming, Hyundai 
and ONE Line. 
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(i.e., capacity which would have been assigned via the schedule, but was 
withdrawn due to the cancellation). 

The network obtainable from the public schedules (i.e., undisrupted) 
includes 626 unique nodes and 4,049 unique links, while the network 
including the public cancellation notices (i.e., disrupted) contains 189 

unique nodes and 923 unique links. Each service code (whether dis
rupted or undisrupted) is associated with eastbound, westbound, 
southbound, and northbound direction codes. In addition, some service 
codes are shared by multiple operators with different coverage along a 
service sequence. Due to this overlap, we refer to a service as a schedule 
with a unique code, direction, and operator, which results in 605 sus
pended services. 

3.3. Methodology 

Network theory allows us to observe the structural relations among 
nodes and links in a network. It also implies that ‘Locations are not 
unique’ (Bunge, 1966, p. 100) (i.e., nodes in a network possess distinct 
properties, but are not fundamentally ‘like nothing else, singular, inde
scribable’ (p. 237)). This corresponds to the notion that a node (i.e., port 
locations in ocean shipping networks) embedded in a structure shares 
similar features with its neighbors, revealing the interdependence be
tween connected points. Consequently, a disruption pressures liner 
shipping operators to initially adjust relatively connected network 

Fig. 3. Blank sailing mapping and cluster - January–May 2020. Note: Weekly blank sailing services transformed to monthly observations. Disrupted trajectories (i, j) 
are relinked via the Dijkstra's shortest path algorithm. Manual adjustments applied to designate the Northern Sea route as unfeasible solution. Clusters centroids are 
assigned via Hartigan's Leader algorithm with a fixed radius (R ≈ 1774.3nm), i.e., mean trajectory length in observation horizon. Cluster size aligns with the ratio of 
blanked sailings to operational services. Maps are displayed using the Lambert azimuthal equal-area projection (World Geodetic System 1984 (WGS84)). 

Fig. 2. Network simulation benchmark.  
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Fig. 3. (continued). 
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Table 2 
Network analysis.   

January February March April May  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Descriptive 
∑

v  107 113 103 134 133 126 139 136 154 133 140 145 140 131 130 128 144 128 128 134 134 135 
∑

v/
∑

V  0.18 0.19 0.17 0.22 0.22 0.21 0.23 0.23 0.25 0.22 0.23 0.24 0.23 0.22 0.21 0.21 0.23 0.21 0.21 0.22 0.22 0.25 
∑

e 309 289 276 390 392 426 464 416 449 418 416 474 411 426 398 412 394 396 429 400 390 400 
∑

e/
∑

E 0.09 0.08 0.08 0.11 0.11 0.12 0.13 0.11 0.12 0.12 0.11 0.13 0.11 0.12 0.11 0.11 0.11 0.11 0.12 0.11 0.11 0.15 
∑

λvfv  940 1033 948 920 726 827 974 906 858 1007 1178 858 965 1067 961 823 936 879 902 703 866 849 
∑

λVfV 503 496 497 497 516 500 491 503 497 489 483 492 493 483 490 496 492 484 484 479 466 454 
Indices 
∅n 16 13 16 13 13 13 13 14 15 12 16 16 13 11 14 11 14 13 16 12 18 12 
∅n/∅ N 1.14 0.93 1.14 0.93 0.93 0.87 0.87 1 1.07 0.8 1.14 1.14 0.87 0.73 0.93 0.79 0.93 0.87 1 0.86 1.2 0.75 
βn 2.89 2.56 2.68 2.91 2.95 3.38 3.34 3.06 2.92 3.14 2.97 3.27 2.94 3.25 3.06 3.22 2.74 3.09 3.35 2.99 2.91 2.96 
βn/βN 0.5 0.43 0.45 0.48 0.49 0.56 0.56 0.51 0.49 0.53 0.5 0.55 0.49 0.55 0.51 0.55 0.46 0.52 0.57 0.52 0.51 0.62 
γn 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.02 
γn/γN 2.79 2.32 2.66 2.19 2.25 2.74 2.45 2.27 1.95 2.41 2.18 2.33 2.14 2.55 2.41 2.63 1.98 2.48 2.69 2.36 2.32 2.54 
CDn  0.09 0.13 0.08 0.1 0.1 0.17 0.13 0.12 0.12 0.12 0.15 0.16 0.13 0.17 0.13 0.12 0.1 0.13 0.1 0.13 0.15 0.16 
CDn /CDN  0.73 1.05 0.64 0.74 0.76 1.35 0.97 0.88 0.94 0.93 1.2 1.28 0.98 1.39 1.05 1.01 0.82 1.08 0.81 1.08 1.26 1.47 
CBn  0.25 0.43 0.2 0.27 0.25 0.4 0.29 0.28 0.34 0.22 0.33 0.35 0.31 0.37 0.29 0.27 0.27 0.31 0.21 0.35 0.3 0.37 
CBn /CBN  1.17 1.89 0.83 1.16 1.04 1.86 1.27 1.21 1.56 0.89 1.48 1.57 1.29 1.77 1.37 1.22 1.18 1.35 0.88 1.44 1.4 1.66 
C(g)n 0.29 0.21 0.23 0.25 0.26 0.26 0.27 0.27 0.27 0.26 0.28 0.28 0.27 0.25 0.28 0.26 0.28 0.24 0.29 0.26 0.25 0.23 
C(g)n/C(g)N 1.15 0.84 0.91 1 1.01 1.06 1.09 1.07 1.06 1.04 1.11 1.12 1.08 0.99 1.12 1.02 1.12 0.97 1.13 1.03 1.01 0.97 
C(l)n 0.31 0.23 0.27 0.29 0.32 0.33 0.33 0.32 0.3 0.31 0.32 0.38 0.35 0.34 0.32 0.35 0.34 0.27 0.3 0.29 0.35 0.35 
C(l)n/C(l)N 0.69 0.49 0.58 0.63 0.69 0.71 0.72 0.7 0.65 0.68 0.7 0.83 0.77 0.75 0.7 0.77 0.73 0.58 0.64 0.66 0.77 0.82 
Simulation 
LB NA 0.34 0.34 0.36 0.41 0.38 0.39 0.42 0.42 0.37 0.46 0.41 0.43 0.47 0.46 0.38 0.39 0.39 0.46 0.41 0.43 0.45 
UB NA 0.21 0.21 0.29 0.26 0.28 0.29 0.28 0.28 0.25 0.28 0.28 0.26 0.27 0.27 0.27 0.27 0.25 0.3 0.26 0.26 0.33 

