
Research Article
Sequence Fusion Algorithm of Tumor Gene Sequencing and
Alignment Based on Machine Learning

ChaoTang,1 LingLuo,2YuXu,3GuobinChen ,4 Li Tang,1 YingWang,1 YongzhongWu ,1

and Xiaolong Shi 1

1Radiation & Cancer Biology Laboratory, Radiation Oncology Center,
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,
Chongqing University Cancer Hospital & Chongqing Cancer, Institute & Chongqing Cancer Hospital, Chongqing 400030, China
2*e Department of Internal Medicine,
Chongqing University Cancer Hospital & Chongqing Cancer, Institute & Chongqing Cancer Hospital, Chongqing 400030, China
3College of Bioengineering, Chongqing University, Chongqing, China
4Chongqing Key Laboratory of Spatial Data Mining and Big Data Integration for Ecology and Environment,
Chongqing Finance and Economics College, Chongqing 401320, China

Correspondence should be addressed to Yongzhong Wu; cqmdwyz@163.com and Xiaolong Shi; xshi.bear@cqu.edu.cn

Received 3 September 2021; Revised 24 November 2021; Accepted 10 December 2021; Published 31 December 2021

Academic Editor: Henry Man Fai Leung

Copyright © 2021 Chao Tang et al. 2is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of DNA high-throughput testing technology, there is a high correlation between DNA sequence
variation and human diseases, and detecting whether there is variation in DNA sequence has become a hot research topic at
present. DNA sequence variation is relatively rare, and the establishment of DNA sequence sparse matrix, which can quickly
detect and reason fusion variation point, has become an important work of tumor gene testing. Because there are differences
between the current comparison software and mutation detection software in detecting the same sample, there are errors between
the results of derivative sequence comparison and the detection of mutation. In this paper, SNP and InDel detection methods
based on machine learning and sparse matrix detection are proposed, and VarScan 2, Genome Analysis Toolkit (GATK),
BCFtools, and FreeBayes are compared. In the research of SNP and InDel detection with intelligent reasoning, the experimental
results show that the detection accuracy and recall rate are better when the depth is increasing. 2e reasoning fusion method
proposed in this paper has certain advantages in comparison effect and discovery in SNP and InDel and has good effect on swelling
and pain gene detection.

1. Introduction

With the rapid development of high-throughput sequencing
and gene chip technology, DNA sequence variation detection
and chip expression have become the current research hot-
spots. In the massive data generated by sequencing, it is found
that there is a correlation between structural variation and gene
expression. With the increasing amount of human genome
data, Single Nucleotide Polymorphism (SNP) and Insertion
and Deletion (InDel) variants will be found more and more.

In view of the more than 60 existing kinds of comparison
software, Bowtie 2 [1], Burrows–Wheeler Aligner (BWA)
[2], HISAT2 [3], and Subread [4] are used more frequently

and more effectively than other software tools. 2is paper
focuses on the comparative study of these four kinds of
software and, through relevant comparative analysis, studies
the fusion of BAM files produced by the four kinds of
software, so as to produce the best BAM files.

NGS technology has high throughput; that is, the
amount of data sequenced at one time is large, the read data
can reach tens of millions, and the sequencing depth is
relatively deep, andmany exons can reach 1,000x. Compared
with the traditional SNP discovery method, it has obvious
advantages and relatively large amount of mining infor-
mation. However, with the emergence of a large amount of
high-throughput data, some sequencing sequences will also
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lead to sequencing errors, and the sequencing quality,
systematic errors, and random errors will also increase,
which will also lead to the inevitable problems such as wrong
suggestions caused by the analysis of test results. For ex-
ample, Copy Number Variations (CNV), Insertion and
Deletion (InDel), and Structural Variation (SV) in genetic
variation make the analysis unpredictable. 2ere are many
existing SNP detection processes, but the mainstream SNP
Calling software for SNP detection, such as VarScan 2 [5],
GATK [6], BCFtools [7], and FreeBayes [8], also has its own
detection advantages, and the detection structures of various
software are the same as those of comparison software.
SamTools, BCFTools, and GATK use Bayesian statistical
models. Such models perform well in the analysis of diploid
genomes but may be hindered by extremely deep coverage or
data sets with low allele scores. In fact, a recent comparison
of variation detection tools for tumor subclonal analysis [9]
found that VarScan 2 showed obvious differences when the
sequencing depths required for accurate identification of
variants were 100x, 250x, 500x, and 1,000x, respectively [10].
Different SNP detection software has different detection
results, so it is necessary to comprehensively utilize the
advantages of the above software to generate a detection
method based on multidetection software fusion.

1.1. Burrows–Wheeler Transformation Technique. Assume
that Σ � A, C, G, T{ } is the alphabet that makes up the se-
quence and is a symbol smaller than the lexicographic order
of all characters in it. Given a string S � a0a1, . . . , an, where
an � , so that S[i] � ai represents the i-th letter, S[i, j] �

ai, . . . , aj is a subsequence of s, and Si � S[i, n − 1] is a suffix
of S. S is the Burrows–Wheeler transformation (BWT)
structure which is the result of n-step right-shift operation
on S, one character at a time, and a matrix array of n rows is
obtained. Each row in the array is a result of S-right-shift
operation, and the string before the $ character is the suffix
corresponding to the row. After the matrix is established, the
suffix of each row in the matrix is sorted according to the
dictionary order and then rearranged to get the final con-
version array.2e characters in the last column of the matrix
can be combined in turn to get the converted string se-
quence. 2e following calculation of BWT(S) for a given
string S includes three basic steps:

Step 1: append a special symbol $ to the end of S, which
is smaller than any symbol in S.
Step 2: construct theMmatrix, the first row of which is
equal to S. Row 2 of the M matrix is cyclically shifted
one bit to the right of row 1 of the M matrix (S value).
Row 3 of theMmatrix is cyclically shifted one bit to the
right of row 2 of theMmatrix, and this is repeated until
reaching row n. 2rough the observation of the matrix,
it can be found that when the nth row of the matrix
shifts to the right by one bit, the first row S will be
obtained again, which means that the sequence cyclic
shift is executed until the n-th row, just completing a
rotation of sequence S.

