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Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are oncogenic drivers to a variable extent in 
several tumors, including gliomas, acute myeloid leukemia (AML), cholangiocarcinoma, melanoma, 
and thyroid carcinoma. The pathobiological effects of these mutations vary considerably, impeding 
the identification of common expression profiles. We performed an expression meta-analysis between 
IDH-mutant (IDHmut) and IDH-wild-type (IDHwt) conditions in six human and mouse isogenic disease 
models. The datasets included colon cancer cells, glioma cells, heart tissue, hepatoblasts, and 
neural stem cells. Among differentially expressed genes (DEGs), serine protease 23 (PRSS23) was 
upregulated in four datasets, i.e., in human colon carcinoma cells, mouse heart tissue, mouse neural 
stem cells, and human glioma cells. Carbonic anhydrase 2 (CA2) and prolyl 3-hydroxylase 2 (P3H2) 
were upregulated in three datasets, and SOX2 overlapping transcript (SOX2-OT) was downregulated 
in three datasets. The most significantly overrepresented protein class was termed intercellular signal 
molecules. An additional DEG set contained genes that were both up- and downregulated in different 
datasets and included oxidases and extracellular matrix structural proteins as the most significantly 
overrepresented protein classes. In conclusion, this meta-analysis provides a comprehensive overview 
of the expression effects of IDH mutations shared between different isogenic disease models. The 
generated dataset includes biomarkers, e.g., PRSS23 that may gain relevance for further research or 
clinical applications in IDHmut tumors.
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mut	� Mutant
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wt	� Wild-type

Isocitrate dehydrogenases (IDHs) consist of three isozymes, i.e., IDH1, IDH2, and IDH3, which are key meta-
bolic enzymes catalyzing the conversion of isocitrate to α-ketoglutarate (α-KG) via oxidative decarboxylation. 
IDH1 is located in the cytosol and peroxisomes, whereas IDH2 and IDH3 are located in the mitochondria. As 
components of the citrate acid cycle (CAC), IDH1 and IDH2 use NADP + as a coenzyme, whereas IDH3 uses 
NAD + as a coenzyme. The generated NADPH and NADH are reducing equivalents necessary for diverse meta-
bolic and physiological processes.

Recurrent IDH1 mutations affecting codon R132 were initially identified in glioblastoma multiforme (GBM), 
where the mutation showed a significant prevalence in secondary GBM1. Subsequently, IDH2 mutations affect-
ing codon R172, which is homologous to IDH1 R132, were detected in WHO grade II and III astrocytomas and 
oligodendrogliomas as well as in secondary GBM2. Virtually all IDH1 mutations in gliomas affect codon R132, 
which in the vast majority (> 85%) is a heterozygous missense mutation of arginine to histidine (R132H)3. Other 
less frequent IDH1 R132 mutations leading to different amino acid replacements, including R132C, R132G, 
R132G, and R132L, have been described in a number of solid and hematopoietic neoplasms and related patho-
genic processes4,5. In anaplastic thyroid carcinoma, IDH1 mutations are relatively common and affect the highly 
conserved residue G1236,7. In acute myeloid leukemia (AML), IDH2 mutations are more prevalent than IDH1 
mutations and usually affect codon R140. No oncogenic IDH3 mutations have been reported so far.

The oncogenic capacity of IDH1/2 mutations is conferred by a catalytically active dimer, most likely consist-
ing of an IDH-mutant (IDHmut) and an IDH-wild-type (IDHwt) heterodimer, which reduces α-KG to D-2-hy-
droxyglutarate (D-2HG)8,9. D-2HG is an oncometabolite that induces diverse metabolic and cellular effects, 
e.g., affecting CAC, inhibiting α-KG-dependent enzymes, such as histone and DNA demethylases, and blocking 
transcriptionally regulated cellular differentiation4,10–12. In particular, a DNA methylation profile is induced that 
varies between different IDHmut tumor types. For example, gliomas exhibit a DNA methylation profile, referred 
to as a glioma cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP), which differs from 
those in AML, cholangiocarcinoma, and melanoma13–15. The discrepancies observed in the DNA methylation 
profiles of the investigated tumor types are also observed in the transcriptional profiles impeding the ability to 
assess common effects of IDH mutations on the transcriptome. Research on epigenetic and transcriptional effects 
of IDH mutations in cancer is ongoing, e.g., a recent study reported that transcriptional alterations in IDH1mut 
glioma samples are primarily caused by chromatin-based DNA methylation-independent mechanisms16.

