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Abstract

Large-scale disease screening is a complicated process in which high costs must be balanced 

against pressing public health needs. When the goal is screening for infectious disease, one 

approach is group testing in which samples are initially tested in pools and individual samples 

are retested only if the initial pooled test was positive. Intuitively, if the prevalence of infection 

is small, this could result in a large reduction of the total number of tests required. Despite this, 

the use of group testing in medical studies has been limited, largely due to skepticism about 

the impact of pooling on the accuracy of a given assay. While there is a large body of research 

addressing the issue of testing errors in group testing studies, it is customary to assume that the 

misclassification parameters are known from an external population and/or that the values do not 

change with the group size. Both of these assumptions are highly questionable for many medical 

practitioners considering group testing in their study design. In this article, we explore how the 

failure of these assumptions might impact the efficacy of a group testing design and, consequently, 

whether group testing is currently feasible for medical screening. Specifically, we look at how 

incorrect assumptions about the sensitivity function at the design stage can lead to poor estimation 

of a procedure’s overall sensitivity and expected number of tests. Furthermore, if a validation 

study is used to estimate the pooled misclassification parameters of a given assay, we show that the 

sample sizes required are so large as to be prohibitive in all but the largest screening programs.
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1 | INTRODUCTION

Developing design strategies to reduce study expense is an important job for the practicing 

biostatistician. In many settings, measuring biomarkers can be expensive, and design 

strategies for reducing these costs are needed. In 1943, Dorfman1 proposed a simple method 

to make the testing of syphilis feasible in recruits for the US Army. This simple design 

suggested testing a grouped collection of k samples, and only testing individual samples if 
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the combined sample is positive. Intuitively, this design could provide a tremendous cost 

reduction in terms of the required number of tests if the disease prevalence is small.

There has been a vast amount of research in group testing since the original Dorfman paper. 

A majority of this work can be divided into either using group testing for disease screening 

or for prevalence estimation. Particularly for the application of group testing to screening, 

there has been lots of work not only in the statistics literature, but also in computer science 

and applied mathematics (see References 2–6, among others). This is because optimality 

of group testing algorithms often involves choosing a particular set of group sizes that 

minimizes the expected number of tests required to identify all cases in a population of 

individuals. Deriving optimal designs often involves the development of complex algorithms 

that rely on dynamic programming, mathematical techniques that are usually applied in 

areas of applied mathematics and computer science, and less often in statistics. There has 

also been extensive work in prevalence estimation, where participants are tested in groups 

with no retesting at the individual level. This article will focus on the use of group testing in 

disease screening.

Although methodological research in this area has expanded, we believe that there has 

been limited use of these designs as they were originally formulated in the biomedical 

sciences for disease screening. Some notable exceptions do exist, such as the screening of 

donated blood for HIV and hepatitis.7 More recently, group testing has received increasing 

attention for SARS-CoV-2 screening. However, the successful implementation of group 

testing in this area remains unclear at this point.8–10 We have seen a reluctance by our 

epidemiological collaborators to use these designs in large-scale studies. In part this is due to 

our laboratory and epidemiology colleagues not being aware of the advantages of the group 

testing methodology. However, most often, scientists are afraid that combining different 

participants in a single sample will decrease the sensitivity of an assay, thereby increasing 

the likelihood of a false negative on a grouped test. Furthermore, it is perceived that in much 

of the group testing literature unreasonable assumptions have been made that, in many cases, 

favor the use of group testing procedures over single testing. The goal of this current article 

is to provide a balanced view of the research in this area and to provide suggestions for 

evaluating its feasibility in practical settings.

There are a number of issues that have caused confusion and have made comparisons with 

individual testing difficult. These include

i. Questions over how to choose a design that appropriately accounts for 

misclassification.

ii. Assumptions of nondifferential misclassification, that is, that the testing errors do 

not change with the group size.

iii. Assumptions that sensitivity and specificity values are known a priori from 

external sources and can be readily applied to the question at hand.

A careful comparison of group testing with individual testing that takes into account these 

issues is important in deciding the situations where group testing should be used for disease 

identification in the biosciences. Although aspects of these issues have been addressed in 
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the statistics literature, there has not been a careful statistical examination of these issues 

in totality. In what follows, we introduce several case studies that are representative of the 

types of problems in which group testing is appealing to researchers, but current limitations 

raise questions about or prevent its use. This is followed by a full discussion of each of the 

above issues. We then present numerical comparisons to examine the impact of incorrect 

assumptions regarding the misclassification parameters on a screening procedure and the 

feasibility of using a validation study to estimate these values.

