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Abstract

Quantitative neuroimaging studies in twin samples can investigate genetic contributions to brain 

structure and microstructure. Diffusion tensor imaging (DTI) studies with twin samples have 

shown moderate to high heritability in white matter microstructure. This study investigates the 

genetic and environmental contributions of another widely used diffusion MRI model not yet 

applied to twin studies, neurite orientation dispersion and density imaging (NODDI). The NODDI 

model is a multicompartment model of the diffusion-weighted MRI signal, providing estimates 

of neurite density (ND) and the orientation dispersion index (ODI). A cohort of monozygotic 

(MZ) and same-sex dizygotic (DZ) twins (N=460 individuals) between 13–24 years of age were 

scanned with a multi-shell diffusion weighted imaging protocol. Select white matter (WM) regions 

of interest (ROI) were extracted. Biometric structural equation modeling estimated the relative 

contributions from additive genetic (A) and common (C) and unique environmental (E) factors. 

Genetic factors for the NODDI measures accounted for 91% and 65% of the variation of global 
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ND and ODI, respectively, compared with 83% for FA. We observed higher heritability for ND 

than both FA and ODI in 25 of 30 discrete white matter regions that we examined, suggesting ND 

may be more sensitive to underlying genetic sources of variation. This study demonstrated that 

genetic factors play a key role in the development of white matter microstructure using both DTI 

and NODDI.
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1. Introduction

Much of the vast spectrum of differences in human brain anatomy may be captured using 

magnetic resonance imaging (MRI). Understanding the genetic and environmental sources 

of individual differences in human brain structure holds considerable promise to better 

comprehend both typical and atypical brain development (Bigos et al., 2016); however, the 

specific neuronal microstructural properties that contribute to such individual differences 

are unclear. From a population-based twin cohort, we conducted comprehensive quantitative 

genetic analysis of white matter (WM) microstructural properties using measures of neurite 

density and dispersion (Zhang et al., 2012) to quantify the degree of genetic influences.

Diffusion tensor imaging (DTI) has been widely used to probe microstructural properties of 

white matter pathways (Alexander et al., 2007). DTI studies of twins and family pedigrees 

show that additive genetic factors account for substantial portions of variability in WM 

microstructure (Brouwer et al., 2010; Chiang et al., 2009) represented by DTI measures. 

The Human Connectome Project (HCP) identified twins and their siblings from the Missouri 

Family and Twin Registry and scanned these individuals using high resolution diffusion 

weighted imaging (DWI), finding heritabilities of 0.53–0.90 for FA in various white matter 

regions (Kochunov et al., 2015). Recent research initiatives that combine multiple cohorts 

from around the world using meta- and mega-analytic approaches further corroborate the 

significance of genetic contributions, with heritability ranging from 0.40 to 0.80 for FA 

in a majority of regions investigated (Jahanshad et al., 2013). Although FA is the most 

commonly reported measure in the literature, recent studies have further demonstrated 

substantial heritability among other DTI diffusivity metrics: mean diffusivity (MD), axial 

diffusivity (AD), and radial diffusivity (RD) (Hatton et al., 2018; Vuoksimaa et al., 2017). 

Heritabilities of DTI measures have also been investigated across the life span, from infancy 

to early and late adulthood (Chiang et al., 2011; Jansen et al., 2015). For example, genetic 

influences were observed in infant twins as early as 40 days after birth (Geng et al., 2012; 

Lee et al., 2015), and comparable estimates were also observed in an elderly twin sample 

(Vuoksimaa et al., 2017).

Although DTI measures are sensitive to individual differences in microstructure, the 

assumed Gaussian diffusion distribution model is inadequate in regions of crossing white 

matter tracts and for diffusion-weighted imaging (DWI) studies with increased diffusion-

weighting (b > 1,500 s/mm2). As a result, more complex DWI signal models with non-
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Gaussian distributions or multiple compartments have been proposed (Assaf and Basser, 

2005; Jensen and Helpern, 2010; Zhang et al., 2012). One widely used DWI method is 

Neurite Orientation Dispersion and Density Imaging (NODDI) (Zhang et al., 2012), which 

models the diffusion-weighted signals from three distinct compartments: (1) collections 

of restricted diffusion sticks or so-called “neurites” (axons, dendrites), (2) anisotropic 

Gaussian diffusion attributed to the extracellular tissue matrix, and (3) a fixed diffusion 

free-water isotropic compartment, which is attributed to cerebrospinal fluid (CSF). The 

NODDI model provides measures of the relative signal fraction of the restricted diffusion 

sticks, ND (for neurite density), and the orientation dispersion index (ODI) of the modeled 

restricted diffusion sticks (Zhang et al., 2012). In white matter, intra-axonal diffusion is 

often assumed to comprise the neurite signal and can be characterized by ND and ODI. The 

NODDI technique has been widely used to investigate white matter microstructural changes 

with brain development and maturation (Lynch et al., 2020) and a range of neurological 

conditions including brain injuries, epilepsy and Alzheimer’s disease (Colgan et al., 2016; 

Grussu et al., 2017; Mastropietro et al., 2019). However, NODDI based measures have not 

been widely applied in imaging genetics studies. To our knowledge, the only published 

investigation of the heritability of DTI and NODDI measures examined an Amish family 

pedigree (Kochunov et al., 2016). Using the corpus collosum as the sole WM region of 

interest, researchers found higher heritability for ND (0.70) than for ODI (0.42). This 

finding invites a more systematic whole brain investigation of genetic basis of NODDI 

measures in WM.