Note: Overall distinct disrupted vertices (
∑

v) and edges (
∑

e) with benchmark against undisrupted structures, represented as a fraction (
∑

v/
∑

V, sum e/sum E). Shortest path in nautical miles for undisrupted and 
disrupted vertices as weigthed mean (

∑
λf), i.e., based on path frequency (f). Diameter is the length of the shortest path between the most distant nodes, i.e., disrupted network (∅n and as benchmark ∅n/∅ N). Beta index 

accounts for network complexity (βn and as benchmark βn/βN). Gamma Index measures connectivity (γn and as benchmark γn/γN). Degree and betweenness centrality index for the disrupted network captured by CD and CB, 
including respective benchmarks. Transitivity (global) (C(g)) refers to the overall clustering coefficient and transitivity (local) (C(l)) describes the average clustering coefficient. 
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structures and focus on distant ones at a subsequent stage. Once an 
ocean carrier adjusts its service, a distress signal is dispatched along the 
network. 

This study renders these distress signals into a network representa
tion, which allows us to characterize the network's size (overall vertices 
and edges), complexity (i.e., overall nodes and links ratio), connectivity 
(i.e., overall connectivity), centralization (overall node importance), 
and clustering (i.e., community structures). A simulated benchmark, 
which reconstructs the disrupted network and remaining operations 
within the network along the observation horizon, allows us to generate 
insights into the degree and dynamic of the disruption. 

The visualization and descriptive network analysis stages (i-ii) align 
with standard network analysis approaches in transportation science 
(Ducruet, 2020). In ocean network research, these approaches have 
become common practice due to available high-frequency information 
(Ducruet et al., 2010). As an illustration, a network analysis approach 
has been used to evaluate global maritime structures (Ducruet and 
Notteboom, 2012b), trade flows (Ducruet, 2013), onshore infrastructure 
networks (Ducruet and Notteboom, 2012a; Wang and Cullinane, 2016), 
or vulnerabilities in liner shipping networks (Calatayud et al., 2017). 
Ducruet and Beauguitte (2014) and Borgatti (2005) provided a thorough 
review of network analysis techniques and applications. The network 
simulation stage (iii) proposes a network theory simulation approach to 
examine the manner the global disruption impaired links in the liner 
network. Such an approach joins network theory (i.e., structural re
lations) and an iterative simulation method. The framework relies on 
prior works concerning disruption propagation and interdependent 
networks (e.g., Crucitti et al., 2004; Wu et al., 2007; Tang et al., 2016). 

3.3.1. Network visualization 
The visualization stage serves to provide a geographical perspective 

on the liner shipping network disruption. In order to reconstruct sus
pended service trajectories, we solve a shortest path problem to link the 
impaired vertices (i, j). Based on the gathered public notices, which 
include the service code and cancelled service sequence, we join each 
vertex in the sequence with its geographical coordinates i[long,lat] → j[long, 

lat]. Dijkstra's algorithm is a classical dynamic programming approach to 
solve such a problem (Dijkstra, 1959). Given a raster projected as graph 
G = (V, E) with respective vertices (V) and edges (E), the shortest path 
along a source node i and sink node j is iteratively estimated until an 
optimal solution is achieved. As an illustration: The Westbound Asia to 
Europe service is cancelled, which includes the voyage - Felixstowe (GB) 
to Rotterdam (NL). A linear path linking these nodes would yield the 
shortest path, intersecting landmasses (i.e., unfeasible paths for 
waterway transportation). To visualize these cancelled voyages, we 
initially deemed direct (i.e., tangent landmasses) or unrealistic trajec
tories (i.e., Northern Sea route) as unfeasible. We then generated a 
rasterized map that only included feasible intersections with an edge 
cost (c(e) = 1). The cost to traverse along i→ to the next intersection is 
estimated until all paths options are exhausted, and the shortest path to j 
based on the lowest edge cost is selected. 