Step 3: construct the converted text S�BWT(S) by
taking the last column of the M matrix.

Note that every column of the M matrix, that is, the
converted text S, is an arrangement of S$.

Example 1. S� “ACGTACAAAT” is used to illustrate the
conversion process. 2e specific operation steps are as
follows:

Step 1: S� “ACGTACAAAT” is used to illustrate the
conversion process, and a character $ is added after S to
form S$, that is, S� “ACGTACAAAT $,” the first be-
havior of the M matrix “ACGTACAAAT $.”
Step 2: the second row “CGTACAAAT$A” is obtained
by cyclically shifting S to the right once to form the
second row of M matrix, and the third row “GTA-
CAAAT$AC” is obtained by cyclically shifting the
second row of S to the right once. 2e n− 1 row of S is
cyclically shifted to the right once (n is the length of S),
and the nth row of M matrix, that is, the last row
“$ACGTACAAAT,” is obtained, and finally the M
matrix is formed. 2en the M matrix is sorted (the
principle of $<A<C<G<T), and the M matrix is
obtained.
Step 3: take the last row ofM matrix, namely, BWT(S),
and the specific effect is shown in Figure 1.

Figure 1 shows the structure construction process of
string S � “ACGTACAAAT$.” String S is obtained by 10
rounds of circular right shift operation, in which the last
letter of each row in the matrix is combined to obtain the
new string � “TCAT $AAACAG” after BWT conversion.
S(i) and i in Figure 1 are described in FM-index. 2e last
column and the original sequence are not reduced in
number, which can achieve lossless compression effect.
2ere are many identical strings on 􏽢S. If 􏽢S is compressed by
other compression methods, it can also achieve good
results.

1.2. Based on Hash Indexing Technology. 2e method based
on hash index is often used to query and match in large
databases and can also achieve accurate matching in DNA
sequences. By querying the index relationship of sequencing
sequences in reference genome, we can detect whether se-
quencing sequences exist in DNA sequences. 2is kind of
technology is explained as follows:

Step 1: hash table creation.

In DNA sequence, it is composed of four basic units: A,
C, G, and T (N is not taken as the statistical range). 2e
continuous sequence with length K is called “seed,” and
there are 4K kinds of sequences. A hash table is established
for 4k seed sequences. Because binary has certain advan-
tages in expressing characters A, C, G, and T, it can
uniquely identify DNA sequences, as shown in the fol-
lowing formula:
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f(x) �

00x � ″A″,

01x � ″C″,

10x � ″G″,

11x � ″T″.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

Seed W can be expressed in a unique way, remember V
(W), as shown in the following formula:

V(w) � 􏽘
k

i�1
4i− 1

f xi( 􏼁. (2)

Step 2: association of the reference sequence hash table.

Human DNA sequence can be divided into 23 pairs of
chromosomes, each pair of chromosomes has a large
number of DNA sequences, and the chromosome sequence
is represented by D� {chr1, chr2, . . ., chr23}. 2e length of
sequential seed w of DNA sequence decomposition in each
chromosome is set to K� 4 or K� 8, or even higher, every
shift of one bit from the beginning of the sequence to the end
of the sequence. If the sequence length is L, then the se-
quence has L− k+ 1 seeds. For the sequence N (N� 1, 2, . . .,
N) of the “seed” and the position number L (L� 1, 2, . . ., L)
in the sequence, the hash table (N, L) of the “seed” is
established. If the hash table is established for
S� “ACGTACAAAT,” the procedure is as follows:

Take sequence S� “ACGTACAAAT,” k� 2, as an ex-
ample, as shown in Table 1.

Step 3: the alignment sequence can also decompose the
seeds with length K and then refer to the hash table of
the established reference sequence to find the corre-
sponding position information.

For example, the query “TAC” is decomposed into “TA”
and “AC” hash tables corresponding to (1, 4), (1, 1), and (1,
5), respectively. 2e positions (1, 4) and (1, 5) are correlated,
so the position of “TAC” in S is 4.

2e location query algorithm based on hash table
indexing technology, if there are sequencing errors in se-
quencing sequences, SNV, InDel, and so forth, will lead to
matching errors or sequence matching to other locations.

Biological alignment software, such as MAQ [11], RMAP
[12], ZOOM [13], and so forth, indexes sequencing se-
quences, while others index reference sequence databases.
Delete the “seeds” in the hash table whose frequency is lower
than the set threshold. Because the length of reference ge-
nome is fixed, indexing reference sequences can improve the
efficiency of sequence alignment. Generally, the index can be
stored in advance, and the sequencing sequence can be
decomposed into K seeds to match the established hash
table.

1.3. Suffix Tree Detection Algorithm

1.3.1. Suffix Tree [14]. Let Σ be n sequences in a finite DNA
sequence, and the suffix tree S is a directed tree with roots,
where n leaves are exactly numbered 0 to n− 1, corresponding
to each suffix of S. Each internal node has at least two child
nodes, and each edge is marked with a nonempty substring of
S. Neither edge other than the same node is allowed to have an
edge label beginning with the same character. For any leaf I,
the concatenation of edge tags on the path from root to leaf I
accurately spells out the S suffix starting at position I, that is,
substring S [i,. . .,n]. Add a unique terminator $ ∉ Σ at the end
of the string to ensure that the suffix is prefixed to any other
suffix. 2e edges of the suffix tree join those nodes in the tree
which have only one character, so that each internal node in
the suffix tree will have at least two child nodes. In this way,
redundant nodes are reduced, thus saving the construction
time and space of suffix tree. Each path from the root node to
the leaf node in the suffix tree represents a suffix subsequence,
and the value in the last leaf node represents the starting
position of this subsequence. When they have the same in-
ternal node, they have the same common prefix. Figure 2
shows the suffix tree transformation process for the reference
genome S� “ACGTACAAAT.”