IDH mutations represent a valuable target for cancer treatment because they are commonly associated with 
early oncogenesis and are retained through later cancer stages. However, the success of therapy strategies varies 
between different IDHmut tumor types, and alternative treatment options, such as the application of glutaminase 
inhibitors, are assessed17–19. Isogenic disease models have become a valuable method in cancer research and drug 
discovery for studying the effects of a particular gene mutation in comparison to otherwise genetically identical 
cells20. In particular, isogenic disease models have been repeatedly used to determine the transcriptional effects 
of IDH mutations under nearly unbiased conditions. We therefore performed a meta-analysis on datasets that 
compared expression profiles between IDHmut and IDHwt isogenic disease models with the aim of identifying 
biomarkers that have prospects for research or clinical applications.

Results
Compilation of datasets.  The meta-analysis included six studies that were extracted from a database 
search and that compared the expression profiles between IDH1/2mut and IDH1/2wt conditions in isogenic dis-
ease models (Table 1). Four studies utilized microarrays, one used BeadChips, and one used RNA-sequencing 
(RNA-seq) to generate sets of differentially expressed genes (DEGs). In two studies, expression experiments were 
performed using human cell lines. In four studies, microarray expression experiments were performed using 
mouse cells/cell lines, mouse tissues or tumors. DEGs were determined based on a false discovery rate (FDR)-
adjusted p-value ≤ 0.05 and a fold change (FC) ≥ 1.5.

Genes either up‑ or downregulated in the meta‑analysis dataset.  The number of DEGs in the 
individual datasets and the proportion of DEGs that were either up- or downregulated between at least two data-
sets varied considerably between the studies (Table 1, Fig. 1a). For example, in relation to the number of DEGs in 
individual datasets, mouse glioma cells shared proportionally fewer genes while mouse neural stem cells shared 
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proportionally more genes with the common DEG set. The shared dataset comprised 111 DEGs, of which 49% 
were upregulated and 51% were downregulated (Table 2). Serine protease 23 (PRSS23) was upregulated in four 
datasets, i.e., human colon carcinoma cells, mouse heart tissue, mouse neural stem cells, and human glioma cells. 
Carbonic anhydrase 2 (CA2), and prolyl 3-hydroxylase 2 (P3H2) were upregulated in three datasets, whereas 
SOX2 overlapping transcript (SOX2-OT) was downregulated in three datasets.

Ontology and pathway analysis of genes either up‑ or downregulated in the meta‑analysis 
dataset.  The most significantly overrepresented gene ontology (GO) annotations in the DEG set included 
diverse morphogenic and developmental processes, extracellular matrix and organelle components, and molec-
ular activities in the categories of biological process, cellular component, and molecular function, respectively 
(Fig. 2a). The most significantly  overrepresented protein class (p = 2.04 × 10–3) was related to intercellular signal 

Table 1.   Expression studies on isogenic disease models included in the meta-analysis. a For the four mouse 
isogenic disease models, the percentage of mouse genes without corresponding human ortholog ranged 
between approximately 8.6% (mouse hepatoblasts), 12.8% (mouse neural stem cells), 17.1% (mouse heart 
tissue), and 18.7% (mouse glioma cells). bLow 2-HG expressing IDH2R140Q cells were excluded from analysis 
and the respective parental cells were used as control. cThe batch grown on uncoated plates for hepatocyte 
differentiation was excluded from analysis.