Subsequently, we applied Hartigan's Leader algorithm (Hartigan, 
1975) to the whole network. Such an algorithm is suitable to clusters’ 
geographical points based on a fixed radius (R) and larger data sets 
thanks to fast convergence. Notably, we chose to use the average distinct 
trajectory length along the observation horizon, i.e., R ≈ 1774.3nm. 
Through clustering, one can uncover ‘possible small worlds or strongly 
interconnected components’ (Ducruet et al., 2010, p. 513), i.e., onshore 
infrastructure in proximity. By combining this data with information 
about disrupted services, which intersect these clusters, we can estimate 
the regional impact. Note that a service refers to the unique operators, 
service registration and direction code. Cluster sizes are proportional to 
the benchmark index 

⃒
⃒Dcτn

⃒
⃒/
⃒
⃒Scτn

⃒
⃒, where ∣Dcτn ∣ are disrupted services and 

∣Scτn ∣ are all services in the respective cluster c at observation period τn, 
so that cluster sizes show the size of the disruption relative to the size of 

the cluster. 

3.3.2. Network description 
The descriptive analysis stage is similar to the structure proposed by 

works such as Ducruet and Notteboom (2012b) or Calatayud et al. 
(2017). In contrast to prior cited works, this study considers time-variant 
disrupted (D) and undisrupted (S) networks. Our choice of network 
metric was guided by three objectives: (i) capturing the disruption 
magnitude, which seeks to estimate the disrupted and undisrupted 
network size (i.e., to what degree were nodes and links within the 
transport network affected?); (ii) analyzing network connectivity and 
centrality in order to provide insights into interrelated/-connected 
disruption response behavior (i.e., to what degree an impacted link is 
connected to other impacted links?); and (iii) determining the most 
impacted network segments (i.e., central hubs or rather the spokes?). 

Network size includes the overall vertex (
∑

v) and edge number (
∑

e), 
and weighted mean trajectory distance (

∑
λvfv) with λv as the distance in 

nautical miles. As an illustration, in case D ≪ S applies in relation to the 
overall vertex and edge number, then the disruption can be considered 
as minor. Vice versa would imply that the disrupted network is signifi
cantly larger than the undisrupted network (i.e., just a small segment of 
the whole network remains in service). 

Simple indices encompass network diameter (∅) (i.e., shortest path 
length between the most distant network vertices), Beta index (β) (i.e., 
overall complexity as links over nodes ratio) and Gamma index (γ) (i.e., 
absolute connectivity as actual links and possible links). A low ∅ in
dicates a more connected network while the opposite applies to the β or γ 
index. The case D ≪ S implies more connectivity and/or that the D 
network is smaller and less complex. 

Complex indices are the overall degree centrality (CD), betweenness 
centrality (CB), local (C(l)) and global (C(g)) clustering coefficient. As an 
importance measure, centrality was initially applied to social networks 
(Freeman, 1978; Fleming and Hayuth, 1994; Borgatti, 2005). The degree 
centrality CD refers to the edge number a vertex (i) shares with another 
vertex (j) with ai j = 1 if a direct edge is given, otherwise zero, i.e., CDi =
∑n

j=1ai j —which illustrates a vertex's importance within a network. 
The overall degree centrality refers to the 

∑
CD 

of the network 
vertices, i.e., used in this study as a graph-level centrality index. The 
betweenness centrality CB refers to a vertex (i) connecting other vertices 
on the shortest path (SP), i.e., a path with the smallest edge number. The 
overall sum of the SP between two vertices (i j) is σi j, while σi j(g) is the 
SP number through g, i.e., CB(g) =

∑
i∕=g∕=j∈Nσi j(g)/σi j (Calatayud et al., 

2017). A single disruption within a network hub and with limited local 
propagation would suggest a high CD, while a high CB implies that more 
vertices are directly interlinked. 

In addition, the transitivity or so-called clustering coefficient is 
quantified, i.e., overall network to contain adjacent nodes inter
connected. This clustering coefficient indicates the presence of com
munities (or clusters). Global transitivity (C(g)) is the ratio between the 
triangle (i.e., referring to three vertices with three pairs connected 
—closed triplet) and the triplets (i.e., both open triplet with two pairs 
and closed triplet). In contrast, local transitivity (C(l)) is the ratio be
tween the triangle number and the triplets that are centered on indi
vidual vertexes, i.e., showing how close a vertex's neighbors are to being 
a community. Indicating network interconnectedness, a low coefficient 
suggests a network with a highly connected hub and less connected 
immediate neighbors, while a high coefficient can show tight commu
nities with homogeneous structures (Ducruet, 2016). As a point of 
clarification, a disruption dynamic that aligns with the underlying 
network (i.e., concentrated on hubs and phasing out on spokes) would 
yield a ratio closer to one. 

3.3.3. Network failure simulation 
The cascading simulation stage examines the manner in which the 

disruption spreads through the liner shipping network. Despite the more 
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recent shift toward direct voyages (Fransoo and Lee, 2013), liner ser
vices are multi-call operations (i.e., transit or/and transshipment voy
ages within a service). As liner networks are interdependent structures, 
cancelling a service impacts voyages within the respective service and 
successive voyages interlinked with the disrupted service. While other 
services can pick up stranded cargo in the operator's network, capacity 
constraints pose an additional strain on the network. Ivanov et al. 
(Ivanov, 2020; Ivanov and Dolgui, 2020) classified this disruption type 
caused by the pandemic as ‘ripple effects’, which refer to a disruption 
type that causes cascading failures along a logistic chain. Such effects are 
described as ‘the impact of a disruption on SC performance and 
disruption-based scope of changes in the SC structures and parameters’ 
(Ivanov et al., 2014, p. 2155) and occur if ‘a disruption at a supplier or a 
transportation link cannot be localised and spreads out to other parts of the 
SC’ (Ivanov, 2017, p. 2). 