2 | CASE STUDIES

2.1 | Population-based screening for SARS-CoV-2 infection

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) was first identified in Wuhan, China in late 2019 and is rapidly 

spreading worldwide with dramatic impacts on the healthcare and economic landscapes. 

In the United States, shortages of testing reagents hinder the ability to carry out sufficient 

screening for infection with SARS-CoV-2 which may ultimately threaten the ability of 

public health officials to adequately control the spread of the virus. The need for large-

scale screening, coupled with scarce testing resources, make this an ideal scenario for 

implementing group testing to reduce the number of tests required to carry out a screening 

program.

2.2 | Large-scale screening for HIV viral load

Monitoring of viral load in individuals diagnosed with HIV is important for determining 

treatment failure and making informed treatment decisions. Current World Health 

Organization guidelines recommend viral load testing at 6 and 12 months following 

initiation of antiretroviral therapy (ART), and annually thereafter.11 These tests are meant to 

determine if an individual’s viral-load has surpassed a given threshold, potentially indicating 

treatment failure. Current recommendations define treatment failure as a test measuring a 

viral load higher than 1000 copies/mL. These recommendations have proven to be cost 

prohibitive, and continue to be impractical in many low resource settings. For example, in 

Malawi, a country with over 1 million people living with HIV and over 600 000 taking 

ART,12 the annual burden of sufficient viral load monitoring is enormous. In this context, 

group testing has regularly been considered as a cost saving measure, however concerns over 

false negative rates are common.13–15

2.3 | Stratified cancer screening

Cervical cancer is currently the fourth most common cancer among women,16 highlighting 

the need for cheap and effective clinical screening. The most effective indicator of cervical 

cancer risk is HPV infection, however only a small number of HPV positive women 

will go on to develop cervical cancer. To minimize unnecessary and invasive follow-up 

procedures such as colposcopy, it is necessary to develop better tests for triaging HPV 

infections in order to identify those at greater risk of progressing to cancer. One promising 

method is methylation testing which captures the methylation of HPV DNA transitioning to 

precancer.16–18 Unfortunately, such tests are too expensive to routinely carry out for all HPV 

positive women. Group testing could offer one way of making such testing feasible.
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2.4 | Biomarker presence in a cohort study

In many cohort studies specimens collected from individual participants are to be screened 

for a variety of biomarkers. For example, the Connect study is a cohort study funded 

by the National Cancer Institute planning to enroll 200 000 adults in the United States 

with the goal of understanding the etiology of cancer through longitudinal assessment 

of biomarkers, environmental exposure, and the occurrence of cancer precursors. One 

biomarker of interest in this study is monoclonal gammopathy of undetermined significance 

(MGUS), a premalignant plasma cell disorder present in about 3% of adults.19 MGUS is a 

precursor for multiple myeloma and other blood cancers. Screening all cohort participants 

for MGUS would add significant costs to the Connect study, a particular concern since it is 

one of many biomarkers of interest. In theory, this is an ideal case for group testing since 

the low prevalence of MGUS would result in a large reduction in the number of tests to 

screen the entire cohort.20 In practice, however, the sensitivity of pooling procedures when 

screening for MGUS is unknown, and a validation study would be required to characterize 

test performance for grouped samples and then to assess the feasibility of group testing in 

this case. When considered for this particular study, the costs of this validation study would 

have to be considered in light of the, initially unknown, potential savings from a pooling 

design.

3 | NOTATION AND DORFMAN PROCEDURE

For a screening program, we assume a population of N individuals for which the 

presence of a binary characteristic (eg, an infectious disease or an HIV viral load >1000 

copies/mL) is represented by random variables xi, i = 1, 2, …, N. When referring 

to a population, we mean all potentially tested individuals with similar characteristics 

including demographics, type and temporality of testing, and selection of the individual 

samples for testing. We will assume that each member of this population has an identical 

probability, p, of having said characteristic so that xi ~ Bernoulli(p), i=1, 2, …, N 
and that each xi is independent of the others. For grouping, often a maximum feasible 

group size will exist which we denote by kmax. The set of possible group sizes is then 