For the reference genome S� “ACGTACAAAT$,” each
subsequence is on the leaf node of the suffix tree. In the target
sequence, $ still indicates that the sequence and its suffix
terminate, occurring only once at the end of the sequence or at
the end of the subsequence. Similar to a dictionary tree, if the
sequence in which a suffix tree is constructed contains K
characters, then the suffix tree has K+1 branches (including
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Figure 1: BWT transformation process.
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termination symbols) from the root node. In Figure 2, the
DNA sequence S has only four characters,A, C,G, and T, plus
a branch of the terminator, so there are five branches from the
root node. 2ere is only one suffix starting with character G,
and there are no other branches. Leaf nodes need to be stored
in the suffix tree, as well as the path of edges.

2e suffix array can be obtained by transforming the
suffix tree. 2e suffix array is arranged according to the
dictionary order, and the initial position information of the
arranged suffix tree establishes one-to-one correspondence
with the reference gene sequence.2e suffix array A of string
S is an array of integers in the range from 0 to n, specifying
the dictionary order of N+ 1 suffixes of string $; that is, SA
[0], SA[1],. . ., SA[n] is the ascending sequence of suffixes of
S$ as shown in Figure 3. Suffix arrays require 4n (8n on 64
bits) bytes of memory, so they are memory inefficient and
cannot be used for large sequences.

1.4. FM-IndexTechnology. FM-index [15] is a full-text string
index based on BWT compression, somewhat similar to a
suffix array. It consists of a BWT count array C[p] and an

occurrence table Occ(p, k). For each character p in the letter,
the count array C[p] is defined as the number of occurrences
of fewer characters in the string, and Occ(p, k) is defined as
the number of occurrences of character p in BWT[0, . . . , k].
2e main difference between FM-index and suffix arrays is
the way the search is performed. FM-index searches for
strings backwards, whereas, in suffix arrays, string matching
goes forward.2e following is an example of an FM-indexed
data structure with string S� “ACGTACAAAT”:

Step 1: constructingMmatrix, sequencing sequences S and
$, performing sequences of rotating columns on S$, and
then performing row sorting withMmatrix to obtainM′.

0 ACGTACAAAT $
1 CGTACAAAT $
2 GTACAAAT $
3 TACAAAT $
4 ACAAAT $
5 CAAAT $
6 AAAT $
7 AAT $
8 AT $
9 T $
10 $

Sort

9 T$
3 TACAAAT$
2 GTACAAAT$
1 CGTACAAAT$
5 CAAAT$
8 AT$
0 ACGTACAAAT$
4 ACAAAT$
7 AAT$
6 AAAT$
10 $

A
10

A

$

A

T

6

C

A

A G

T

A

C

T

A

C

A

A

T

8

9
A

A

A

G

T

A

C

A

A

A

G

T

A

C

A

A

A

$

T

0
$

T

4
$

T

1
$

T

5
$

T

2
$

$
T

7
$

$A

C

A

A

A

3
$

T

Standard 
suffix tree

Path compression and 
suffix tree generation T

$

A
C

4 0

8

C

5
1

2

3 9

10

$

A

6 7

T$ T

$
A C

4 0

8

C

5 1

2

3 9
A-$

10

$
A

6 7
T$

Final suffix tree

GTACAAAT$
GTACAAAT$

AC
AA

AT
$

AA
T$

T$

T$

A-$ A-$

A-
$

G-$

G-$

G-$

GTACAAAT$

AT$

AAT$

Figure 2: Suffix tree of S.

Table 1: Hash table of sequence S (k� 2).
Seed V(w) Position Seed V(w) Position Seed V(w) Position
AA 0 (1, 7) (1, 8) CG 6 (1, 2) GT 11 (1, 3)
AC 1 (1, 1) (1, 5) CT 7 TA 12 (1, 4)
AG 2 GA 8 TC 13
AT 3 (1, 9) GC 9 TG 14
CA 4 (1, 6) GG 10 TT 15
CC 5

A= 6 7 4 8010 5 1 2 3 9
111 2 3 4 5 6 7 8 9 10

A C G T A C A A A T $T=

Figure 3: Suffix array of S.
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Step 2: establish a corresponding relationship between
the rows in theM′matrix and the rows in theMmatrix,
and remember B[i] in the last column in M′. M′ and S
can be restored by the inverse process of BWT.
Step 3: create an array where Oc($), Oc(A), Oc(C),
Oc(G), and Oc(T) represent the row number of the first
occurrence of the first column of the matrix. Occ(2,G)
represents the number of occurrences in the last col-
umn, and the FM-index transformation process is
shown in Figure 4. FM-index and suffix array have
some similarity. 2e first column of M′ matrix is
denoted as F[i], and the last column of matrix is
mapped to F[i] as LF[i], which is realized by the
combination of Oc and Occ arrays above, and denotes
LF[i]�Oc[L[i]] +Occ[L[i],i]. In the search process, it is
expressed by setting the search scope formula:

L � Oc[F] + Occ[L, F],

H � Oc[F] + Occ[H + 1, F] − 1,
􏼨 (3)

where F ∈ {A, C, G, T}, L� 0, H�N− 1 is the initial value,
H− L− 1 is the number of times character F appears, and S
[L, H] is the position of the character, as shown in Figure 4.