Operations research has examined the ripple effect in regard to the 
liner schedule recovery problem (i.e., Brouer et al., 2013; Li et al., 2015, 
2016). Besides the optimization-based methods used to model the ripple 
effects/cascading failures, the network theory literature stream has 
proposed various simulation-based approaches. 

Such approaches are particularly suitable for modeling network 
failures due to their ability to cope with time variance. The seminal 
study by Crucitti et al. (2004) modeled cascading failures by removing 
nodes. Distressed nodes (i.e., nodes unable to dynamically redistribute 
capacity) caused a network breakdown, pointing to the importance of 
robust network designs. Wu et al. (2007) advanced the prior study by 
incorporating various node removal strategies in a scale-free traffic 
network (i.e., adding traffic flows to the system until a breakdown oc
curs), highlighting that failures are underpinned by both structural de
pendencies and functional overloads. Tang et al. (2016) outlined an 
interdependent dual network structure and examined time-varying 
cascading failures using node removal strategies, showing that even a 
small number of impairing nodes leads to a system collapse. In order to 
quantify the given failures in a static and dynamic supply chain network, 
. Sokolov et al. (2016) used a multi-stage process that included 
graph-theoretical performance indicators, such as connectivity coeffi
cient, complexity and centralization index. Chauhan et al. (2021) 
studied the relationship between network topologies (i.e., interlinkages 
with structural features) and cascading failures. Based on a simulated 
disruption, their study uncovered high robustness and lower resilience 
under nested networks, while hub disruptions critically challenge these 
structures. 

The prior outlined works are primarily theoretical in nature and 
lacks an empirical validation of cascading failures (reviews by Dolgui 
et al., 2018; Llaguno et al., 2021). We used the graph-theoretical 
simulation frameworks as a basis to design a novel cascading failure 
index, which inverses the node removal strategy—adding nodes to a 
simulated set and benchmarking it against a benchmark set. The index's 
objective is to indicate whether a disruption spread occurred under to
pological specifications. The spread refers to cascading failures that 
impacted successive nodes in a network. As indicated in Fig. 2, the 
network is split into a benchmark and simulation subset in order to 
enable the validation process. 

The successive-distressed nodes are selected using the topological 
distance (in nautical miles) and underlying dynamic network structure. 
The first criteria allows us to gain insights into the disruption's reach, i. 
e., it can be assumed that a node even with a direct link to the disruption 
is less impacted when it is not in said disruption's proximity. The latter 
criteria ensures that the dynamic's endogenous conditions are preserved, 
i.e., selected nodes are based on the underlying network within the given 
observation frame/simulation step. Using a similarity index (Φ), we 
iteratively benchmarked the simulated and true disruption. The resulting 
index close to Φ = 0 indicated that no disruption propagation occurred, 
while a disruption with an unmitigated spread through a network equals 
Φ = 1 (i.e., cascading failures until the whole interconnected network is 
impacted). In the pseudocode the proposed approach is outlined. 

Pseudocode:. Network simulation benchmark  

4. Network analysis results 

4.1. Network visualization 

Stakeholders started to respond to the disruptions caused by COVID- 
19 (as a catastrophic incident) on the 27th January, when the Chinese 
government announced that it would prolong the public holidays to 
contain the pandemic's spread. Social distancing and production ca
pacity shutdowns resulted in operators publishing blank sailing notices 
through their communication channels. 

We utilized the previously outlined information sets to provide a 
geographical perspective on the liner shipping net- work disruption as 
outlined in Fig. 3. Each cluster was assigned to a unique identification 
code (cluster = {1, 2, 3, …, c}). Nodes in the clusters are outlined in 
Table 3 in the Appendix. Shifting network dynamics are visualized by 
assigning the public notices to their respective observation ranges. 

Overall, the pandemic can be split into distinct disruption phases. 
During the pre-COVID phase, suspended services, in absolute terms, 
were concentrated in North-Eastern Asia due to the Chinese New Year. 
Once the pandemic started to evolve, cancellations propagated to 
transshipment hubs in the Middle East and Singapore and then spread to 
the Pacific and Atlantic trade lanes.  

(i) During the pre-COVID phase in January 2020, seasonal blank 
sailings were dominant, with retail sales especially dropping in 
North America as the Chinese New Year preparations unfolded. 
Particular clusters around North Asia and South-East Asia indi
cate that most notice issues took place in these areas, subse
quently impacting the Panama Canal and the Suez Canal. It is 
worth noting that the small cluster around the North-American 
East Coast showed more suspended services than the West Coast.  

(ii) Multiple disruption clusters emerged in North-East Asia in 
February 2020 as a byproduct of the Chinese New Year and the 
subsequent shutdown of manufacturing plants. The lack of on- 
side staff to move the cargo caused shippers to cancel services. 
In particular, cancellations impacted ports along the Chinese 
coastline (Yu, 2020; Saul, 2020), which connect the northern 
manufacturing hubs with international importers. A surge in 
canceled services is visible on the North-American West Coast 
and in Intra-Asia trades, indicating a strong disruption to the 
Pacific trades. 