GEO dataset Cells/tissue origin

No. of samples

Platform No. of DEGsa Year/ref.IDHmut IDHwt

GSE96979 Mouse glioma cells 3 IDH1R132H 2 IDH1wt Illumina MouseWG-6 v2.0 expression Bead-
Chip 250-500 201721

GSE41802 Human HCT116 colon carcinoma cellsb
4 IDH1R132H

2 IDH1R132C

4 IDH2R172K
2 IDH1/2wt Affymetrix Human Genome U133 Plus 2.0 

Array > 500 201222

GSE54838 Mouse heart tissue 4 IDH2R140Q 4 IDH2R172K 4 IDH2wt Affymetrix Mouse Gene 1.0 ST Array 250-500 201423

GSE57002 Mouse hepatoblastsc 2 IDH1R132C

2 IDH2R172K
2 IDH1wt

2 IDH2wt Affymetrix Mouse Genome 430A 2.0 Array 50-250 201424

GSE88828 Mouse neural stem cells 3 IDH1R132H 3 IDH1wt Affymetrix Mouse Gene 2.0 ST Array 50-250 201725

GSE147223 Human U251 glioma cells 3 IDH1R132H

3 IDH1R132C 3 IDH1wt Illumina HiSeq 2500 250-500 202026

Figure 1.   Bar charts illustrating the number of genes shared between at least two of the six analyzed DEG sets 
of the isogenic disease models. (a) Genes, which are either up- (↑) or downregulated (↓) in different datasets. (b) 
Genes, which are both up- and downregulated in different datasets.
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molecules (Fig. 2a) and included BDNF, BMP4, RCAN1, SEMA7A, STC1, TGFB2, and WNT7A, all of which 
were comparably upregulated under IDH1/2mut conditions. The most significantly overrepresented pathways 
included extracellular matrix organization, collagen biosynthesis and modifying enzymes, and collagen for-
mation (Table 3). The most significantly associated networks were related to various diseases, conditions, and 
cellular functions (Table 3). The top three networks were assembled with molecular relationship factors and 
displayed as a merged network (Fig. 3). Further interpretation of the DEG set was performed with the upstream 
regulator analysis tool (Supplementary Fig. 1). Activated upstream regulators that were predicted to be most 
significantly associated with the DEG set comprised chorionic gonadotropin (CG) complex, cytokine WNT3A, 
transmembrane receptor IL10RA, and transcription factor TP53. The transporter APOE and cytokine IFNG 
were predicted to be the most significantly inhibited upstream regulators.

Genes both up‑ and downregulated in the meta‑analysis dataset.  An additionally shared DEG 
set comprised 98 genes that were both up- and downregulated in two or three individual datasets (Fig.  1b; 
Table 2). Genes both up- and downregulated in three datasets included armadillo like helical domain containing 
4 (ARMH4), cellular communication network factor 2 (CCN2), erythrocyte membrane protein band 4.1 like 
4B (EPB41L4B), fibulin 1 (FBLN1), fibronectin 1 (FN1), G protein-coupled receptor class C group 5 member B 
(GPRC5B), serine protease 35 (PRSS35), serpin family E member 1 (SERPINE1), solute carrier family 16 mem-
ber 2 (SLC16A2), secreted phosphoprotein 1 (SPP1), and synaptopodin (SYNPO).

Ontology and pathway analysis of genes both up‑ and downregulated in the meta‑analysis 
dataset.  The most significantly overrepresented GO annotations in the DEG set included diverse mor-
phogenic and developmental processes, extracellular matrix components, and various binding properties in 
the categories of biological process, cellular component, and molecular function, respectively (Fig.  2b). The 
most significantly overrepresented protein classes included oxidases (p = 3.36 × 10–4), comprising PRODH, 
LOX, QSOX1, and QSOX2, and extracellular matrix structural proteins (p = 5.36 × 10–4) comprising COL4A1, 
COL4A2, COL8A1, and FBN1 (Fig. 2b). The most significantly overrepresented pathways included integrin cell 
surface interactions, extracellular matrix organization, and post-translational protein phosphorylation (Table. 
3). The most significantly associated networks were related to various developmental processes, diseases, condi-
tions, and cellular functions (Table 3). The top three networks were assembled with molecular relationship fac-
tors and displayed as a merged network (Fig. 4).