K = 1, 2, …, kmax . For a group of size k, let y(k) be a random variable which is 1 if 

at least one member of the group has the given characteristic and 0 otherwise. Then, 

since each xi is independent, y(k) Bernoulli 1 − (1 − p)k .1 Since testing error may make 

observation of y(k) impossible, let y(k) represent the observed value of this random variable 

from a test based on a given assay. For the assay of interest, we define the sensitivity and 

specificity for a grouped test containing k individuals to be Se(k) = P y(k) = 1 ∣ y(k) = 1

and Sp(k) = P y(k) = 0 ∣ y(k) = 0 , respectively. We consider that these probabilities may 

change with the group size, which is referred to as differential misclassification. 

When the misclassification parameters are constant for any k, we say that there is 

nondifferential misclassification. Using these definitions, the probability of a positive test is 

P y(k) = 1 = Se(k)P y(k) = 1 + (1 − Sp(k))P y(k) = 0 = Se(k) − (Se(k) + Sp(k) − 1)(1 − p)k so 

that y(k) ~ Bernoulli(Se(k)−(Se(k)+Sp(k)−1)(1−p)k).
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The first published group testing procedure proposed by Dorfman1 is a simple two-stage 

procedure. To implement it, a group size k is chosen and the population is divided into 

groups of that size. For each group, an initial grouped test is carried out to determine if any 

of the samples within are positive for the disease. If negative, each sample is assumed to be 

disease free. If positive, additional samples from each individual in the group are tested to 

identify those with the disease. If T is the number of tests required to assign a status to an 

individual, the choice of k is typically made to minimize the expected T (ie, the expected 

number of tests per person) which is given by

E(T ∣ p, k, Se(k)) = 1
k P y(k) = 0 + (k + 1)P y(k) = 1

= 1
k kP y(k) = 1 + 1

= Se(k) − (Se(k) + Sp(k) − 1) 1 − p k + 1
k .

Typically, such designs are optimized with respect to the expected number of tests.

Another important quantity which is not typically accounted for is the overall sensitivity 

(specificity) of a test defined as the probability that a positive (negative) individual is 

correctly identified as positive (negative) at the termination of the pooling procedure (eg, 

for a positive individual, the probability that the test at each stage of a group in which 

they are a member is positive). For clinicians and researchers, these quantities are the most 

important since they allow for an understanding of how many false positives and negatives 

can be expected in a population when using a group testing procedure and have simple 

individualistic interpretations (since they express the misclassification probabilities for an 

individual being screened).

Our reason for focusing on the Dorfman procedure here over more complicated designs 

with more stages is 2-fold. First, it is a simple intuitive design which can easily be 

implemented and explained to researchers. Second, by requiring only two stages, the 

Dorfman procedure will typically maximize the overall procedure sensitivity. To see why 

this is so, note that, even if misclassification probabilities do not change with group sizes(eg, 

they are nondifferential), group testing will generally lead to smaller sensitivities and larger 

specificities as a result of repeated testing (eg, repeated testing yields more chances for a 

mistake). Generally, this means that overall sensitivity will decrease with the number of 

stages in a group testing procedure.

Much of the more recent group testing literature has focused on alternative schemes, 

such as those that create smaller subgroups following a positive test prior to individual 

testing, which generally have a smaller number of expected tests when compared with the 

Dorfman procedure. However, each additional stage will decrease the overall sensitivity 

of the screening program and result in an overall sensitivity which is difficult to 

quantify. The Dorfman procedure, however yields a simple closed form expression for 

the overall sensitivity. For example, if a single unit test is treated as a gold standard (no 

misclassification) the overall sensitivity of the Dorfman procedure with initial group size k 
will be Se(k). It will be very hard, if not impossible, for any reasonable group testing design 

to have a lower overall sensitivity of the Dorfman procedure.
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4 | TESTING WITH MISCLASSIFICATION AND COMPARISON WITH SINGLE 

TESTING

Since nearly all of the issues impeding the use of group testing in medical settings involve 

questions of misclassification, we briefly review the literature related to this issue here. 