(iii) A slight recovery is visible in March 2020, which can be attrib
uted to cargo delays in the prior month. Cargo stored on berth in 
Northern Asia was channeled back into the global supply chain 
(United Nations, 2021), resulting in fewer suspended services, 
particularly in the North-America West Coast. In contrast, there 
was a surge in secondary services bound to South Africa and Latin 
America.  

(iv) In April 2020, blank sailings impacted the service network to a 
lesser degree, pointing to the weakening of the first pandemic 
shock and a shift toward the economic one, i.e., the ‘interim’ 
period between lockdown and diminishing demand higher up the 
value chain. The European cluster was distinct in terms of a sta
bilization on a high distress level.  

(v) In May 2020, nearly all clusters saw a multi-source disruption 
resurgence. It is worth noting that most service suspensions 
occurred at the end of April until mid-May—an observation 
shared with the World Bank report (Bank, 2020) on COVID-19 
disruptions. While suspended services were still concentrated in 
Asia, more intermediate trades displayed a disruption, such as in 
the Indian Sub-Continent, in Central America and in West Africa. 
Disruption clusters in North America, and to some extent Europe, 
constitute an outlier. Whether the pattern in Europe could be 
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interpreted as a recovery, due to waning COVID-19 infections 
starting in May or growing consumer spending driven by stimulus 
in the United States, remains speculative. 

The global pandemic can be seen as a crisis with an exogenous origin, 
which imposed a sudden shock to liner shipping networks. However, the 
visual analysis does not indicate that the pandemic impaired the whole 
liner shipping network. This is similar to the findings of previous studies 
on maritime networks following the pandemic (March et al., 2021; 
Notteboom et al., 2021; Verschuur et al., 2021; Guerrero et al., 2022). 
The charts below show that the ratio between suspended to operational 
services hovered between 19.6% and 26.4% during the observation 
period (i.e., line graph). The operational services in the clusters (i.e., bar 
graph) point to the overall tendency that larger clusters were 

disproportionally impacted by blank sailings. Against this background, 
the pandemic can be characterized as a disruption along main trade 
route clusters with an origin in Intra-Asia trades and a relatively sig
nificant disruption in North America. This is because merchandise trade 
is primarily East-West, rather than North-South and important 
manufacturing hubs are situated in East Asia. As networks became 
increasingly distressed, the shock became visible in the United States 
given the country's high dependency on imports from China. 

4.2. Network description 

Recognizing that the disruption phases are systematic, we delineated 
between a pre-COVID phase in January 2020 and a pandemic disruption 
in the subsequent observations. Notwithstanding data limitations, our 
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work captures the shift along the initial pandemic phases. Table 2 out
lines the network dynamic on a weekly basis for the period between 30th 
December 2019 and 31st May 2020. The available information for the 
months of January allowed us to benchmark disruption occurrences 
between the period before the effects of the pandemic became notice
able (i.e., week = {1, …, 4}, pre-COVID) and the following four months 
(i.e., week = {5, …, 22}). We argue that the disruption to the network in 
the early months of 2020 can be primarily attributed to seasonal dis
tortions. Yet, it should be noted that a true benchmark (i.e., comparing 
operations under normal conditions with operations during the 
pandemic) would require multiple year-on-year network information. 

In January 2020, on average, ≈114 vertices in the liner network 
were impacted; during the disruption, this number rose to ≈135 
vertices, constituting a 18.6% increase. The pandemic disruption peaked 
in week 9 with 154 affected vertices, implying that 25% of the network 
endured distress. Another peak can be observed in week 22, although the 
overall operational network size diminished due to the suspended ser
vices. A similar pattern is observable in the number of the edges: in the 
‘normal’ phase, ≈316 links (i → j) were disrupted, and in the pandemic 
phases, this grew to ≈417 links. This suggests that disrupted connections 
increased by 32.0%. Against this background, the network size 
measured by vertices was impacted to a lesser extent than the actual 
connectivity. 

Meanwhile, there was a 5.8% decrease in the length of disrupted 
links (in nautical miles), comparing the ‘normal’ and pandemic phases. 
In contrast, the operational links length dropped by just 1.9%. In 
conjunction with the significant difference in link length, it can be 
inferred that suspensions occurred foremost on long-haul services, with 
a slight tendency toward blanking shorter links. This observation is 
supported by the prior visual analysis, which highlighted the disruptions 
to the Pacific and Atlantic trades. 

The network diameter was 14.5 in the pre-COVID phase, but 

diminished by 5.7% to 13.6
– 

in the subsequent phases. This suggests that 
the disrupted network become more connected as the disruption prop
agated over time. In other words, the shortest path length between the 

most distant network nodes diminished, implying that a disruption 
propagation occurred that linked the network more tightly. 

The average diameter value of the benchmark index for the whole 
observation period, considering the disrupted over the operational 
network, was ≈0.95, which indicates that the disrupted shortest dis
tance between the most distant points aligns with the operational one. 
The beta index supports the insights provided by the diameter (i.e., the 
disrupted network becomes more connected), as well as indicates that 
the network includes several circuits. This latter point can be explained 
by the liner schedule design, with paths terminating in the source point. 
The gamma index, measuring the theoretical maximum connectivity (i. 
e., observed links and possible links), indicates that the disrupted 
network is far more connected than the undisrupted network. 