2e following is an example to verify the above method,
the number of times L� “TAC” appears in
S� “ACGTACAAAT,” and the operation is as follows:

Step 1: look forward from the back of string L, setting
two variables, R and H, to indicate the minimum
position and the maximum position, and R� 0 and
H� 10 to indicate the position from 0 to 10. 2e last
character in L is “C.” Looking for the position of “C”
through Oc and Occ, it is determined that L�Oc
[C] +Occ[0, C]� 6 + 0� 6 and H�Oc[C] +Occ[10 + 1,
C] − 1� 6 + 2−1� 7. It can be seen that H− L+ 1� 2
means that there are two “C” in S string, and the
positions are S[6] and S[7], respectively.
Step 2: calculate new L and H from the second right-
most character “A,” where L� 6 and H� 7. L�Oc
[A] +Occ[0, A]� 1 + 2� 3, H�Oc[A] +Occ[8, A]−

1� 4, and H− L+ 1� 2 mean that “AC” occurs twice in
the S string, and the positions are S[3]� 4 and S[4]� 0,
respectively.
Step 3: finally, look for “T.” At this time, L� 3 andH� 4
calculate L and H again. L�Oc[T] +Occ [3, T]� 1,
H�Oc[T] +Occ[4, T]− 1� 10 andH− L+ 1� 10−10 +
1� 1 indicate that “TAC” occurs once in the S string,
and the position S[10]� 3.

2is method can be used to find the number and po-
sition of characters in the string, and the algorithm
complexity is O(n). In the software of DNA sequence
comparison, the advantage of FM-index algorithm is that it
can save memory and realize sequence alignment on
personal computer.

In the second part of the article, we use hash index,
Burrows–Wheeler transform, suffix tree, and suffix array, as
well as FM-index to DNA sequence alignment algorithm.

Hash index technology is equivalent query; hash index
has an absolute advantage, but the premise is that there are
not a large number of duplicate key values. If there are a large
number of duplicate key values, the efficiency of hash index
is very low because of the so-called hash collision problem.
2e comparison of algorithm performance query effect is
mainly that a large amount of storage space is needed when
establishing index space. 2e time complexity of query is
O(n), while the position join after query needs O(n∗m).

Burrows–Wheeler transform is a full-text indexing
method, which is a search and compression method based
on characters. If the original string has several substrings
that occur multiple times, the converted string will have
several consecutive repeated characters, which can reduce
space storage. 2e algorithm time complexity of BWT is
O(n2).

FM-index is a method based on BWT, which can find the
number and position of characters in a string. 2e com-
plexity of the algorithm is O(n). In the software of DNA
sequence comparison, the advantage of FM-index algorithm
is that it can save memory and realize sequence alignment on
personal computer.

Suffix tree uses space for time and uses the common
prefix of string to reduce the overhead of query time in order
to improve efficiency, but it consumes a lot of memory. 2e
algorithm complexity of suffix tree is O(n), and it also has
good performance.

1.5. Introduction of Variation Detection Process.
Second-generation sequencing technology improves se-
quencing efficiency and reduces cost, and whole gene se-
quencing has been realized. Because of the large amount of
data generated by sequencing and the complex analysis
process, it is necessary to combine a variety of software to
analyze the sequencing data. 2e following documents
generated by the sequencing detection process are explained.

1.5.1. Raw Sequencing Data Cleaning. Early gene sequencing
tools can only read 100 bases, and, later, according to NGS
data of different sequencing platforms, the reading can reach
150–250 bp. Illumina HiSeq 2500 is the world’s highest
throughput sequencing platform. At present, in about 27
hours, more than 300 billion bases can be measured, and the
whole genome and whole exon of 6–7 individuals can be
sequenced quickly. Illumina platform uses FastQ format to
store sequencing results, and FastQ documents include base
read fragments and sequence quality.

In the sequencing process, due to random errors, the
original data after sequencing needs to be cleaned before
entering the detection process. Taking the sequencing data of
tumor gene alignment sequence (SRR12060749) as an ex-
ample, the preprocessing process is illustrated, and the
original sequencing data is filtered. First, clean the single-
ended sequencing data, keep the quantity consistent before
and after cleaning, and then clean the low-quality data to
ensure the reliability of sequencing data before and after
cleaning.
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It can be seen from Table 2 that the original data of
tumor gene alignment sequence sequencing is of high se-
quencing quality, and the overall data volume after cleaning
is as high as 98.83%.

In Table 2, “Clean_len” lists the length of sequences after
cleansing, and “Reads” represents the number of sequences
sequenced. 2e purpose of data cleaning is to improve the
accuracy and quality of data detection.

2e relationship between sequence length and count before
and after sequencing data cleaning is shown in Figure 5.

2e length of most data before and after sequencing is
75 bp, and the quantity reaches 22 million. 2e effect of
sequencing data quality and quantity distribution before and
after cleaning is shown in Figure 6.

As can be seen from Figure 6, the number of sequences
with a sequencing quality of 35 reaches 13 million, and most
of the sequencing data have a quality above 30.2e change of
sequencing sequence is seen from the distribution of GC
content, as shown in Figure 7.

It can be seen from Figure 7 that the sequencing sequences
are basically consistent before and after cleaning, and the GC
contents of the two sequences are similar. 2e relationship
between the same test fragments in the sequenced sequence can
be seen from the distribution ratio of the repetition degree of
the sequenced fragments, as shown in Figure 8.

As can be seen from Figure 9, the proportion of se-
quencing fragments with repetition of 1 and 2 is relatively
large, which is mainly caused by some base variation or
machine error in sequencing. 2e repetitions of sequencing
fragments before and after cleaning are similar, and the
overall trend is consistent.

2e total amount and quality of the sample sequencing
data of tumor gene alignment sequence are basically con-
sistent, both at a high level.

1.5.2. Sequencing Sequence Alignment. For more than 60
existing comparison software tools, Bowtie 2, BWA,
HISAT2, and Subread are significantly higher in use times
and effects than other software tools. 2e following focuses
on the comparative study of these four software tools and the
comparative study of the generated BAM files. Take the
sequencing samples of tumor gene alignment sequences as
an example to illustrate the differences in software alignment
effects. 2e alignment effects are shown in Table 3.