Beginning in the 1970s with the resurgence of research in group testing, methodology for 

accounting for misclassification was proposed. The idea is that even if a test on a single 

sample has little or no misclassification, it is natural to think that there may be measurement 

error induced by the combining of samples across individuals. Graff and Roeloffs (1972)21 

and Hwang (1976)22 recognized early that the objective function to minimize should not 

simply be the expected number of tests when tests can be misclassified. Graff and Roeloffs 

(1972)21 proposed a modification of the Dorfman procedure and searched for a design that 

minimizes total cost as a linear function of the expected number of tests, weighted expected 

number of good items misclassified as defective, and weighted expected number of defective 

items misclassified as good. Burns et al (1987)23 generalized Graff and Roeloffs (1972) 

results to the situation where the probability of misclassification depends on the proportion 

of defective items in the group.

Hwang (1976)22 studied a group testing model with the presence of a dilution effect, where 

a group containing a few defective items may be misidentified as a group containing no 

such items, especially when the size of the group is large. He calculated the expected 

cost under the Dorfman procedure in the presence of the dilution effect and derived the 

optimal group sizes to minimize this cost. Further, Wein and Zenios (1996)24 embedded a 

group testing model for continuous test outcomes into a dynamic programming algorithm 

that derives a group testing design to minimize a linear combination of expected cost due 

to false negatives, false positives, and testing. Malinovsky et al (2016)25 characterized the 

optimal design in the Dorfman procedure in the presence of nondifferential misclassification 

by maximizing the ratio between the expected number of correct classifications and the 

expected number of tests. Using the same criterion and testing procedure, they also 

characterized a cut-off point of disease prevalence where all individuals should be tested 

together at the first stage.

Aprahamian et al (2019)26 considered the Dorfman procedure in the population with 

heterogeneous prevalences27,28 under the setting of nondifferential misclassification. They 

investigated two models: in the first one a linear combination of the expected number of 

false positives, false negatives and total number of tests was minimized; in the second one 

a linear combination of the expected number of false positives and false negatives was 

minimized, subject to constraints on the upper bound of the expected total number of tests. 

In contrast to earlier work, recent authors have argued that the expected number of tests 

alone should be used and that careful accounting for the number of correct classifications is 

an unnecessary complication.29 The basis for Hitt et al’s29 argument that misclassification 

need not be considered in optimal design is based on a comparison of the expected number 

of tests versus the ratio of the expected number of tests and the expected number of correct 

classifications. Note that the above citations do not provide an exhaustive list of approaches 
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and many additional works have addressed group testing under misclassification (see, eg, 

References 30–35)

Many recent papers assume nondifferential misclassification. Specifically, they assume that 

misclassification does not depend on the size of the group and that there is misclassification 

for a test used for on a single or individual sample. Although the assumption of 

nondifferential misclassification may be reasonable for some types of sample pooling, it 

cannot be generally assumed. Further, misclassification needs to be defined relative to a gold 

standard. A natural comparison of group testing screening designs is with a design where 

individuals are tested separately. In many cases, it is reasonable to assume that the assay 

tested on a single sample is the gold standard. In this case, misclassification for group testing 

will be relative to single testing with the sensitivity and specificity of the individual test 

being 1, as it also was assumed earlier by Hwang (1976).22

5 | WHAT IS THE OPTIMAL DESIGN?

As can be seen from the previous section, many works have appropriately attempted to 

account for misclassification for the optimal group testing design for disease identification. 

Minimizing the expected number of tests has been used as an objective function.29 In 

other previous works, authors have proposed minimizing a linear combination of the 

expected number of tests and the rate of correct classification.21,23,26 However, choosing 

the coefficients for these terms is subjective and may be difficult to motivate from a medical 

or public health perspective. Some authors include a cost for incorrect classification22,24 

which may also difficult to motivate from a medical or public health perspective. Although, 

the criterion proposed by Malinovsky et al25 does not require such specifications, it assigns 

the same weight for the expected number of tests and the expected number of correct 

classifications, and therefore can also be subjective.

A larger issue is that none of these cited works have considered the impact of differential 

misclassification. In this case, an optimization procedure which does not constrain the 

misclassification parameters may lead to unacceptably low values of sensitivity and/or 

specificity and overly optimistic estimates of the savings provided by group testing. For 

example, based on the Dorfman procedure, the expected number of tests per person (or 

individual) is a decreasing function of the sensitivity. Therefore, if sensitivity is changing 

with group sizes, the group size minimizing the expected number of tests may result in very 

low sensitivity. In this work, we address both of these issues by proposing a simple, easy to 

interpret, optimization problem so that the group size k is chosen to satisfy the following:

arg min
k ∈ K

E(T ∣ p, k, Se(k), Sp(k)),
subject to Se(k) ≥ δ1,
subject to Sp(k) ≥ δ2,

(1)

where δ1 and δ2 are fixed threshold values and, p, Se(k), and Sp(k) are assumed known. 