The total degree centrality in the ‘normal’ phase was, on average, 
≈0.1 and grew by 33.2% to ≈0.13. This implies that the disrupted 
network's completeness rose (i.e., nodes sharing more links with other 
nodes in the network). In the same way, the benchmark against the 
operational network rose by 35.6% and reached an index above 1, on 
average, during the pandemic phases. Overall, this means that the dis
rupted network features a greater number of nodes sharing more links 
with other nodes in the network than does the operational network. The 
betweenness centrality shows a more moderate increase of 7.5% and, 
barring a few outliers, ranged above 1 in all observation points. On a 
graph level, this index displays that the average disrupted points within 
the network are more accessible (i.e., suggesting a possible stronger 
impact on hubs). 

The global and local transitivity (i.e., overall clustering coefficient 
and average local clustering coefficient) grew respectively by 7.6% and 
by 19.0%. In light of this result, it is notable that the share of tightly 
connected communities increases when comparing the ‘normal’ to the 
‘pandemic’ disruption network, and that clustering in the disrupted 
network is significantly higher than in the operational network. In 
contrast, local transitivity is lower in the disrupted network. 

As a whole, the descriptive stage of the analysis indicates that the 
disruption impacted around one-fifth of the network: Mainly ocean 
voyages rather than short-sea operations. A more connected and com
plete disruption network hints at some degree of a disruption propaga
tion. Finally, network clustering was significantly more present in the 
disrupted network than in the operational one. While the disruption 
imposed a strain on liner shipping operations and affected several links 
in the network, we cannot talk of a network breakdown (i.e., complete 
suspension of trade across macro-regions) on the basis of the data used. 
The liner shipping networks appeared extremely resilient. 

4.3. Network failure simulation 

While the descriptive stage highlighted a more connected and com
plete disruption network during the observation period, we were able to 
identify some disruption propagation. We propose a simulation-based 
benchmark index to shed further light on the disruption dynamic of 
cascading failures. Such failures spread through the system in response 
to a rare event (Dolgui et al., 2018). In maritime systems, these 
cascading failures constitute the ripple effect and are observed within 
geographical constraints, with points in the vicinity of the disruption 
source experiencing a shock that propagates along the network (Rousset 
and Ducruet, 2020). 

We assessed the degree and condition (i.e., given λ as scaling vari
ables) to which a disruption propagates step-wise in a sequence i → j and 
j → z through the network. This approach scales the distance to the 
initial node under distress in order to capture the geographical and time- 
variant disruption behavior. We specified the disruption's minimum and 
maximum reach on a direct link by defining a lower boundary (LB) and 
an upper boundary (UB). As indicated in Table 2, the underlying 
disruption (χ) is more similar to the LB than the UB, suggesting that the 
disruption spread in a geographically constrained manner. Given this 
observation, we conclude that, at a minimum, a local propagation 

Fig. 4. Network simulation - Weekly instances τ1− 22. Note: Iterative approach 
with pre-step simulation basis in τn and a step-wise estimation considering the 
lower- (LB), upper bound (UB) and a scaled distance window. UB equates to 
joining any matching voyage, i.e., jζτn

= iℤτn+1
. LB equates to joining voyages via 

the shortest path distance, i.e., minλ
ij→

. Distance window joining j in ζτn and i in 

ℤτn+1 based on λ ≤ {250,500,…,Λ}. λ expressed as nautical miles. Sets are 
benchmarked against χ using the Jaccard index (Φ), i.e., J(χτn+1

, ζτn+1 )

= |χτn+1
∩ |/|χτn+1

∪ ζτn+1 |. 
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occurred. Along the observation horizon (τ), a slight upwards drift is 
visible, implying that χ converges with the simulated ripple effect 
behavior as more nodes in the system are impacted. 

The use of a scaling variable allows some further observations. As 
shown in Fig. 4, for τ = {11, 14, 19} the similarity index peaks in mid- 
March, April and May. Such a pattern is consistent with a disruption 
propagation in March (i.e., shift from an Intra-Asia and Pacific trade to 
secondary clusters) and a resurgence of disruptions in May, which 
impacted almost all clusters. It is worth noting that the LB was just 
crossed once in week 4, i.e., the actual disruption and the simulated 
disruption with a higher reach were more similar than the actual 
disruption and the lower bound (LB) simulated disruption. Whether this 
is a statistical anomaly or relates to the initial shock in January's last 
week is difficult to assess. Overall, the index points to a propagation that 
unfolds at least locally, but does not seem to indicate an unmitigated 
spread throughout the liner shipping network. 

5. Discussion 

From the analysis presented above, we can infer that, despite its 
global nature, the pandemic (at least in its initial phases) has been a 
geographically-constrained disruption: A single local source spreading 
to a limited number of adjunct clusters within the liner shipping 
network. Some local disruption propagation altered network structures, 
resembling what has been described in theory as the ripple effect (Dolgui 
et al., 2020; Ivanov and Dolgui, 2021). A disruption that imposes 
contextual failures of a similar magnitude in various locations—rather 
than the more gradually intensifying shock from a specific geographical 
cluster like we observed—could have resulted in a much more impactful 
disruption, challenging whether liner shipping operators would have 
been able to prevent the collapse of the system. It can be argued that 
disruptions with local propagation enable the system to adapt to and 
cope with the adverse implications of the disruption. This seems to 
suggest that diversification and polycentric networks would work as a 
resilient approach to even more severe network disruptions. 

