Skip to main content
. 2021 Dec 20;25(1):103651. doi: 10.1016/j.isci.2021.103651

Table 4.

AUROC and time points of mortality prediction studies

Study Model Algorithm AUROC Time
Taylro, 2015 Logistic regression Logistic regression 0.755 28 days
CART Classification and regression tree 0.693
Random forest Random forest 0.860
MEDS score NR 0.705
CURB-65 score NR 0.734
REMS score NR 0.717
Perng et al. (2019) KNN KNN 0.84 28 days
SoftMax SoftMax 0.88
PCA + SoftMax PCA + SoftMax 0.91
AE + SoftMax AE + SoftMax 0.90
CNN + SoftMax CNN + SoftMax 0.92
Kwon and Baek (2020) qSOFA scores NR 0.78 3 days
qSOFA-based machine-learning models Extreme gradient boosting, light gradient boosting machine, and random forest 0.86
Hou et al. (2020) XGBoost eXtreme Gradient Boosting 0.857 30 days
logistic regression logistic regression 0.819
SAPS-II scores Simplified acute physiology score-II 0.797
Kong et al. (2020) LASSO least absolute shrinkage and selection operator 0.829 In hospital
RF random forest 0.829
GBM gradient boosting machine 0.845
LR logistic regression 0.833
SAPS II Simplified acute physiology score-II 0.77
Li et al. (2021) GBDT GBDT 0.992 In hospital
LR Logistic regression 0.876
KNN k-nearest neighbor 0.877
RF Random forest 0.980
SVM Support vector machine 0.898
Qi et al. (2021) XGBoost Extreme gradient boosting 0.848 In hospital
SAPSII The simplified acute physiology score 0.777
SOFA Sequential organ failure assessment score 0.704
SIRS Systemic inflammatory response syndrome 0.609
qSOFA Quick sequential organ failure assessment 0.580

Abbreviation: CART: classification and regression tree; MEDS: mortality in emergency department sepsis score; KNN: K nearest neighbor; REMS: rapid emergency medicine score; CURB-65 score: the confusion, urea nitrogen, respiratory rate, blood pressure, 65 years of age and older; PCA: principal component analysis; AE: Autoencoder; CNN: Convolutional Neural Network; qSOFA: quick Sequential Organ Failure Assessment.