Table 2.
Parameters used for experiments; t is the number of neighbors and K is the number of clusters. These parameters are generated considering both dimensionality reduction and clustering together.
| Dataset | t | No. of dimensions | Tolerance | k |
|---|---|---|---|---|
| Baron_human1 | 10 | 6 | 1e−12 | 14 |
| 23 | 3 | 1e−10 | ||
| Baron_human2 | 8 | 3 | 1e−12 | 14 |
| Baron_human3 | 16 | 7 | 1e−12 | 14 |
| 8 | 3 | 1e−8 | ||
| Baron_human4 | 9 | 6 | 1e−12 | 14 |
| 22 | 3 | 1e−12 | ||
| Baron_mouse1 | 17 | 3 | 1e−12 | 13 |
| Baron_mouse2 | 11 | 6 | 1e−12 | 13 |
| 20 | 3 | 1e−8 | ||
| Muraro | 10 | 5 | 1e−3 | 6 |
| 11 | 3 | 1e−7 | ||
| Segerstolpe | 10 | 5 | 1e−3 | 6 |
| 9 | 3 | 1e−8 | ||
| Xin | 15 | 6 | 1e−12 | 6 |
| 25 | 3 | 1e−3 | ||
| Wang | 8 | 3 | 1e−12 | 6 |
| H1299 scRNA-seq | 11 | 3 | 1e−8 | 7 |
| Calu3 scRNA-seq | 12 | 7 | 1e−3 | 7 |
| 11 | 3 | 1e−5 | ||
| PBMC | 8 | 5 | 1e−12 | 8 |
| 25 | 3 | 1e−12 |