In Table 3, four kinds of sequence alignment software are
proposed. Because of the differences in algorithm design and
sequence detection, there are differences in detection effect.

According to the statistical results in Table 3, in terms of
comparison algorithms, the algorithms adopted by Bowtie
2 and BWA software are based on BWT technology, the
algorithms adopted by HISAT2 software are based on FM-
index technology, and the algorithms adopted by Subread
software are based on hash index technology. In terms of
time execution, HISAT2 and Subread take a long time,
while Bowtie 2 takes a short time. In terms of sequencing
sequence matching efficiency, BWA and HISAT2 have
higher matching rates, which are 98.78% and 96.75%, re-
spectively, while Subread and Bowtie 2 have lower
matching rates, both of which are lower than 90%. Overall,
BWA and HISAT2 software tools have advantages in
comparison of rate and time, while Bowtie 2 has poor
comparison effect. BWA is a popular comparison software
tool at present, which is more suitable for whole gene
sequencing and exon sequencing.

As shown in Figure 10, the four types of software are
sorted by SAMtools to form BAM files, and it is found that
BWA, Bowtie 2, and HISAT2 have the highest number of
duplicates (excluding duplicates with other software tools),
with the numbers of 492752 and 653738, respectively. 2e
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Figure 4: FM-index transformation process.
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number of duplicates for Bowtie 2 and Subread (excluding
duplicates with other software tools) is 21381. BWA,
HISAT2 and Subread had a maximum number of duplicates
(excluding duplicates with other software tools) of 887,962,

while Bowtie 2, HISAT2, and Subread had a maximum
number of duplicates (excluding duplicates with other
software tools) of 10,371. BWA, HISAT2, Subread, and
Bowtie 2 have 11065583 sequence repetitions, which shows
that most of the sequencing data are correctly identified.

It is very important to choose the appropriate com-
parison software to detect SNP, and the speed and accuracy
of the comparison software should be considered

Table 2: Comparison before and after data cleaning.
Sample Len Clean_len Reads Clean_reads GC % Rate %
SRR12060749_1 1–75 20–75 23389073 23115063 49 98.828
SRR12060749_2 1–75 20–75 23388231 23115063 49 98.832
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Figure 5: 2e relationship between sequence length and count
before and after cleaning.
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Figure 9: Comparison of differences between detection software
tools in SNP.

Table 3: Comparison of four software sequences.

Soft Algorithm Mapped Total Mapped
rate (%)

Time
(s)

Bowtie
2 BWT 40499908 46230126 87.61 1316

BWA BWT 47650174 48239938 98.78 1549
HISAT2 FM-index 52138360 53891457 96.75 2111

Subread Hash
index 41308336 46230126 89.35 2694
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Figure 8: Distribution ratio of sequenced duplication level.
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comprehensively. 2erefore, considering the matching rate
and comparison quantity of the four comparison software
tools, BWA comparison software has certain advantages in
detection effect. In the detection of SNP and InDel, BAM
files generated by BWA software are used as input files of
four variation detection software tools, and the differences
between SNP and InDel are further analyzed.

1.5.3. Variation Detection. At present, there are many de-
tection tools for SNP and InDel. Among many detection
tools, VarScan 2, GATK, BCFtools, and FreeBayes are widely
used. 2e running platform, input type, output type, and
data format of the four software tools are described below, as
shown in Table 4.

2e Mpileup file is transformed by SAMtools tool after
testing the above software. From the software use effect to
see the actual situation of various software tools; SNP and
InDel are statistically analyzed, as shown in Table 5.

2e above SNP and InDel were filtered (the sequencing
depth was greater than 10 and the sequencing quality was
greater than 30), which ensured the detection quality. In
detecting SNP, FreeBayes has the largest number and
VarScan 2 has the least number; in detecting InDel, GATK
has the largest number and VarScan 2 has the least number.
In terms of overall detection, GATK has the largest number
and VarScan 2 has the least number. From the above sta-
tistical results, the detection software in the detection of the
same sample has a relatively large difference, which is due to
the use of detection technology caused by this difference.2e
differences in the numbers of SNP and InDel detected by the
four detection software tools are shown in Figures 9 and 11.

In Figure 12, the same number of SNP detected by the
four software tools is 23157, indicating that most SNP
variation points are detected by all four software tools.
BCFtools, FreeBayes, and GATK have high similarity in
detecting SNP and share more variation points. Four kinds
of software detected the same number of 795 on InDel,
GATK detected the largest number, and the other three
kinds of software were similar in number.

1.5.4. Sequencing Data Variation Detection Process. 2edata
processing flow begins with reading sequence alignment
(BWA [16]), followed by raw data cleansing (Picard [17]),
sequence recalibration, filtering, variable invocation, reca-
libration (GATK [18]), coverage analysis (BedTools [19]),
and annotation (Annovar [20] and internal annotation
tools). 2is process requires a combination of biological
software with additional comments and override steps.
Generally speaking, the analysis process includes three key
stages: (1) preparing the original sequence for variation
discovery and coverage calculation, (2) variation call and
recalibration; and (3) variation filtering and annotation. 2e
sequence data variation detection process is shown in
Figure 12.

In Figure 12, the whole process from planetary sequence
sequencing to mutation annotation is mainly used to explain
the sequencing workflow in detail. Each link is the key work
of the research, which can clearly reflect the research focus of
each stage of the research work.

2. Method

2.1. Variant Expression of Sparse DNA Sequence. Sparse
theory is used to detect variation points in DNA sequences,
and SNP and InDel variation account for less than 0.1% of
DNA sequences. In this way, SNP and InDel variations show
the sparsity of the whole sequence compared with the whole
DNA sequence or exon sequence. 2erefore, the exons are
used as the basis of thematrix, and the variation points in the
matrix are used as marks 1.