In the context of neuroimaging studies, data from monozygotic [MZ] and same-sex 

dizygotic [DZ] twins can allow for the statistical decomposition of the total variance of 

brain imaging measures into three sources: additive genetics (A), common environmental 

influences (C), and unique environmental influences (E) (Neale & Cardon, 1992). The 

correlation of MZ twins, with their 100% structural genetic similarity, sets an upper bound 

to heritability in this model. Doubling the difference between MZ and DZ correlations 

estimates heritability (Falconer & Mac Kay, 1998). The extent to which DZ twins, with 

their 50% overlap in segregating genes, are phenotypically more similar than their genetic 

factors alone can account for is a key factor in estimating common (i.e., shared by cotwins) 

environmental factors. Unique environmental factors are estimated, in part, by the extent to 

which the MZ correlation falls below 1.0. Here, as well as in practice (Neale and Cardon, 

1992), these genetic and environmental variance components are estimated from structural 

equation models (SEM) in which a series of equations capturing the ideas just described are 

solved simultaneously and the fit of competing models evaluated.

Capitalizing on one of the largest single-site twin imaging cohorts with a multi-shell 

diffusion weighted imaging (Schmidt et al., 2019), we aimed to quantitatively model 

similarities of DTI and NODDI white matter in adolescent MZ and DZ twins to 

examine genetic and environmental influences on variation in whole-brain white matter 

microstructure. Specifically, the current work aimed to (1) replicate previous findings of DTI 

heritability in WM, and (2) further investigate the heritability of neurite properties of WM 

using NODDI-based measures.
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Methods

Participants

Participants were recruited from a birth registry-based sample of MZ and DZ twin pairs 

from the Wisconsin Twin Project at the University of Wisconsin–Madison (Schmidt et al., 

2019, 2013). Twins who were invited for the neuroimaging study had previously participated 

in extensive assessments that included behavioral batteries, cognitive testing, and structured 

psychiatric interviews. Exclusion criteria for the MRI assessment included the following 

conditions: claustrophobia, seizure disorder, metal orthodontic braces, dermal piercings, 

traumatic brain injury, and developmental disabilities.

After excluding opposite sex DZ twins, a total of 460 twin individuals were included in the 

analysis. The sample consisted of 238 females (52%) and 222 (48%) males, with a mean 

age of 17.9 years (SD=2.3) who ranged from age 13–24 years at the time of scan. Final 

twin modeling included 129 MZ and 90 DZ twin pairs, after excluding 22 unpaired twins 

whose cotwin’s DWI images were not obtained or usable. Based on self-report, the sample 

is 84% white and 16% other races/ethnicities. An Institutional Review Board (IRB) at the 

University of Wisconsin–Madison approved all study protocols, and both twins and their 

legal guardian provided informed assent (in the case of minors) and consent, respectively.

Image Acquisition

Twins were scanned in a 3.0 Tesla GE Discovery MR750 scanner with a 32-channel receive-

only head coil (NOVA Medical, Wakefield, MA). Diffusion weighted imaging (DWI) used a 

spin-echo echo-planar imaging (EPI) sequence with three diffusion weighting shells. A total 

of 6 non-DWIs (b=0 s/mm2) and 63 DWIs with non-collinear, multi-b diffusion encoding 

directions were collected at b=500 s/mm2 (9 directions), b=800 s/mm2 (18 directions), and 

b=2000 s/mm2 (36 directions). 74 contiguous axial slices DWI (2 mm thick) were prescribed 

to cover the entire brain. Other protocol parameters were TR/TE = 8575/76.6 ms; parallel 

imaging (ASSET with acceleration factor = 2); isotropic 2 mm in-plane resolution (128×128 

matrix with 256 mm field-of-view).

Image Processing

Processing of DWIs was previously described in detail (Adluru et al. 2017). Briefly, 

FSL software package tools were used to correct for eddy current-related distortions 

and head motion (Andersson & Sotiropoulos, 2016). To account for main magnetic 

field inhomogeneities, a fieldmap was created using a three echo, spoiled gradient echo 

acquisition and the iterative decomposition of water and fat with echo asymmetry and the 

least-squares estimation (IDEAL) technique (Reeder et al., 2005). The FSL tool ‘fugue’ was 

subsequently used to undistort the DWI dataset using fieldmaps (Cusack et al., 2003; Jezzard 

& Balaban, 1995).

DTI and NODDI Fitting

Estimation of the diffusion tensors at each voxel used non-linear tensor estimation in 

the CAMINO software package (Jones & Basser, 2004). From the diffusion tensors, the 

eigenvalues were estimated, and maps of FA, AD, RD, and MD were computed. Next, 
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DWI data were fit to the three-compartment NODDI tissue model to provide estimates 

of ND and ODI (Zhang et al., 2012). To perform the fitting, we used the Accelerated 

Microstructure Imaging via Convex Optimization (AMICO) framework (Daducci et al., 

2015), which reformulates the NODDI model into a system of linear equations that can 

be rapidly solved and has been used in similar large population based studies (Fukutomi 

et al., 2018). Such a strategy greatly speeds up the mapping of NODDI parameters while 

maintaining a high correlation with the original implementation (Daducci et al., 2015).

Study-specific template creation and regions of interest extraction

A study-specific template was created from all processed twins’ DTI images with DTI-TK 

using affine and diffeomorphic diffusion tensor registration (Zhang et al., 2006). The same 

transformation is subsequently applied to native-space ND and ODI images. Within the 

template space, an intraclass correlation (ICC) is calculated at each voxel among MZ and 

DZ twin pairs as initial indices of twin similarity.