As highlighted by the network size benchmark among undisrupted 
and disrupted services, the disruption impacted a limited portion of the 
global liner network, where between 19.6% and 26.4% of services (or 
between 17% and 25% of nodes in the network) were affected 
throughout the whole observation period. From this, we can presume 
that liner operators’ response measures (e.g., service rescheduling and 
cancellation) mitigated the disruption's impact, providing a safeguard 
against a complete network breakdown. Canceled service commitments 
served as redundancies or so-called robustness reserves, enabling system 
flexibility and reducing the magnitude of the impact of the catastrophic 
event, in line with theory (Ivanov et al., 2014; Dolgui et al., 2018). 

Overall, the pandemic's initial phases from January to May 2020 can 
be characterized foremost as a story about disrupted manufacturing 
hubs in East Asia and high trade dependency between Asia and North 
America. Other clusters, such as Europe, and trade hubs in West Asia and 
the Indian sub-continent also reported distress. Smaller North-South 
trades (i.e., Latin America and Africa) were impacted to a lesser 
extent, showing resilience to the global pandemic. As a consequence, 
this study indicates that, at least initially, the disruption was contained 
within some geographical dimensions. 

It is interesting that some of the nodes most affected were not those 
in proximity of the source of disruption, but those characterized by high 
connectivity and lower call frequency. This seems to support the 
observation that trade dependence on a limited number of countries is a 
potential source of risk if those sourcing countries are affected by a 
network disruption. When comparing the impact of the network dis
ruptions between Europe and North America, the former seems to 
possess a higher resilience in its maritime networks. Of course, it would 
be important to further test this observation by investigating the 
disruption dynamics in the later months of the pandemic. 

From a broader perspective, the horizontal inter-organizational 

flexibility provided by strategic alliances within the liner shipping 
sector allowed firms to preserve some connectivity within the system, 
even in the wake of the health emergency and the widespread economic 
activity closures. As the analysis of the liner schedules indicated, oper
ators introduced parallel services on key lanes or shared service codes.4 

These management practices, aimed at maintaining high capacity uti
lization levels, helped to minimize the liner operators’ overcapacity, as 
suggested in the literature (e.g., Agarwal and Ergun, 2008, 2010) and in 
general fostered operational resilience. The more effective management 
of capacity, due to better collaboration, underpins the sector's surpris
ingly sustained earnings. 

Additionally, it should be noted that the network failures resulting in 
the cluster disruptions followed a domino or snowball effect as predicted 
in the literature (Ivanov, 2017). That likely impacted not only the 
shipping sector, but also the hinterland transport networks. The wors
ening consequences with each ripple are likely to have resulted in higher 
inventory costs, re-bookings, loss of perishable goods, and a decline in 
customer satisfaction. Moreover, planning unreliability due to cancelled 
transportation services eroded trust between contract parties, although 
we expect that the global nature of the pandemic will have mitigated this 
erosion. Overall, this process might have reduced shippers’ power over 
their own access to the transport network, which potentially ripples 
back to the operators and leads to lower revenues in the long-term. 

Although the ripple effect was mostly observable at a cluster level 
during the initial phases of the pandemic, its implications are potentially 
far-reaching. In hindsight, it seems possible that the freight rate hike 
that started in the second half of 2020 might be the longer tail of the 
ripple effect, compounded by the impact of a longer pandemic duration. 
In fact, the mitigation efforts carried out by ocean carriers are likely to 
cause a longer-term capacity reduction due to carriers delaying invest
ment in new tonnage and taking a conservative approach before 
increasing operational capacity. As economic activity accelerates, net
works may slowly adapt to higher demand levels and their operational 
capacity may grow slowly in tandem. 

6. Conclusions 

Ocean shipping networks offer a useful illustration of how disruption 
dynamics propagate on a global scale. Reoccurring disruptions create an 
opportunity to draw insights (i.e., disruption magnitude, length, and 
frequency) from historical data, enabling the industry to anticipate and 
mitigate interruptions to operations. By contrast, the pandemic was an 
irregular occurrence with an exogenous origin, which proved to be a 
challenging event for the industry. The disruption simultaneously 
impacted health and economic systems in an unprecedented manner 
(Ivanov, 2020). 

In this study, we used distress signals published by liner operators to 
quantify the pandemic disruption's initial degree and dynamic. Our 
work's theoretical contribution is that we assessed for the first time 
operational behavior under distress, highlighting disruption clustering 
and cascading failures in liner shipping networks. We showed how the 
pandemic imposed a gradually intensifying shock to some geographical 
clusters while operators tried to preserve network connectivity through 
a three-stage network analysis. We show that a local disruption propa
gation occurred, providing some empirical evidence to the cascading 
failures in ocean shipping networks. We argue that the suspended ser
vices by liner operators, which served as a risk mitigation strategy, 
eroded the contractual relationship with shippers by limiting the latter's 
control over their own access to the transport network. Our work should 

4 Based on the schedule sets (Linescape, 2020), this study estimates that an 
individual ship is managed on average by more than one operator firm 
(factoring out group holdings, such as CMA-CGM and APL, etc.) with the peak 
during February and March 2020. This finding implies that operators suspended 
services while maintaining connectivity through the alliance network. 