In DNA sequences or exon sequences, the core of sparse
representation is the solution of linear equations y�Ax,
where matrices A ∈ m × n and A are usually full rank. M
denotes the number of DNA or exon sequences, and N
denotes the variation point variable. In a given m-dimen-
sional space, a set of overcomplete bases A ∈ m × n can be
sparsely represented by selecting the least number of basis
vectors y ∈ m, and its strict definition can be expressed as

min ‖x‖0s.t.y � Ax. (4)

If matrix A satisfies the condition

BWA

Hisats 2 Bowite 2

Subread

25315

21381

196027

10371

11065583

645963

312130

2204698

653738

887962

130755

492752

351861

407343

1016623

Figure 10: Comparison of repeated quantity of four alignment
software tools.

Table 4: Comparison of parameters of four variation detection
tools.
Soft System Input Output Identifies
GATK Lin SAM/BAM VCF SNP, InDel
BCFtools Lin SAM/BAM VCF SNP, InDel
FreeBayes Lin SAM/BAM VCF SNP, InDel

VarScan 2 Lin,
Mac, Win Mpileup VCF,

CSV SNP, InDel, CNV

Table 5: Number of SNP and InDel.
Soft SNP InDel Total
GATK 48084 15391 63475
BCFtools 53255 3710 56965
FreeBayes 53549 4671 58220
VarScan 2 29588 2200 31788
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σ(A)≥ 2‖x‖0, (5)

where σ(A) refers to the number of vectors contained in the
minimum linearly correlated column vector set, then the L0-
norm optimization problem in formula (4) has a unique
solution.

It is difficult to solve the linear equation y, and the L0-
norm optimization problem has the same solution as the L1-
problem; namely,

min ‖x‖1 s.t. y � Ax. (6)

2e finite equidistant property condition is a measure of
the orthogonality of a column vector; that is, it has a constant
μN that satisfies certain conditions:

(1 − μN)‖x‖
2
2 ≤ ‖Ax‖

2
2 ≤ μN‖x‖

2
2, ∀x, ‖x‖0 ≤N. (7)

Due to the presence of noise ε, the sparse expression is
optimized. If formula (8) is satisfied, the optimization
condition is satisfied.

min ‖x‖0 s.t.‖y − Ax‖
2
2 ≤ ε. (8)

BWA alignment

FastQ files

Clean BWA data

Samtools to Bam

Sam files

Bam files

Samtools sort

Picard merge de-
duplication

Queue Local 
Realignment &BQSR

Call Variants Recalibrate variants

Filter variants

Annotate

Calculate coverage

Annotated
variants

Coverage 
information

Figure 12: Flow chart of variation detection of sequencing data.
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Figure 11: Comparison of differences between detection software tools in InDel.
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If there are samples of different classes of tags in the
DNA sequence expression matrix, the sample tags in the
divergence matrix are passed. 2e divergence matrix is di-
vided into the following:

Sb � 􏽘
c

j�1
Nj μj − μ􏼐 􏼑 μj − μ􏼐 􏼑

T
,

Sw � 􏽘
c

j�1
􏽘

Nj

i�1
x

j

i − μj􏼐 􏼑 x
j

i − μj􏼐 􏼑
T

,

St � Sb − ηSw.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Here, Sb and Sw represent interclass divergence matrix
and intraclass divergence matrix, respectively, and represent
adjustment parameters.

2e distances between classes and within classes can be
calculated by using the trace of the corresponding diver-
gence matrix, and their calculation formula is

trace Sb( 􏼁 � trace 􏽘
c

j�1
Nj μj − μ􏼐 􏼑 μj − μ􏼐 􏼑

T⎡⎢⎢⎣ ⎤⎥⎥⎦ � λb1 + λb2 + · · · + λbk,

trace Sw( 􏼁 � trace 􏽘
c

j�1
􏽘

Nj

i�1
x

j
i − μj􏼐 􏼑 x

j
i − μj􏼐 􏼑

T⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � λw1 + λw2 + · · · + λwk.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

η can be expressed by the ratio in formula (10):

η �
trace Sb( 􏼁

tarce Sw( 􏼁
. (11)

In formulas (10) and (11), Sb represents the divergence
matrix between classes and the divergence matrix in different
regions of SNP and InDel; Sw represents the total divergence
matrix, representing the divergence matrix in all regions of
SNP and InDel; “trace” represents the separation of distance
between measured sample classes, which is used to describe
the separation of SNP and InDel variants. η is used to evaluate
the proportion relationship in different regions and describe
the ratio of SNP and InDel variation in different regions.

2.2. Bayesian Statistics

2.2.1. Conditional Probability. Considering the correlation
with event A, when the probability of occurrence of event B
is recorded, it is called the conditional probability (posterior
probability) of occurrence of event B on the basis of oc-
currence of event P(B|A). Similarly, P(A) is called un-
conditional probability (prior probability). It can be
described by the following formula:

P(B|A) �
P(AB)

P(B)
. (12)

If A and B are two arbitrary nonzero events, the
probability of their product is equal to the product of the
conditional probability of the occurrence of event B or event
A when A occurs or B also occurs.

P(A · B) � P(A) · P(B|A),

P(A · B) � P(B) · P(A|B).
􏼨 (13)

If A and B are incompatible events, the product is equal
to the product of the probabilities of A and B as follows:

P(A · B) � P(A) · P(B),

P(A · B) � P(B) · P(A).
􏼨 (14)

If three or more events occur, product
P(A1A2, . . . , An−1)> 0 of n events can be described by the
following equation:

P A1A2 . . . An( 􏼁 � P An|A1A2 . . . An−1( 􏼁P An−1|A1A2 · · · An−2( 􏼁 . . .

P A2|A1( 􏼁P A1( 􏼁.