Discussion
In this meta-analysis, we compared the expression profiles of different IDHmut vs. IDHwt isogenic disease models 
to provide an overview of the nearly unbiased expression effects and the corresponding biological interpreta-
tions caused by the oncometabolite 2-HG. Although the statistical power of the IDHmut vs. IDHwt isogenic cell 
model datasets is generally lower than that of larger datasets generated in clinical tumor cases, the number of 
DEGs in proportion to the sample size is seemingly higher in isogenic cell models21. One likely explanation for 
this fact is that individual expression profiles vary considerably within IDHmut tumors, similar to as in other 
tumors, limiting the capacity to generate common expression profiles. However, in our meta-analysis, only a 
relatively low number of DEGs were shared between individual datasets, which can be attributed to the fact 
that different cancer and non-cancer isogenic disease models and experimental conditions were used as briefly 
outlined as follows: Using colon carcinoma cells, in which IDH1/2 mutations were inserted via a recombinant 
adeno-associated virus vector methodology, an epithelial-mesenchymal transition (EMT)-like phenotype and 

Table 2.   Meta-analysis DEG sets compiled from individual datasets of isogenic disease models.

Deregulated genes shared between datasets of isogenic disease models

Genes either up- or downregulated

Upregulated genes 

ARPC5, BDH1, BDNF, BMP4, CA2, CACHD1, CACNB4, CCDC80, CHST11, CHST15, CLU, CSF1, CYBRD1, DHX37, DPYSL5, EPAS1, 
EPDR1, FAM189A1, FOXF1, FSCN1, GALNS, GIMAP6, GRK5, HMOX1, KBTBD8, KIF3C, LGR4, MAML2, MANEAL, MAP1A, MCAM, 
MEST, MYBL1, OTUB2, P3H2, PLD1, PODXL, PRSS23, RCAN1, S100A2, SCARB1, SDC1, SEMA7A, SEPTIN11, SERINC2, SLC38A3, 
SPRY1, STC1, STK17A, TBC1D4, TGFB2, WNT7A, ZBTB7C, ZGRF1

Downregulated genes 

ABCA12, ARRDC4, AZGP1, CACNA2D1, CAPN6, Ccl9, CFB, COL3A1, COL6A3, CRYL1, CTNNA3, Cyp3a13 (related to human 
CYP3A7),DHDH, DHRS7, ENPP2, F3, FBLIM1, GPC3, GPT2, HERPUD1, IFITM1, IFITM2, INAVA, KIZ, KLHDC1, KRT20, LARP1B, 
LNCAROD, LONRF2, LRATD2, LRG1, MACROD1, MIA2, MMRN2, NT5DC2, PCDH10, PCDH7, PCOLCE, PDK1, PLEKHH1, PPL, 
PPM1K, PRPH, PYCR1, RIMKLB, RPS6KA5, RTN2, SERPINH1, SLC7A11, SNCA, SOCS2, SOX2-OT, SPINT1, STRA6, TCAIM, TFPI, 
TXNIP

Genes both up- and downregulated

ADGRG1, AGPAT5, AMOT, ANK1, ANKRD1, ANTXR2, ANXA2, APOL6, ARMH4, BCL2L11, BHLHE40, CCN2, CDC42EP3, CDO1, 
CDS1, CELSR2, COL4A1, COL4A2, COL8A1, CTSH, CXCR4, CYP1B1, DNAH2, DRD2, DUSP5, ELFN2, EMP1, EPB41L4B, ERAP1, 
FBLN1, FBN1, FN1, FRAS1, GCNT1, GPRC5B, HAS2, HDHD2, HIVEP2, HSPA5, IDH2, IGFBP4, IGFBP7, ISG20, KDELR3, KDM5B, 
KLHL32, LIPH, LMCD1, LMNA, LOX, MACROD2, MCM5, MFSD2A, MGP, MTCL1, MYBL2, MYT1, NEBL, NOSTRIN, NR4A1, NR4A3, 
NRG2, P4HA2, PDLIM3, PER3, PITPNC1, PKMYT1, PLAUR, PLPP2, PRODH, PRSS35, QSOX1, QSOX2, RGMA, SERPINE1, SH3GL3, 
SLC16A2, SLC1A4, SLC25A28, SLC26A6, SLC2A1, SLC2A12, SNAP25, SOX2, SPP1, SYNPO, TEF, TGFBI, TGFBR2, TGFBR3, TGM2, 
TKTL1, TNC, TPM2, TRNP1, UPP1, VEGFA, WDR90
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changes in gene expression and cell morphology were observed22. In transgenic mouse models with conditional 
IDH2mut coding sequences, activation of IDH2mut expression at five weeks of age produced D-2HG leading to 
cardiomyopathy and neurodegeneration23. In hepatoblasts, isolated from mouse embryos at E14, a doxycy-
cline-inducible system led to IDH1/2mut gene expression24. The IDH1/2mut hepatoblasts, which were cultured on 
collagen-coated plates, were refractory to differentiation. In neural stem cells derived from the cortex of mouse 
embryos at E14.5, Idh1mut expression was induced via adenoviral-Cre-recombinase transduction25. In these 
cells, neuronal lineage differentiation was blocked, although differentiation-promoting culture conditions were 
utilized. Employing a mouse model that is susceptible to the development of gliomas, p53-deficient cells with 
vector-integrated IDH1mut genes and cells containing a PDGF expression vector were coinjected into mice. The 
induced PDGF-driven gliomas showed reduced immune infiltration in comparison to the corresponding IDH1wt 
glioma mouse model21. In an in vitro study, glioma cells were infected with lentivirus IDH1mut coding sequences26. 
Doxycycline-induced IDH1mut gene expression resulted in enhanced cell motility and morphological changes. 
The heterogeneity between the six isogenic disease models is exemplarily demonstrated by the diverse classifica-
tion of the top pathways that were derived from the DEGs of each of the disease models (Supplementary Fig. 2).