The JHU/ICBM (Mori et al., 2008) WM atlas was co-registered to the study-

specific template space using diffeomorphic registration algorithms from the Advanced 

Normalization Tools (ANTs) package (Avants et al., 2008). White matter regions of interest 

(ROIs) from the JHU/ICBM WM atlas were then warped into each subject’s native space by 

applying the inverse of the spatial transformations estimated from the registration process. 

Mean values of native-space DTI and NODDI parameters of each ROI were subsequently 

calculated. Each subject’s ROI alignment in individual space was visually inspected.

Global WM measures

We created a composite mask of all ROIs investigated in the current study, which was used 

to calculate each twin’s global WM measure for each of the DTI and NODDI indices. These 

global measurements are included in the subsequent twin modeling with JHU ROIs.

Quantitative Genetic Analyses

Genetic analyses with structural equation modeling were conducted with the publicly 

available R package umx (Bates et al., 2019), which employs maximum-likelihood variance 

decomposition methods to estimate the additive genetic and environmental influences on 

WM microstructure. The umx package offered concise syntax and matrix-based twin 

modeling that are appropriate for the proposed analysis.

Using univariate structural equation modeling, the phenotypic variances in DTI or NODDI 

measures were decomposed into additive genetic (A), common environmental (C), and 

unique environmental (E) contributions by contrasting the covariance among MZ and DZ 

twin pairs (Neale and Cardon, 1992). The path diagram for twin modeling is shown in 

Figure 1. The “A” components were assumed to correlate at 1.0 for MZ twins and 0.5 for 

DZ twins. Both MZ and DZ twins’ “C” components were assumed to correlate at 1.0, as 

dictated by the equal environment assumption.

Significance tests of genetic and environmental effects compared the full model against 

partial models obtained by dropping A or E estimates. The change in model fit was 
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calculated using the likelihood-ratio test as the twice the log likelihood difference between 

the full and partial models, and the 95% confidence intervals (CIs) for the A, C, and E 

estimates were generated.

Results

Group level DTI and NODDI measures

Figure 2 shows the templates of FA, ND, and ODI maps generated from 460 twin 

individuals. Our brain microstructural measures did not show any sex or age dependencies 

in the ROIs investigated. No significant sex differences between males and females emerged 

for any of the tracts investigated (p>0.05). Also, no significant linear relationships occurred 

between age and microstructural measures (p>0.05).

Table 1 shows the mean and standard deviation of DTI and NODDI indices of corresponding 

regions; these indices are consistent with known brain anatomy. For example, the 

corpus collosum, where commissural fibers are most coherently orientated between the 

left and right hemispheres with few crossing fibers, showed the lowest ODI values. 

Cerebral peduncles, which contain densely packed ascending and descending cortical WM 

projections, and middle cerebellar peduncle showed the highest ND.

Preliminary phenotypic analyses: Individual level phenotypic correlation between DTI and 
NODDI in WM

Table 2 illustrates the direction and degree of correlation between global DTI and NODDI 

measures. All correlations are significant at p<0.01 level with the exception of AD with 

FA and AD with ODI. For specific ROI correlations, the heat map in Supplemental Figure 

2 depicts correlations between each of the 30 regions of interest for DTI and NODDI 

measures. Results show FA is negatively correlated with ODI and positively correlated with 

ND, whereas ND and ODI are only weakly correlated (Table 2, Figure S2).

Initial twin similarity analyses and preliminary Falconer’s heritability maps

We computed ROI-based intraclass correlations (ICCs) among MZ and DZ twin pairs using 

NODDI and DTI metrics (see Figure 3 for the voxel-wise metrics; see Supplement Tables 

S1–S6 for ROI-specific ICCs). Among all the ROIs investigated, MZ twin pairs had higher 

ICCs, suggesting the presence of genetic contributions (Supplement Tables S1–S6).

In the first and second rows of Figure 4, voxel-wise maps of ICCs for MZ and DZ twins 

using DTI and NODDI illustrate the gross resemblance of cotwins for WM microstructure. 

Qualitatively, MZ twins have widespread regions of WM with higher ICCs compared with 

DZ twins. Falconer’s formula (h2 = 2[ICCMZ − ICCDZ]) (Falconer & Mac Kay, 1998) 

was used to calculate a preliminary heritability estimate at the voxel level. Figure 4, row 

3 illustrates voxel-wise heritability maps where the color spectrum indicates levels of 

heritability in ND, ODI and FA. For consistency, we did not set the upper bound of Falconer 

heritability at the MZ ICC. This decision led to the anomalous result that heritabilities were 

sometimes higher than MZ ICCs, which violates the underlying assumptions of the Falconer 

model. Still, Figure 4 depicts highly variable heritable effects across brain regions. We also 
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note that ND ICCs are more homogeneous, especially at grey matter and WM boundaries, 

whereas ODI and FA ICCs drastically decrease near the edge of WM.

Biometric ACE modeling for DTI and NODDI measures

Compared with Falconer’s heritability, the structural equation ACE modeling approach 

optimally weights estimates for MZ and DZ sample sizes, constrains estimates according to 

polygenic theory, provides standard errors for parameter estimates, and allows for tests of 

absolute model fit and comparative fit of nested models (Neale and Cardon, 1992). Model 

fitting output parameters are detailed in Supplement Tables S1–S6, including maximum 

likelihood variance components parameter estimates, 95% CIs, and statistical significance 

tests for of A and C. Heritability estimates of DTI and NODDI measures of JHU template 

ROIs are shown in Tables 3 and 4 and Figure 5.