Here, the objective function is the expected number of tests per person (or individual) 

and the misclassification parameters are subject to lower bounds. This has the benefit of 
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being very easy to interpret and explain to nonstatisticians. Furthermore, it ensures that the 

misclassification parameters are sufficiently high in the final design.

6 | IMPORTANCE OF CORRECTLY SPECIFYING SE(K) AND SP(K)

Despite the advantages of this approach, a major drawback (which is shared with all 

previous approaches), is that it relies on the assumption that the parameters Se(k) and Sp(k) 

are known. In reality, this is almost never the case and researchers are likely to have little a 

priori information on the magnitude of the misclassification parameters and whether or not 

they change with the group size. As such, to choose an optimal design and understand 

its properties, it is essential that researchers first acquire knowledge of the diagnostic 

performance of the assay for grouped samples. Without such knowledge no claim that group 

testing is more efficient than individual testing for disease screening can confidently be 

made. By far the most common approach in the group testing literature is to use estimates 

of sensitivity and specificity found in the literature. There are a number of issues of concern 

here. First, the estimates of sensitivity and specificity are often based on studies conducted 

in other populations. The problem of applying the sensitivity and specificity of an assay 

in one population when they were estimated in a different population with a different mix 

of patients has been well recognized in the area of diagnostic medicine.36 Second, the 

uncertainty in the estimation of sensitivity and specificity is not taken into account in most 

comparisons.

Misspecification of the sensitivity and specificity can impact the testing procedure in two 

primary ways. First, even small differences can lead to changes in the optimal choice of 

design. This is particularly true if the sensitivity changes with the group size, since the 

expected number of tests typically decreases with the sensitivity. This will result in a poor 

understanding of the expected number of tests for a given design and may lead to poor 

decisions regarding the application of a group testing procedure in a given population.

Second, misspecification of the misclassification parameters can lead to choosing a design 

with very high error rates. For example, if the sensitivity of an assay is decreasing with 

group size then overestimating the sensitivity by even a small degree can lead to choosing a 

large group size for which the assumed overall error rate estimate is overly optimistic.

These issues are illustrated in the following example.

6.1 | Example

In this section, we explore numerically how misspecification of the sensitivity function, 

Se(k), when choosing an optimal design can lead to errors in the estimation of a procedure’s 

overall sensitivity as well as the expected number of tests. We will assume in all cases 

that Sp(k)=1. While this assumption will not be true in many settings, it is sufficient here 

to illustrate how poor a priori information regarding the sensitivity function can lead to 

bad design choices. Furthermore, grouped specificity is often of only secondary interest to 

researchers as, even if the specificity decreases with the group size, group testing still results 

in a larger overall specificity than individual testing. This is true since, to ultimately be 

determined positive, an individual must undergo testing at least two stages, one of which is 
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at the individual level. To illustrate different potential ways the sensitivity might be subject 

to differential misclassification, we consider the function Se(k) = fH(p, k, d) = p

1 − (1 − p)k
d , 

due to Hwang (1976),22 for various values of d. This function allows us to model the 

sensitivity as a function of the group size k using an index parameter d for which the 

sensitivity decreases as d ranges from 0 to 1. Note that, when d=0, fH(p, k, 0)=1 indicating 

that the grouped assay is perfectly sensitive (ie, false negatives do not occur). For d=1, fH 

gives the probability of a single unit being positive given there is at least one positive in the 

group. Plots of fH for p=0.1 and k =1, 2, …, 25 for various values of d are shown in Figure 

1. For our example, we assume that the true assay sensitivity can be represented by taking 

d=0.075, and will look at designs constructed assuming values of d=0.01, 0.05, 0.1, and 0.3. 

The value of d=0.075 represents a moderate decay of the sensitivity function as k increases 

and allows for the comparison of cases when the sensitivity function is both underestimated 

(eg, d is assumed to be greater than 0.075) and overestimated (eg, d is assumed to be less 

than 0.075). In this context, underestimation implies that we assume the sensitivity function 

decreases more quickly with increasing group sizes and reaches a lower point than is true. 