The serine protease PRSS23 exhibits low tissue specificity in humans with the highest expression levels in 
female genital tract tissue and smooth muscle27. Studies in mice reported that PRSS23 is variably expressed in 
the preimplantation uterus and is possibly involved in tissue remodeling in the ovary28,29. The expression of 
PRSS23 has been detected in nuclei and extracellular vesicular exosomes where the protease is a component of 
the human secretome30. Exosomal PRSS23 is, e.g., involved in cardiovascular disease where the protease likely 

Figure 2.   GO annotations in the categories of biological process, cellular component, and molecular function, 
and protein class ontology annotations. (a) Genes either up- or downregulated in the meta-analysis dataset 
compiled from isogenic disease models. (b) Genes both up- and downregulated in the meta-analysis dataset 
compiled from the isogenic disease models. A Fisher’s exact test p-value < 0.05 indicated statistical significance.
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mediates Snail/alpha‐smooth muscle actin signalling31. In cancer, PRSS23 is implicated in tumor progression, and 
it was identified in a systematic network survey of a meta-analysis of breast cancer microarray expression data 
as one of six genes involved in acquired lapatinib resistance32. Promoter studies in breast cancer cells indicated 
that PRSS23 is upregulated by estrogen receptor 1 (ESR1) and that its upregulated expression contributes to cell 
proliferation33. shRNA-mediated knockdown of PRSS23 in a gastric cancer xenograft mouse model resulted 
in a decrease in tumor volume and tumor weight34. Further in vitro experiments revealed that PRSS23 knock-
down in gastric cancer cells apparently affected EIF2 pathway molecules. Based on a microarray study, PRSS23 
was included in a gene classifier set that could discriminate papillary thyroid carcinoma from normal thyroid 
samples35. In head and neck, renal, and pancreatic cancer, PRSS23 expression is significantly associated with an 
unfavorable prognosis30. An epigenome-wide association study found, among several other DNA methylation 
sites, a significant association between changes of DNA methylation of DNA methylation sites at the PRSS23 
gene and having a smoking habit but found no significant association with risk for lung cancer36. The BioGRID 
database currently curates about 50 PRSS23 interactors, among which actin and actin-related proteins constitute 
the most overrepresented PANTHER protein class (p-value = 3 × 10–3) (Supplementary Fig. 3).