Global heritability estimates were 0.83 [CI 0.78, 0.87], 0.91 [CI 0.71, 0.93], and 0.65 

[CI 0.36, 0.85] for FA, ND, and ODI, respectively (see Table 3). Additive genetic factors 

explained 83% of the variance in global FA, with individual tract heritability ranging from 

0.53– 0.83. Major projection and association fibers had the highest levels of FA heritability 

compared with the other pathways. The superior longitudinal fasciculus, anterior limb of 

internal capsule, and anterior corona radiata had the highest FA heritability. The splenium 

of the corpus collosum, superior frontal-occipital fasciculus, and the cerebral peduncle had 

the lowest FA heritability. When compared with FA, heritability estimates of ND are higher 

in the majority of fiber tracts investigated, with the exception of tracts in the brain stem, 

such as the middle cerebellar peduncle and corticospinal tract, and in the uncinate fasciculus 

(Table 3, Figure 5). ODI estimates were generally lower than those for ND and FA, with 

the exception of posterior limb of internal capsule and cerebral peduncle (Table 3, Figure 

5). Using the Wilcoxon signed rank test for the group of 30 ROIs, ND heritabilities are 

significantly higher than those for FA (z=2.85, p=0.04) and ODI (z=3.46, p=0.01).

Nearly 88% of the WM tracts showed heritability estimates for AD, RD, and MD of .40 

or higher (ranging to .89), as shown in Table 4. Projection fibers had both the highest 

and lowest levels of AD and MD heritability, compared with the other pathways. Right 

anterior and superior corona radiata had the highest AD heritability of 0.74 and 0.82. The 

left posterior thalamic radiation, right corticospinal tracts, and left cerebral peduncle have 

the lowest heritabilities for AD (0.32, 0.37, and 0.29, respectively) and MD (0.43, 0.51, and 

0.13, respectively).

Shared environmental contributions (c2) were generally small and close to 0 for FA, ND, 

and RD of all individual tracts. Removing shared environmental factors from the above-

mentioned ACE models did not significantly reduce the model fit compared with the full 

model (see Supplement Table S1–6). On the other hand, AD, MD, and ODI measures of 

several tracts showed shared environmental contributions; these tracts included the posterior 

corona radiata, posterior thalamic radiation, and sagittal stratum (Tables 3 and 4).

Age as Moderator

Additional analyses accounted for the potential effect of age. At the phenotypic level, no 

significant linear relationship between age at the time of scan and DTI or NODDI measures 
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emerged (p>0.05). Due to the non-normal distribution of age in our sample, with age 

clustering around 17 and 22, we subdivided our twins into an adolescent group (13–20) and 

an early adult group (21–24) (see Supplement Figure S1 for age distribution). Biometric 

modeling showed comparable heritability and variance components between groups, and 

thus age groups were pooled in the final analysis.

Discussion

This study first replicated previous findings that genetic factors explain a substantial portion 

of individual differences in FA (Brouwer et al., 2010; Chiang et al., 2011; Jahanshad et al., 

2013; Kochunov et al., 2015; Lee et al., 2015). Further, our study suggests that NODDI 

ND and ODI measures are both highly heritable (with global heritability of 0.91 [CI 0.71, 

0.93] and 0.65 [CI 0.36, 0.85], respectively). To our knowledge, this is the first report that 

systematically examines whole brain NODDI measures of WM in a large twin sample and 

establishes NODDI as a promising phenotype for future imaging genetics research.

Our results show higher heritability for ND than FA and ODI in 25 out of 30 ROI measures, 

suggesting ND is more sensitive to underlying genetic sources of variation. The heritability 

of ODI, which is a measure of spatial coherence, is lower than that of FA and ND, with 

the exception of the cerebral peduncle, middle cerebellar peduncle, and posterior limb 

of internal capsule (Table 3, Figure 5). In a previous NODDI heritability study using an 

Amish family pedigree, Kochunov et al. (2016) found ND heritability of 0.70 and ODI 

heritability of 0.42 in the corpus collosum (CC), values that align reasonably well with 

our CC heritability estimates. Our study applied white matter ROI analysis and found 

heritability estimates of ODI ranging from 0.16 to 0.86 in all of the WM tracts investigated. 

Using the Wilcoxon signed rank test, we showed the ND heritabilities, which ranged from 

0.45–0.90, are higher than those of FA and ODI. Our finding indicates a strong genetic basis 

for both NODDI parameters, suggesting genetic factors contribute to the dispersion of axons 

as well as their density.

Our heritability estimates of traditional DTI measures (Tables 3 & 4) are also consistent with 

the range of estimates in other independent cohorts and consortium analyses (Jahanshad 

et al., 2013; Vuoksimaa et al., 2017). Our global AD heritability of 0.65 is lowest among 

all the metrics we investigated. This finding is consistent with results from recent twin 

samples composed of infants and middle-aged adults (Brouwer et al., 2010; Lee et al., 2015; 

Vuoksimaa et al., 2017). One study with a mixed family design also showed levels of AD 

heritability similar to ours (Kochunov et al., 2010). RD and MD heritability estimates are 

higher than AD estimates, with global heritability of 0.73 [CI 0.51, 0.92] and 0.67 [CI 0.37, 

0.85], respectively. The similar RD and MD heritabilities agree with recent twin studies 

where complete DTI metrics—not just FA—are reported (Gustavson et al., 2019; Vuoksimaa 

et al., 2017). Thus, our results support and expand trends in the literature concerning genetic 

effects within the DTI framework.