(15)

If n events are independent of each other, they are
described as

P A1A2 · · · An( 􏼁 � P An( 􏼁P An−1( 􏼁 · · · P A2( 􏼁P A1( 􏼁. (16)

If, for all sample spaces, B is an event in sample space,
A1A2 . . . An are all factors affecting B; it is called a complete
event in sample space, and P(Bi)> 0 (i � 1, 2, . . . , n) is de-
scribed as P(B):

P(B) � P B|A1( 􏼁P A1( 􏼁 + P B|A2( 􏼁P A2( 􏼁 + · · · + P B|An( 􏼁P An( 􏼁

� 􏽘
n

j�1
P A|Bi( 􏼁P Bi( 􏼁.

(17)
If, for all sample spaces, B is an event in sample space,

A1A2 · · · An are all factors affecting B, which is called a
complete event in sample space, and P(B)> 0, P(Ai)> 0(i �

1, 2, . . . , n) can be described as

P Ai|B( 􏼁 �
P B|Ai( 􏼁P Ai( 􏼁

􏽐
n
j�1 P B|Aj􏼐 􏼑P Aj􏼐 􏼑

, (18)

􏽘

n

j�1
P B|Aj􏼐 􏼑P Aj􏼐 􏼑 � 􏽘

n

j�1
P B, Aj􏼐 􏼑 � P(B). (19)

And 􏽐
n
j�1 P(Aj) � 1 and P(Aj) represent the probability

of event A1A2 . . . An, which is the prior probability of
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assuming event P(Ai|B). EE says that if event B occurs, it
assumes a posterior probability of event A1.

2.2.2. Bayesian Reasoning in Data Fusion. Bayesian rea-
soning realizes the fusion of BAM files compared by
multiple DNA sequence alignment software tools. To
calculate the posterior probability when a given condition
occurs [21, 22], set n comparison software tools to se-
quence the same original sequencing file. Assume that
there are m alignment sequences in the original se-
quencing which need to be aligned and identified; that is,
there are m hypotheses or propositions Ai, i � 1, 2, . . . , m.
Specifically through multilevel classification in the first
level, identify the information features obtained from the
original sequencing data and classify the attributes, ob-
tain the target attributes B1, B2, . . . , Bn, calculate the
likelihood function of each comparison software tool
under each hypothesis according to the correct classifi-
cation of sequencing data and comparison, calculate the
posterior probability of each hypothesis under multiple
comparison lines of evidence according to Bayesian in-
ference, and finally generate the attribute judgment
conclusion according to the judgment logic. 2e process
is shown in Figure 13.

2ere are two steps in calculating the fusion probability
of alignment sequence. 2e first step is to calculate the
combined likelihood probability function of n lines of evi-
dence under the assumption that Ai holds. When each
comparison software tool sequences independently and
B1, B2, . . . , Bn are independent of each other, the combined
likelihood probability distribution is as follows:

P B1, B2, . . . , Bn|Aj􏼐 􏼑 � P B1|Aj􏼐 􏼑P B2􏼉Aj􏼐 􏼑 · · · P Bn|Aj􏼐 􏼑.

(20)

2en, using Bayesian formula, the posterior probability
of Aj under the condition of n lines of evidence is obtained.

P Aj|B1, B2, . . . , Bn􏼐 􏼑 �
P B1, B2, . . . , Bn|Aj􏼐 􏼑P Aj􏼐 􏼑

P B1, B2, . . . , Bn( 􏼁
. (21)

In the reasoning process of Bayesian combinatorial logic,
the maximum a posteriori probability reasoning logic is used
to directly use the target attribute of the decision threshold
maximum a posteriori combination joint probability. Select
the formula that meets Ai condition:

P Aj|B1, B2, . . . , Bn􏼐 􏼑 � max
1≤j<n

P Aj|B1, B2, . . . , Bn􏼐 􏼑. (22)

According to the above formula, the decision threshold
is established in the assumption of maximum a posteriori
probability, and the decision threshold of specific rule Aj is
established.

P Aj|B1, B2, . . . , Bn􏼐 􏼑≥Po. (23)

If Aj is accepted, reject it, determine the next rule, form
new evidence, and then determine the above way [23].

2.3. Research on Multi-Information-Based Data Fusion

2.3.1. Data Fusion of Sequencing Sequence Alignment.
2e purpose of this study is to improve the success rate of
comparison, and different comparison software tools may
lead to comparison effect. In order to improve the effect of
comparison and find more structural variations, this paper
adopts data fusion based on multicomparison software. Its
multicomparison software comparison data fusion process is
shown in Figure 14.

In the above process, the Sort part adopts the condition
of counting the sequences in SAM file, counts the number of
sequences, and sorts them according to the number. 2e
four tools are sorted after the sequence comparison, for the
same sequence appears in all the files, indicating that the
sequence alignment is correct. If the same sequence appears
in three files and the frequency of sequence occurrence is
quite high, it also indicates that the sequence alignment is
correct. If the same sequence appears in two files and the
frequency of sequence occurrence is quite high, refer to PCR
sequence. If the PCR sequence is in the target sequence, the
alignment is correct; in other cases, the sequence can be
deleted or ignored as an alignment result. Gene sequences
are compared by the above four software tools, and then the
post-SAM files are sorted to form BAMfiles.2e following is
the comparison algorithm shown in BAM file in
Algorithm 1.

2.3.2. Research on SNP Calling Data Reasoning. In the
process of sequencing, SNP has a great correlation with
many diseases, and more SNP are found in order to find out
the correlation analysis between variation points and dis-
eases [24, 25]. 2ere are some differences in finding SNP
among the above four kinds of software, which are mainly
caused by the differences in algorithm design adopted by the
software itself. 2erefore, this paper proposes merging the
above four tools in order to count more SNP, and its
structural flow is shown in Figure 15.

After the above four tools form VCF files, they are
merged to remove duplicate data.2en, through the filtering
mechanism in GATK [26], the recommendation mechanism
in SNP and InDel is analyzed, and finally the filtered VCF is
generated and then annotated by annotation software. 2e
inference mechanism and sequence alignment in the SNP
Calling process are too similar to each other and will not be
described here.