Cytosolic CA2 is the physiologically predominant CA isoform and is known to interact with various acid/
base transporters37. These interactions are predicted to promote high glycolytic activity and cell proliferation 
in tumors. In lung cancer xenograft mouse models, shRNA-mediated knockdown of CA2 impaired tumor cell 
proliferation and angiogenesis and induced apoptosis38. Pharmacological studies exploring CA2 inhibitors are 
pursued to develop therapeutic options for the treatment of various conditions including cancer39. P3H fam-
ily members consist of three isoenzymes in vertebrates. From a knockout study on P3H2 in a mouse embryonal 
carcinoma cell line, it can be presumed that the enzyme is the major posttranslational modifier of type IV col-
lagen with 3-hydroxyproline, which is of significance for interactions of type IV collagen with other molecules40. 
High P3H2 expression in different parts of the CNS, gastrointestinal tract, and some other tissues has been 
reported; however, the enzyme exhibits no prognostic significance in cancer and reveals only weak-to-moderate 
staining in most cancer tissues30. The long non-coding RNA (lncRNA) SOX2-OT consists of several splice vari-
ants. SOX2, located in an intron of SOX2-OT, is transcribed in the same orientation as SOX2-OT and both are 
intensely expressed in embryonic stem cells41. SOX2-OT is implicated in neuronal and tumor development 
and progression. A meta-analysis of cancer datasets indicated that cancers with elevated SOX2-OT expression 
are significantly associated with unfavorable prognostic factors42. In two cervical cancer cell lines, a SOX2-OT 
transcript variant promoted cell growth, migration and invasion of the cells, indicating that the lncRNA may 
constitute a practical biomarker for cervical cancer43. However, lower expression of SOX2-OT was observed in 

Table 3.   Top pathways and networks compiled from the meta-analysis DEG sets.

Category p-values Score

Top Reactome pathways

Genes either up- or downregulated

 Extracellular matrix organization 3.96x10-5

 Collagen biosynthesis and modifying enzymes 4.07x10-5

 Collagen formation 1.46x10-4

 Chondroitin sulfate/dermatan sulfate 1.81x10-4

 NCAM signaling for neurite out-growth 3.53x10-4

Genes both up- and downregulated

 Integrin cell surface interactions 2.7010x-7

 Extracellular matrix organization 2.79x10-7

 Post-translational protein phosphorylation 1.25x10-6

 Regulation of insulin-like growth factor (IGF) transport and uptake by insulin-like growth factor binding proteins 
(IGFBPs) 3.18x10-6

 ECM proteoglycans 4.35x10-5

Top IPA networks

Genes either up- and downregulated

 Cancer, cellular movement, organismal injury and abnormalities 48

 Cancer, organismal injury and abnormalities, tissue morphology 33

 Amino acid metabolism, molecular transport, small molecule biochemistry 28

 Developmental disorder, hereditary disorder, ophthalmic disease 25

 Nervous system development and function, tissue morphology, cell morphology 25

 Genes both up- and downregulated

 Cellular development, cellular growth and proliferation, cancer 50

 Cardiovascular system development and function, organismal development, tissue development 44

 Neurological disease, nucleic acid metabolism, small molecule biochemistry 26

 Amino acid metabolism, small molecule biochemistry, cancer 19

 Cell-to-cell signaling and interaction, cardiovascular system development and function, hereditary disorder 19
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Figure 3.   The merged network is compiled from the top three networks that were most significantly 
associated with the DEGs, which were either up- or downregulated in at least two individual datasets (Table 3). 
Upregulated molecules include ARPC5, CACHD1, CACNB4, CHST11, CHST15, CLU, CSF1, CYBRD1, 
DHX37, FOXF1, FSCN1, HMOX1, KBTBD8, KIF3C, MAP1A, MCAM, OTUB2, PLD1, PODXL, S100A2, 
SCARB1, SDC1, SLC38A3, SPRY1, STK17A, TGFB2, WNT7A, and ZBTB7C. Downregulated molecules include 
ARRDC4, AZGP1, CFB, COL3A1, COL6A3, CTNNA3, ENPP2, F3, INAVA, KIZ, LRG1, MACROD1, P3H2, 
PCDH7, PCOLCE, PPL, PPM1K, RIMKLB, RPS6KA5, RTN2, SERPINH1, SLC7A11, SNCA, SOCS2, TFPI, and 
TXNIP. Molecular relationship factors were added from the Ingenuity knowledge base comprising ABAT, Actin, 
Ap1, Ap1 gamma, ARHGEF40, ARRB2, BCAT1, C19orf44, CASC3, CCNB1, CDC42EP3, CEP170, CEPT1, 
collagen, Collagen type I (complex), Collagen(s), Creb, CYTH3, DHTKD1, F Actin, FARS2, HDL, Hedgehog, 
HIVEP1, HNRNPL, Integrin, KLHDC2, LDL, LPGAT1, MLXIP, NDUFAF2, NFkB (complex), ORM1, PFKFB4, 
PHAF1, PIN4, Pld, PORCN, S100A14, SOX1, SOX3, TNFSF15, TNKS, TP53, TRIM65, UBC, Ubiquitin, USP53, 
VIRMA, and WNT7B. The molecule activity predictor was implemented to display further molecular effects as 
itemized in the prediction legend.
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gastric tumors compared to matched normal gastric samples, and lower expression was observed in high-grade 
rather than low-grade gastric tumors44.