When examining voxel-level heritability maps, we note that the patterns across FA and ODI 

are similar, whereas ND heritability appears more homogenous across the brain (Figure 

4). In our investigations of specific WM regions, we found projection fiber regions to 
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generally have the highest heritability in ND and DTI measures, followed by commissural 

fiber regions, association fiber regions, and lastly regions of the brain stem (see Tables 

3 and 4). Among the association fiber regions that connect different brain regions of the 

same hemisphere, the superior longitudinal fasciculus has the highest heritability, compared 

with more inferior regions such as uncinate fasciculus or sagittal stratum. This trend among 

association fibers is also observed in other studies (Hatton et al., 2018; Shen et al., 2014). 

The lower heritability estimates in midbrain regions (Tables 3 and 4), particularly for 

small regions such as the cortical spinal tract (CST), may be more influenced by errors in 

registration with the region template that contribute to the variation in the measurements. 

Alternatively, measures from the CST may be more influenced by environmental factors.

In our study, homologous left and right hemisphere WM tracts were examined separately. 

Although we did not statistically test for differences in heritability, the heritability estimates 

for left and right hemispheric ROIs were comparable, with more than 80% of regions 

showing left and right hemisphere heritability differences smaller than 10%. Regions 

indicating high asymmetry in heritability include several association fibers such as uncinate 

fasciculus, cingulum, and sagittal stratum (Tables 3 and 4), which is also shown in other 

studies (Geng et al., 2012; Lee et al., 2015; Vuoksimaa et al., 2017). However, the 

consistency and the effect size of the left versus right differences in heritability should 

be investigated in future studies.

The absence of shared environmental influence in the majority of tracts that we investigated 

is consistent with the twin DTI literature (Gustavson et al., 2019; Vuoksimaa et al., 2017) 

and other structural brain measurements (Giedd et al., 2007; Jansen et al., 2015). However, 

some regions with non-zero shared environmental contribution were observed, especially 

among ODI indices. For instance, the posterior thalamic radiation showed environmental 

contribution in AD, ODI, and MD (see Tables 3 and 4). Sources of shared environments may 

first arise during the prenatal period when neuronal migration, neurulation, and myelination 

are occurring. Subsequent stressors and other experiential factors may similarly affect MZ 

and DZ twins, thus contributing to shared environment estimates. Unique environmental 

influences (i.e., unique to one member within a pair) account for the remaining variance.

Although age-related changes in brain structure have been observed in WM microstructure 

(Lebel & Beaulieu, 2011), most imaging genetics studies are limited to cross-sectional study 

designs (Chiang et al., 2011), with the exception of infant twin studies (Lee et al., 2018). 

In a recent longitudinal study that investigated the age-related development of NODDI 

measures among singletons from infancy through early childhood, Lynch et al. (2020) found 

that age is positively correlated with ND, but that age showed little or no correlation with 

ODI (Lynch et al., 2020). Longitudinal twin imaging studies spanning adolescence and 

adulthood may better illuminate age-related changes in genetic and environmental influences 

than cross-sectional dichotomization of younger and older age groups. The limited age range 

in the current study may partly explain why we did not observe significant age-related 

differences in heritability (Supplemental Figure 1).

Despite histological validation studies (Sepehrband et al., 2015), we should be wary of 

overly strong biological interpretation of NODDI measures. While restricted intra-axonal 
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diffusion is likely to be a major factor in the neurite signal compartment, the model is 

still vastly over-simplified, given the complex microstructure of white matter. In addition, 

recent studies highlight some potential issues in the NODDI model assumptions (Lampinen 

et al., 2017) and default diffusivity values (Guerrero et al., 2019), which may reduce model 

performance.

With such limitations recognized, recent work aims to improve NODDI’s formalism and its 

performance (Tariq et al., 2016). Moreover, the improved tissue specificity from the existing 

NODDI model, when combined with traditional DTI measures, has proved beneficial in 

studying typical brain development (Beck et al., 2021; Lynch et al., 2020) and neurological 

disorders such as metabolic diseases and multiple sclerosis (Grussu et al., 2017; Timmers 

et al., 2016). Confidence in our results is strengthened when we note that the phenotypic 

correlations between DTI and NODDI measures also align with published studies, where FA 

is negatively correlated ODI and positively correlated with ND (Table 2, Figure S2) (Zhang 

et al., 2012).

The differences in the model frameworks of Gaussian diffusion for the DTI model and 

multi-compartmental modeling of NODDI in our study provide added evidence of the 

genetic basis of white matter microstructure. Our findings contribute to the current imaging 

genetics literature by providing evidence that within the limited domain of the NODDI 

framework, (1) additive genetic factors contribute to individual differences of both ND and 

ODI in white matter; and (2) significant heritabilities are also observed in brain regions with 

more complex fiber organization, such as the corona radiata.

Other DWI reconstruction techniques also help elucidate complex underlying 

microstructural features. In a twin study using high angular resolution imaging (HARDI), 

Shen et al. (2014) found that the WM fiber modeled by the fiber orientation distribution 

(FOD) function is more heritable than FA. The fiber orientation distribution function may 

be a more accurate representation of axonal fiber organization and possibly more sensitive 

to underlying genetic factors in areas of large populations of crossing fibers. Similarly, our 

adoption and validation of NODDI techniques within the classic twin modeling research 

framework should augment the current literature on the heritability of DTI indices.

Our analyses focused on standardized ROI measurements that may not capture heritability 

changes along the full length of WM pathways. For instance, Kochunov et al. (2015) showed 

that regions closer to the thalamus (the center of the brain in MNI space) had higher 

FA heritability compared with distal regions. Our qualitative observation that Falconer’s 

heritability in FA decreases at the edge of WM and cortical GM (Figure 4) likely supports 

this prior finding. Moreover, preliminary voxel-based Falconer’s heritability estimates in 

our study largely corroborate our ROI-based findings. Future studies will perform ACE 

modeling at the voxel level and investigate any regional changes in heritability. Additionally, 

twin modeling of NODDI measures can be extended to the whole brain to study the 

genetic basis of cortical and subcortical grey matter microstructure (Elman et al., 2017). 

