Skip to main content
. 2022 Jan 8;17(4):2277–2297. doi: 10.1007/s11482-021-10033-9

Table 3.

Impacts of online social capital on Chinese middle-aged and older adults’ depression: based on OLogit model

Model 1 Model 2 Model 3
OR R_SE OR R_SE OR R_SE
Online interaction 1.069 0.092 1.119 0.096 1.215* 0.109
Online contacts
  1–4 0.824 0.224 0.753 0.192 0.743 0.222
  5–9 0.786 0.246 0.749 0.225 0.756 0.249
  10–19 0.571 0.201 0.584 0.208 0.665 0.254
  20–49 0.418* 0.180 0.442^ 0.186 0.465^ 0.207
  ≥50 0.596 0.268 0.704 0.327 0.785 0.413
Online closeness of non-specific relationships 0.756** 0.061 0.744*** 0.061 0.717*** 0.067
Online closeness of specific relationships 0.867^ 0.072 0.897 0.075 0.906 0.082
Sex 1.296^ 0.205 1.243 0.196
Age 0.977* 0.009 0.969** 0.010
Residence 0.989 0.190 1.386 0.290
Education 0.706*** 0.063 0.803* 0.081
Internet age 0.966* 0.015
Online time weekly 1.001 0.006
Internet skill 0.732* 0.094
Intercept
  cut point 1 −1.881 0.454 −3.901 0.662 −3.916 0.759
  cut point 2 −0.487 0.446 −2.442 0.654 −2.476 0.751
  cut point 3 1.443 0.464 −0.462 0.654 −0.363 0.758
  cut point 4 3.469 0.562 1.565 0.720 1.612 0.837
Pseudo_R2 0.016 0.037 0.056
n 903 899 776

***p < 0.001, **p < 0.01, *p < 0.05, ^p < 0.1. OR: odds ratio, R_SE: robust standard error