Furthermore, we assessed the similarity of expression profiles between the either up- or downregulated gene 
set from our meta-analysis with expression profiles of two publicly accessible datasets of low grade gliomas and 
chondrosarcomas, enabling us to compare IDHmut with IDHwt cancer samples45–47. The Venn diagram demon-
strates that only a few DEGs are shared between our meta-analysis dataset and both clinical datasets (Supple-
mentary Fig. 4). One likely explanation for this fact is that primary expression effects of an IDH mutation that 
emerge over days or weeks are measured in isogenic disease models, whereas clinical IDHmut tumors evolve over 
months or years and acquire multiple other genomic alterations before they become clinically evident.

In summary, we generated a set of DEGs and biomarkers associated with IDHmut status in isogenic disease 
models. Extracellular proteins and intercellular signaling are among the notable features of IDHmut conditions. 
Biomarkers associated with various IDHmut conditions, including the less characterized protease PRSS23, have 
considerable prospects for further research or clinical applications of IDHmut cancers and related diseases.

Figure 4.   The merged network is compiled from the top three networks that were most significantly 
associated with the DEGs, which were both up- and downregulated in at least two individual datasets (Table 3). 
Deregulated molecules comprise AMOT, ANK1, ANTXR2, ANXA2, BCL2L11, BHLHE40, CCN2, CDO1, 
COL4A1, COL4A2, COL8A1, CXCR4, CYP1B1, DRD2, DUSP5, EMP1, FBLN1, FBN1, FN1, FRAS1, HAS2, 
HSPA5, IDH2, IGFBP4, IGFBP7, KDM5B, KLHL32, LIPH, LMCD1, LOX, MACROD2, MCM5, MFSD2A, 
MGP, MTCL1, MYBL2, MYT1, NOSTRIN, NR4A1, NR4A3, P4HA2, PKMYT1, PLAUR, SERPINE1, SLC16A2, 
SNAP25, SOX2, SPP1, SYNPO, TGFBI, TGFBR2, TGFBR3, TGM2, TKTL1, TNC, TPM2, UPP1, and VEGFA. 
Molecular relationship factors were added from the Ingenuity knowledge base comprising ADAMTS4, Akt, 
ASCL2, CCR10, collagen, Collagen type I (complex), Collagen type IV, Collagen(s), Creb, Cyclin A, DUSP8, E2f, 
Fibrin, Fibrinogen, GABRR1, GML, Histone h3, Histone h4, Hsp70, Hsp90, IFNE, Igf1-Igfbp, Igfbp, Insulin, 
Integrin, Integrin alpha V beta 3, KLK11, LRP, LRRC4, LURAP1, MAPK3, NAGLU, NFkB (complex), PALD1, 
POLD4, PPP5C, RNA polymerase II, Rxr, Smad2/3, TENT2, Tgf beta, THTPA, TRPV4, TUBA1A, TUBG2, 
Vegf, and YY2.
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Methods
Compilation of datasets from IDH1/2mut vs. IDH1/2wt isogenic disease models.  Using the search 
term IDH to query the Gene Expression Omnibus (GEO), we designated 114 case series, out of which we iden-
tified seven whole-genome gene expression datasets derived from human and mouse isogenic disease models 
that compared IDH1/2mut with IDH1/2wt samples48. One dataset without publication reference with detailed 
information was deselected. We then selected the remaining six studies for further analysis. These studies con-
tained at least biologically IDH1/2mut triplicates and biologically IDH1/2wt duplicates and the datasets of each 
of the studies were sufficiently significant to compile a DEG set based on an FDR-adjusted p-value ≤ 0.05 and 
an FC ≥ 1.5. In studies that employed an isogenic disease model with different IDH1/2 mutations, the raw data-
sets of the different IDH1/2 mutations were pooled and processed as a single IDH1/2 mutation dataset. The 
generated meta-analysis dataset includes GEO submissions GSE4180222, GSE5483823, GSE5700224, GSE8882825, 
GSE9697921, and GSE14722326. Using the same above-quoted search strategy, no additional datasets were iden-
tified in another publicly accessible repository for high-throughput functional genomics experiments49. The 
database repositories were essentially interrogated in November 2020.