For instance, orientation dispersion should capture the fanning and complexity of neurite 

fiber orientation (Fukutomi et al., 2018), which are important characteristics for brain 

development and neurodegenerative disorders.
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In conclusion, by incorporating NODDI’s estimate of neurite density (ND) and orientation 

dispersion (ODI) index measures in a twin sample, we estimated the magnitude of genetic 

influences on variation in WM microstructure with a multi-compartment model of water 

diffusion, which previously has not been explored. The high and significant degree of 

heritability seen in many brain WM tracts suggests that genetic factors play an important 

role in the development of neurite density and dispersion measures estimated via water 

diffusion within white matter and highlights NODDI’s potential in the future of imaging 

genetics research.
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Fig. 1: 
Path diagram of the structural equation modeling (SEM), showing additive genetic (A), 

common (“shared”) environment (C), and unique environment (E) variance components
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Fig. 2: 
Template images obtained from 460 twin individuals. Top row: Diffusion tensor imaging 

(DTI) measure of Fractional anisotropy (FA); Middle row: Neurite orientation dispersion 

and density imaging (NODDI) measures of Orientation dispersion index (ODI); Bottom 

row: NODDI Neurite density (ND)
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Fig. 3: 
Heat map of Pearson Correlation between FA and NODDI metrics in WM
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Fig. 4: 
Voxel-wise ICC and Falconer’s heritability maps

Luo et al. Page 18

Brain Struct Funct. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: 
Comparative heritability estimates extracted from biometric ACE model fitting for fractional 

anisotropy (FA), neurite density (ND), and orientation dispersion index (ODI). Error bars 

provide 95% confidence intervals for each estimate
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Table 1:

Mean and (standard deviation) of DTI and NODDI indices (N=460)

FA AD (m2ms−1) RD (m2ms−1) MD (m2ms−1) ND ODI

Projection fibers:

Anterior corona radiata-L 0.46 (0.03) 1.05 (0.04) 0.49 (0.03) 0.68 (0.03) 0.55 (0.03) 0.21 (0.02)

Anterior corona radiata-R 0.47 (0.03) 1.06 (0.04) 0.48 (0.03) 0.68 (0.03) 0.54 (0.03) 0.20 (0.02)

Superior corona radiata-L 0.50 (0.02) 1.02 (0.04) 0.45 (0.02) 0.64 (0.02) 0.62 (0.03) 0.21 (0.02)

Superior corona radiata-R 0.49 (0.03) 1.00 (0.04) 0.44 (0.02) 0.62 (0.02) 0.62 (0.03) 0.22 (0.02)

Posterior corona radiata-L 0.48 (0.03) 1.11 (0.05) 0.49 (0.03) 0.70 (0.03) 0.56 (0.04) 0.19 (0.02)

Posterior corona radiata-R 0.50 (0.03) 1.13 (0.05) 0.48 (0.03) 0.70 (0.03) 0.55 (0.03) 0.17 (0.02)

Anterior limb of internal capsule-L 0.57 (0.02) 1.13 (0.03) 0.40 (0.02) 0.64 (0.01) 0.61 (0.02) 0.08 (0.02)

Anterior limb of internal capsule-R 0.58 (0.02) 1.14 (0.03) 0.39 (0.02) 0.64 (0.01) 0.59 (0.02) 0.09 (0.02)

Posterior limb of internal capsule-L 0.66 (0.02) 1.20 (0.03) 0.35 (0.02) 0.63 (0.01) 0.68 (0.03) 0.11 (0.01)

Posterior limb of internal capsule-R 0.67 (0.02) 1.23 (0.03) 0.35 (0.02) 0.64 (0.01) 0.68 (0.03) 0.10 (0.01)

Posterior thalamic radiation-L 0.63 (0.02) 1.39 (0.06) 0.42 (0.03) 0.74 (0.03) 0.55 (0.03) 0.06 (0.01)

Posterior thalamic radiation-R 0.63 (0.03) 1.37 (0.06) 0.41 (0.03) 0.73 (0.03) 0.54 (0.03) 0.06 (0.01)

Association fibers:

Superior longitudinal fasciculus-L 0.51 (0.02) 1.03 (0.03) 0.44 (0.02) 0.64 (0.02) 0.62 (0.03) 0.19 (0.02)

Superior longitudinal fasciculus-R 0.51 (0.02) 1.03 (0.03) 0.44 (0.02) 0.64 (0.02) 0.62 (0.03) 0.19 (0.02)

Superior fronto-occipital fasciculus-L 0.52 (0.04) 1.02 (0.05) 0.42 (0.03) 0.62 (0.02) 0.64 (0.04) 0.18 (0.03)

Superior fronto-occipital fasciculus-R 0.52 (0.04) 1.04 (0.04) 0.42 (0.03) 0.63 (0.02) 0.61 (0.03) 0.18 (0.03)

Cingulum-L 0.56 (0.03) 1.18 (0.04) 0.43 (0.03) 0.68 (0.02) 0.56 (0.03) 0.08 (0.03)

Cingulum-R 0.51 (0.03) 1.11 (0.04) 0.46 (0.03) 0.67 (0.02) 0.54 (0.02) 0.13 (0.04)