3. Results

3.1. Comparison of Experimental Results. 2is paper com-
pares the above four software tools Bowtie 2, BWA, HISAT2,
and Subread. In the comparison part of SNP and InDel, we
use GATK, BCFtools, FreeBayes, and VarScan 2 to detect
SNP and InDel variation. 2e main research work of this
part is to analyze the points of variation detection and then
perform comparison with the fusion method of recom-
mendation mechanism.
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In the experiment, SVsim software is used to simulate
the DNA data of double-end sequencing, and the corre-
sponding error rate, sequencing length, and sequencing type
are set. 3000 SNP sites and 2000 InDel sites (2–10 bp in-
sertion, 2–10 bp deletion) were inserted into the simulated
sequencing sequence. Six Illumina simulation samples were
generated by sequence simulation software, and the test
depths were 50, 100, 150, 200, 250, and 300, respectively.2e
standard error and error rate of sequencing were 0.

2is paper takes cancer gene test data as the research
object and compares the sequence number of software and
reasoning fusion methods from different test depths, as
shown in Figure 16.

When comparing the number of SNP and InDel, the
correctness of software detection cannot be guaranteed by
comparing the actual data, and different software tools will
produce different comparison when testing the same data.
2erefore, in this paper, 3000 SNP and 2000 InDel variation
points are inserted into the test data, and this fixed variation
point is taken as the comparison object. With the increase of

different test depths, the variation detection points also
increase, as shown in Figures 17 and 18.

As can be seen from Figures 19 and 20, with the in-
creasing test depth, the number of SNP and InDel variation
detections of the test sequence also increases. It shows that
increasing the test depth can increase the number of vari-
ation detections in the test work.

3.2. Performance Analysis. In the process of DNA cancer
gene test data, the sequencing results of GATK, Bcftools,
Freebayes, and VarScans in the BAM file are fused by the
Bayesian model. 2e mutation site sensitivity estimate is
described [26] in terms of recall as follows:

Recall �
TP

TP + FN
. (24)

As can be seen from Figures 19 and 20, due to the in-
creased sequencing depth found in SNP and InDel, it is
shown that there is enough sequencing depth in the
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Figure 13: Sequence fusion based on Bayesian inference.
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Figure 14: Data fusion process under intelligent reasoning.
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Input: Samtools processed file
Output: Fused sequence file
library(Rsamtools)
bamFilebwa< - BamFile(“samtool.sort.bam”)
alnbwa< - scanBam(bamFilesamtool)[[1]]
While (i is less than the maximum chromosome position information in Bam file) {
If (P(Ai|bwa, soap, bowite, subread)>po) { wirte bam file}
If (P(Ai|Any three kinds of sequencing software)>po&& count> k) { wirte bam file}
If (P(Ai|Any three kinds of sequencing software)>po&& reference PCR) { wirte bam file}
If (P(Ai|Any kind of sequencing software)>po&& reference PCR) { wirte bam file}
}

ALGORITHM 1: Fusion reasoning algorithm flow.

BAM
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Bayesian intelligent 
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SNV annotation

Combination 
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Figure 15: SNP and InDel convergence process.
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Figure 16: Comparison between this method and other methods.

Computational Intelligence and Neuroscience 13



sequencing data to ensure the correctness and recall rate of
SNP and InDel. In the sequencing process, there can be
enough sequencing depth and high accuracy.

As can be seen from Tables 6 and 7, at runtime, GATK,
BCFtools, FreeBayes, and VarScan 2 need to be made into
BAMfiles by BWA software, which takes a certain amount of
time. However, the reasoning method proposed in this paper

is based on the above methods, which takes up more time.
Besides BWA, the running time of GATK is also long, which
is limited by software algorithm. But the effect of GATK is
also ideal. With the increase of sequence length, the accuracy
and recall rate of the proposed method also increase, and,
with the increase of sequence length, the comparison time
also increases, so the running time also increases.
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Figure 17: SNP detection quantity comparison.

50 × 100 × 150 × 200 × 250 × 300 ×
Depth

GATK
Bcftools
Freebayes

VarScan2
Our Method

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

N
um

be
r

Figure 18: Comparison of SNP detection quantity.
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Figure 19: SNP recall rate of detection software.
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Figure 20: InDel recall rate of detection software.

Table 6: SNP accuracy of detection software.
Soft 50× 100× 150× 200× 250× 300×

GATK 75.13% 77.47% 81.70% 84.53% 88.47% 94.83%
BCFtools 70.47% 74.40% 76.30% 78.83% 81.80% 85.50%
FreeBayes 67.70% 71.80% 74.03% 76.70% 78.47% 81.90%
VarScan 2 71.90% 75.50% 77.47% 79.57% 84.90% 88.47%
Our method 73.83% 77.37% 80.13% 84.53% 93.37% 97.43%
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4. Conclusion

In the era of rapid development of second-generation se-
quencing, it has become an important direction of medical
development to establish the relationship between gene
variation and diseases by DNA sequencing. In this paper,
SNP and InDel detection methods based on machine
learning and sparse matrix detection are proposed, and
VarScan 2, GATK, BCFtools, and FreeBayes are compared.
In the research of SNP and InDel detection with intelligent
reasoning, the experimental results show that the detection
accuracy and recall rate are better when the depth is in-
creasing. 2e reasoning fusion method proposed in this
paper has certain advantages in comparison effect and
discovery in SNP and InDel and has good effect in swelling
and pain gene detection. In this paper, different software
detection methods are studied for fusion. After fusion, there
are obvious advantages in the number of SNP and InDel.
However, in the case of large-area sequence missing, the
detection effect is poor, so it is necessary to further reason
and fuse the detected sequence position information. 2e
later work mainly focuses on the selection of sequences after
fusion and studies the characteristics of sequences, so that
different software fusion can be selected to achieve the best
performance.
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