Generation of DEG sets.  For four microarray GEO datasets, the binary CEL files comprising the inten-
sity calculations were imported into Transcriptome Analysis Console (TAC) version 4.0.2.15 (Thermo Fisher 
Scientific, Waltham, MA). TAC includes the LIMMA (linear models for microarray data) statistical package 
from Bioconductor50. The binary CEL files were normalized in TAC and files of differentially expressed probe 
sets were compiled using eBayes correction in ANOVA. For the study utilizing the expression BeadChips, the 
normalized dataset was analyzed using the NetworkAnalyst 3.0 platform, which employs LIMMA statistics to 
generate differentially expressed probe sets51. For genes with more than one probe set in a dataset, the probe set 
with the highest FC was selected for further analysis; however, genes, with both significantly up- and downregu-
lated probe sets in the same dataset, were excluded from further analysis. For the RNA-seq dataset, the publicly 
accessible Sequence Read Archive (SRA) datasets were downloaded from the NCBI resource52. We aligned the 
RNA-seq reads to the human reference genome assembly GRCh37 (hg19), using STAR aligner53. Then, the R 
package DESeq2 was used to normalize count data, remove outliers, determine filtering thresholds, and find 
genes that were significantly differentially expressed between the IDH1mut and IDH1wt groups54. Computation 
of the RNA-seq dataset was supported by the University High Performance Computing (Aziz Supercomputer) 
Center (http://​hpc.​kau.​edu.​sa). Mouse Genome Informatics (MGI), Ensembl release 101, BioMart software, and 
HUGO Gene Nomenclature Committee (HGNC) resources were employed to update gene IDs and/or convert 
mouse gene IDs to human gene IDs55–58. To illustrate intersecting and non-intersecting genes between the either 
up- or downregulated gene set of our meta-analysis and external datasets, a web-based Venn diagram tool was 
employed (http://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/).

Ontology and pathway analysis.  For further analysis of DEGs, which were based on an FDR-adjusted 
p-value ≤ 0.05 and an FC ≥ 1.5, the statistical overrepresentation test of the GO program PANTHER v. 16.0 was 
employed to interrogate annotation datasets in the categories of biological process, cellular component, molecu-
lar function, protein classes, and Reactome pathways59. The PANTHER protein class ontology comprises com-
monly used classes of protein functions. The Reactome pathway analysis specifies the biological relationships 
between interacting molecules such as nucleic acids, proteins, and compounds. For all annotation datasets, a 
Fisher’s exact test p-value < 0.05 indicated statistical significance. The BioGRID build 4.1 database was queried 
for protein interactors60. BioGRID curates protein, genetic and chemical interactions from various biomedical 
studies and datasets. The Ingenuity Pathway Analysis (IPA) software v. 68,752,261 (Qiagen, Hilden, Germany) 
was employed for further multifactorial interpretation of the gene sets. IPA utilizes the curated Ingenuity knowl-
edge base as a reference dataset to interfere molecular relationships. Fisher’s exact test p-values indicated the 
significance of associations between analyzed dataset molecules and functional frameworks prebuilt or gener-
ated de novo by IPA. The molecule activity predictor was applied to predict expression effects/coherence of the 
expression effects of a molecule on other network molecules. Direct molecular relationships were used to survey 
the significance of fit, indicated as a score value, between molecules of uploaded gene sets and networks associ-
ated with specific functions or diseases. Direct and indirect molecular relationships were used for upstream 
regulator network analysis to investigate how upstream regulators affect differences in target gene expression. A 
z-score value indicates the activation/inhibition state of an upstream regulator.

Data availability
The raw datasets analyzed in the study are available at the GEO repository.
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