Uncinate fasciculus-L 0.47 (0.04) 1.13 (0.05) 0.51 (0.03) 0.72 (0.03) 0.48 (0.03) 0.17 (0.03)

Uncinate fasciculus-R 0.49 (0.03) 1.22 (0.06) 0.53 (0.03) 0.76 (0.03) 0.46 (0.03) 0.13 (0.03)

Sagittal Stratum-L 0.61 (0.02) 1.34 (0.05) 0.44 (0.03) 0.74 (0.02) 0.53 (0.03) 0.08 (0.01)

Sagittal Stratum-R 0.61 (0.02) 1.33 (0.05) 0.44 (0.03) 0.74 (0.02) 0.53 (0.03) 0.08 (0.01)

Commissural WM:

Genu of corpus callosum 0.65 (0.02) 1.41 (0.04) 0.37 (0.03) 0.72 (0.03) 0.58 (0.03) 0.06 (0.01)

Body of corpus callosum 0.65 (0.02) 1.42 (0.04) 0.36 (0.03) 0.71 (0.02) 0.63 (0.03) 0.05 (0.01)

Splenium of corpus callosum 0.69 (0.02) 1.50 (0.06) 0.32 (0.03) 0.72 (0.03) 0.66 (0.03) 0.05 (0.01)

Tracts in the brainstem:

Corticospinal tracts-L 0.52 (0.03) 1.11 (0.05) 0.44 (0.03) 0.67 (0.03) 0.66 (0.03) 0.13 (0.04)

Corticospinal tracts-R 0.54 (0.03) 1.09 (0.05) 0.43 (0.03) 0.65 (0.03) 0.68 (0.03) 0.12 (0.05)

Cerebral peduncle-L 0.66 (0.02) 1.42 (0.05) 0.35 (0.03) 0.71 (0.02) 0.70 (0.03) 0.08 (0.01)

Cerebral peduncle-R 0.67 (0.02) 1.51 (0.06) 0.35 (0.03) 0.74 (0.03) 0.71 (0.03) 0.08 (0.01)

Middle cerebellar peduncle 0.52 (0.02) 1.07 (0.03) 0.41 (0.03) 0.63 (0.02) 0.72 (0.03) 0.19 (0.01)

Global Measures:

All fiber tracts 0.57 (0.02) 1.27 (0.02) 0.47 (0.02) 0.74 (0.02) 0.62 (0.02) 0.16 (0.01)
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Table 2.

Correlations between global DTI and NODDI measures.

FA ND ODI AD RD MD

FA 1

ND 0.62 1

ODI −0.55 0.22 1

AD −0.07n.s −0.21 −0.08n.s 1

RD −0.78 −0.52 0.46 0.65 1

MD −0.54 −0.44 0.26 0.87 0.94 1

n.s. = not significant, p>0.05
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Table 3:

Twin ACE modeling of fractional anisotropy (FA) and neurite orientation dispersion and density imaging 

(NODDI) measures ND and ODI in specific Johns Hopkins University template white matter regions. N=438

Fractional anisotropy (FA) Neurite Density (ND) Orientation Dispersion Index (ODI)

a2 c2 e2 a2 c2 e2 a2 c2 e2

Projection fibers:

Anterior corona radiata-L 0.73 0.00 0.27 0.90 0.00 0.10 0.64 0.00 0.36

Anterior corona radiata-R 0.70 0.00 0.30 0.88 0.00 0.12 0.65 0.00 0.35

Superior corona radiata-L 0.67 0.00 0.33 0.86 0.00 0.14 0.61 0.00 0.39

Superior corona radiata-R 0.71 0.09 0.20 0.84 0.00 0.16 0.71 0.05 0.24

Posterior corona radiata-L 0.74 0.00 0.26 0.84 0.01 0.15 0.44 0.31 0.25

Posterior corona radiata-R 0.78 0.00 0.22 0.89 0.00 0.11 0.43 0.31 0.26

Anterior limb of internal capsule-L 0.73 0.00 0.27 0.79 0.00 0.21 0.33 0.07 0.60

Anterior limb of internal capsule-R 0.65 0.00 0.35 0.81 0.00 0.19 0.49 0.00 0.51

Posterior limb of internal capsule-L 0.64 0.04 0.32 0.41 0.18 0.41 0.76 0.00 0.24

Posterior limb of internal capsule-R 0.68 0.04 0.28 0.69 0.00 0.31 0.76 0.01 0.23

Posterior thalamic radiation-L 0.73 0.00 0.27 0.86 0.00 0.14 0.44 0.13 0.43

Posterior thalamic radiation-R 0.62 0.02 0.36 0.85 0.00 0.15 0.16 0.40 0.44

Association fibers:

Superior longitudinal fasciculus-L 0.81 0.00 0.19 0.84 0.00 0.16 0.72 0.00 0.28

Superior longitudinal fasciculus-R 0.82 0.00 0.18 0.89 0.00 0.11 0.71 0.01 0.28

Superior fronto-occipital fasciculus-L 0.38 0.00 0.62 0.58 0.00 0.42 0.40 0.00 0.60

Superior fronto-occipital fasciculus-R 0.45 0.00 0.55 0.48 0.09 0.43 0.37 0.00 0.63

Cingulum-L 0.67 0.00 0.33 0.70 0.09 0.21 0.49 0.00 0.51

Cingulum-R 0.69 0.00 0.31 0.83 0.00 0.17 0.60 0.00 0.40

Uncinate fasciculus-L 0.62 0.00 0.38 0.50 0.00 0.50 0.64 0.00 0.36

Uncinate fasciculus-R 0.46 0.00 0.54 0.60 0.00 0.40 0.41 0.00 0.59

Sagittal Stratum-L 0.57 0.00 0.43 0.82 0.00 0.18 0.50 0.00 0.50

Sagittal Stratum-R 0.63 0.00 0.37 0.63 0.16 0.21 0.23 0.27 0.50

Commissural fibers:

Genu of corpus callosum 0.75 0 0.25 0.88 0 0.12 0.47 0.18 0.35

Body of corpus callosum 0.64 0 0.36 0.74 0.07 0.19 0.56 0.05 0.39

Splenium of corpus callosum 0.59 0.06 0.35 0.81 0 0.19 0.58 0.19 0.23

Tracts in the brainstem:

Corticospinal tracts-L 0.59 0.00 0.41 0.40 0.15 0.45 0.43 0.04 0.53

Corticospinal tracts-R 0.54 0.00 0.46 0.55 0.00 0.45 0.40 0.00 0.60

Cerebral peduncle-L 0.55 0.00 0.45 0.54 0.00 0.46 0.68 0.00 0.32

Cerebral peduncle-R 0.36 0.08 0.56 0.45 0.00 0.55 0.61 0.00 0.39

Middle cerebellar peduncle 0.72 0 0.28 0.55 0 0.45 0.73 0 0.27

Global Measure: 0.83 0 0.17 0.91 0 0.09 0.65 0.16 0.19
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Table 4:

Twin ACE modeling of diffusion tensor imaging (DTI) measures of AD, RD and MD in specific Johns 

Hopkins University template white matter regions. N=438

AD RD MD

a2 c2 e2 a2 c2 e2 a2 c2 e2

Projection fibers:

Anterior corona radiata-L 0.73 0.00 0.27 0.81 0.00 0.19 0.82 0.00 0.18

Anterior corona radiata-R 0.74 0.00 0.26 0.83 0.00 0.17 0.87 0.00 0.13

Superior corona radiata-L 0.67 0.00 0.33 0.80 0.00 0.20 0.82 0.00 0.18

Superior corona radiata-R 0.82 0.00 0.18 0.83 0.00 0.17 0.85 0.00 0.15

Posterior corona radiata-L 0.52 0.28 0.20 0.81 0.00 0.19 0.72 0.14 0.14

Posterior corona radiata-R 0.40 0.43 0.17 0.83 0.00 0.17 0.88 0.00 0.12

Anterior limb of internal capsule-L 0.64 0.01 0.35 0.71 0.00 0.29 0.62 0.00 0.38

Anterior limb of internal capsule-R 0.62 0.00 0.38 0.70 0.00 0.30 0.66 0.00 0.34

Posterior limb of internal capsule-L 0.71 0.00 0.29 0.40 0.28 0.32 0.24 0.38 0.38

Posterior limb of internal capsule-R 0.55 0.07 0.38 0.70 0.00 0.30 0.56 0.00 0.44

Posterior thalamic radiation-L 0.32 0.39 0.29 0.71 0.05 0.23 0.43 0.35 0.22

Posterior thalamic radiation-R 0.41 0.36 0.23 0.75 0.00 0.25 0.71 0.08 0.21

Association fibers:

Superior longitudinal fasciculus-L 0.47 0.28 0.25 0.87 0.00 0.13 0.85 0.02 0.13

Superior longitudinal fasciculus-R 0.56 0.20 0.24 0.86 0.00 0.14 0.87 0.00 0.13

Superior fronto-occipital fasciculus-L 0.40 0.00 0.60 0.54 0.00 0.46 0.62 0.00 0.38

Superior fronto-occipital fasciculus-R 0.42 0.00 0.58 0.62 0.00 0.38 0.62 0.00 0.38

Cingulum-L 0.51 0.08 0.41 0.73 0.00 0.27 0.73 0.01 0.26

Cingulum-L 0.66 0.00 0.34 0.76 0.00 0.24 0.78 0.00 0.22

Uncinate fasciculus-L 0.48 0.00 0.52 0.48 0.00 0.52 0.11 0.21 0.68

Uncinate fasciculus-R 0.22 0.23 0.55 0.39 0.00 0.61 0.39 0.05 0.56

Sagittal Stratum-L 0.53 0.13 0.34 0.73 0.00 0.27 0.78 0.00 0.22

Sagittal Stratum-R 0.33 0.30 0.37 0.75 0.00 0.25 0.61 0.14 0.25

Commissural fibers:

Genu of corpus callosum 0.71 0 0.29 0.81 0 0.19 0.82 0 0.18

Body of corpus callosum 0.60 0 0.40 0.72 0 0.28 0.74 0 0.26

Splenium of corpus callosum 0.45 0.26 0.29 0.67 0 0.33 0.68 0 0.32

Tracts in the brainstem:

Corticospinal tracts-L 0.56 0.00 0.44 0.65 0.00 0.35 0.60 0.00 0.40

Corticospinal tracts-R 0.37 0.01 0.62 0.59 0.00 0.41 0.51 0.00 0.49

Cerebral peduncle-L 0.29 0.16 0.55 0.54 0.00 0.46 0.13 0.13 0.74

Cerebral peduncle-R 0.44 0.04 0.52 0.37 0.03 0.60 0.30 0.09 0.61

Middle cerebellar peduncle 0.60 0.00 0.40 0.71 0 0.29 0.63 0.00 0.37

Global Measure: 0.65 0.15 0.20 0.73 0.00 0.27 0.67 0.00 0.33

Note: Full ACE model fit is shown. Estimates of zero for c2 were empirically driven to their boundary at zero in these ACE models.
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