C. Dirzka and M. Acciaro                                                                                                                                                                                                                     



Journal of Transport Geography 99 (2022) 103265

13

generally encourage practitioners to identify robust responses to dis
ruptions, especially as they become more frequent in an increasingly 
complex and globalized market environment. 

Naturally, this work features some limitations. We narrowed our 
scope to operational responses (particularly service rescheduling and 
cancellation) in order to investigate the effect of the pandemic's 
disruption on network dynamics. Thus, future studies should investigate 
other aspects such as alternative routing, changing calling frequencies, 
or chartering operations. Second, our study is primarily of an explor
atory nature, given the limited number of studies empirically investi
gating the liner shipping network dynamics as a result of the pandemic 
(which is still affecting a large portion of the world at the time of 
writing). In this respect, future studies could formalize our research's 
findings in a set of hypotheses that can be tested once more data on the 
pandemic becomes available. Research should investigate how the 
epidemiology of COVID-19 is correlated with network structures ac
counting for the different phases of the pandemic. Third, because of the 
complexity of liner shipping operations and the lack of capacity data, we 
did not account for capacity withdrawn due to suspended services; as a 
result, we could not include weights in the network analysis. One can 
argue that canceled service commitments should be measured in terms 
of withdrawn capacity rather than the number of services, even though 
most deep-sea services are likely to have similar weights. Moreover, we 

disregarded other cancellation reasons, which prevented us from solely 
attributing changes in stakeholders’ behavior to the pandemic. Whether 
these additional inputs would result in an improved understanding of 
network dynamics and pandemic responses should be further 
investigated. 

Future research can support the discussion on transport geography 
and the ripple effect, which may reveal how to prevent major disrup
tions in global trade networks. The paper proposes a simulation-based 
approach for identifying whether a cascading disruption is present 
within networks, but more robust methods such as Bayesian network or 
Markov chain models might yield further insights. In addition, scholars 
might examine the pandemic's implications on the power balance 
among supply chain partners. This could also include the analysis of 
hinterland network dynamics. Furthermore, maritime transport net
works do not work in isolation, which warrants an investigation into 
intermodal network dynamics during a catastrophic incident. 
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Appendix  

Table 3 
Cluster structure.  

Cluster UN/LOCODE Code 

[1] USEWR, USBAL, USMOB, USHOU, USMSY, USPEF, USBOS, USILM, USJAX, USPHL, BSFPO, CAMTR, USTPA, USMIA, USNYC, USCHS, USSAV, USORF 
[2] TRAMR, ITGIT, ITNAP, PTSIE, ITLIV, NLAMS, GBLIV, ESBIO, ESGIJ, ESVGO, PTLEI, RUKGD, SEGOT, MAPTM, TRYAR, TRTEK, MTMLA, FRDKK, MTDIS, ROCND, HRRJK, 

UAODS, DEBRV, SIKOP, ITTRS, MTMAR, BEZEE, PLGDN, DEWVN, TREYP, MATNG, ITSPE, ITGOA, TRIST, TRIZT, TRALI, ESBCN, DKAAR, BEANR, GBFXT, ESALG, ITVCE, 
GRPIR, DEHAM, ESTAR, ESVLC, FRLEH, GBLGP, GBSOU, NLRTM, FRFOS 

[3] PACTB, JMKIN, DOCAU, COCTG, ECGYE, PAONX, PAPCN, PAMIT, PAROD, COBUN, PABLB 
[4] RUVYP, CNLYG, JPOSA, CNFOC, CNZOS, JPYOK, KRINC, KRKWA, CNTXG, KRKAN, JPNGO, JPSMZ, JPUKB, TWKEL, CNNSA, KRUSN, JPTYO, TWTPE, CNDLC, CNFQG, 

CNTAO, HKHKG, CNNGB, CNSHA, CNSHK, CNXMN, KRPUS, TWKHH, CNYTN 
[5] OMSLL, SAKAC, ILHFA, EGPSE, EGAIS, QADOH, EGALY, SAJUB, LBKYE, LBBEY, AEKHL, EGPSD, EGEDK, DJJIB, SADMM, BHKBS, QAHMD, EGSUZ, JOAQJ, EGDAM, 

ILASH, TRMER, AEAUH, OMSOH, JOAQB, IQUQR, EGSCN, EGSOK, SAJED, AEJEA 
[6] INTUT, PKBQM, INNSA, PKKHI, INMUN, INMAA, INKAT, INPAV, LKCMB 
[7] MYPEN, IDSUB, IDJKT, MYPGU, MYLPK, VNTCG, THLCH, MYTPP, VNVUT, SGSIN, VNCMT, MYPKG 
[8] CLPAG, PECLL 
[9] MXLZC, MXVER, MXATM, MXZLO 
[10] CAPRR, MXESE, USTIW, USLGB, CAVAN, USOAK, USSEA, USLAX 
[11] NAWVB 
[12] TGLFW, BJCOO, GHTEM, CIABJ, NGAPP, NGLOS 
[13] ZADUR 
[14] VNHPH 
[15] TZDAR, KEMBA 
[16] CAHAL 
[17] CLCNL, CLLQN, CLSAI  
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