Likewise, overestimation implies that we assume the sensitivity function decreases more 

slowly with increasing group sizes and does not decrease as far as what is true.

To find the optimal group size, kopt, we consider two approaches. The first, for a given p and 

function Se(k), solves the unconstrained optimization problem

arg min
k ∈ K

E(T ∣ p, k, Se(k)),

where K is the set of all possible group sizes and

E(T ∣ p, k, Se(k)) =
1, k = 1

Se(k) 1 − (1 − p)k + 1/k, k ≥ 2
.

The second approach enforces a lower bound on the overall sensitivity of a procedure by 

finding k which satisfies:

arg min
k ∈ K

E(T ∣ p, k, Se(k)),
subject to Se(k) ≥ δ,

(2)

where δ is a fixed threshold value and, again, p and Se(k) are assumed known.

For our numerical comparisons, we set K = 1, 2, …, 25  and δ = 0.95. Results are shown in 

Table 1. The table contains estimates for three basic quantities:

• kopt, the optimal group size chosen for a given optimization procedure;

• Se(kopt), the sensitivity function evaluated at the optimal group size;

• E(T|kopt), the expected number of tests for a given procedure based on the 

optimal group size.
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For each quantity, an assumed value (eg, the value calculated based on the sensitivity 

function Se(k)=fH(p, k, d) for a given d) is indicated by a hat, .(eg, E T ∣ kopt  is the true 

expected number of tests based on the assumed optimal group size and true sensitivity value 

and E T ∣ kopt  is the value believed to be true based on the assumed sensitivity values).

From the results, we see that the unconstrained optimization, which considers only the 

expected number of tests, often yields very poor assumed overall sensitivity. For examples, 

with p=0.01 and d assumed to be 0.01, the assumed sensitivity value is 0.976, which 

is substantially different from the actual sensitivity value of 0.836 which would occur if 

d=0.075 and k =11 were used. This highlights the fact that such an optimization procedure 

can do nothing to control the overall sensitivity rates and should be used cautiously, 

particularly with differential misclassification. While the overall sensitivity values are 

always much higher when using the constrained procedure, when the assumed sensitivity 

function overestimates the true values the chosen group size can yield an overall sensitivity 

value much smaller than is assumed to be true. This can be seen by, again, looking 

at the example of p=0.01 with d assumed to be 0.01 where the assumed and actual 

sensitivity values are 0.976 and 0.836, respectively. This highlights a major drawback of 

the constrained procedure (which is also present in the unconstrained), namely that it 

cannot overcome poor a priori information concerning the sensitivity function (specifically, 

overestimation of the sensitivity function).

The differences observed between true and assumed sensitivity tend to decrease sharply as p 
increases. For example, looking again at an assumed value of d=0.01, we noted above that 

the assumed and true sensitivity values were 0.976 and 0.836, respectively, when p=0.01. 

At p=0.1, these values have become 0.987 and 0.906. This is due to the fact that for larger 

p the expected number of tests decreases rapidly with the group size, regardless of the 

sensitivity values. Differences between the assumed and true expected number of tests, 

however, follows the opposite pattern, with the differences increasing with p. For example, 

with an assumed value of d=0.3, the difference between the true and assumed expected 

number of tests per person (or individual) increases from 0.199−0.125=0.074 at p=0.01 

to 0.779−0.424=0.355 at p=0.1. Such a difference would lead to an overconfidence in the 

savings provided by group testing which scales linearly with the total number of people to 

be screened. For the most part, we see that, when the sensitivity function is assumed to have 

lower values than are true for each group size, the expected number of tests per person is 

underestimated (as seen in the previous example). Conversely, when the sensitivity function 

is assumed to have higher values than are true for each group size, the expected number 

of tests per person (or individual) is overestimated. For example, returning to the case of 

p=0.01 and an assumed value of d=0.01, the assumed expected number of tests exceeds the 

true expected number of tests by 0.193−0.178=0.015.

7 | OPTIMAL DESIGN INCORPORATING ESTIMATION ERROR IN Se(k) AND 

Sp(k)
As seen in the previous example, reliable knowledge of the misclassification parameters 

and their dependence on k is essential in designing a group testing screening program. 
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In most cases, this will require researchers to first obtain population specific estimates of 

the sensitivity and specificity. To do this will require a validation study design in which 

individuals with known disease status (most likely from initial individual screening) are 

tested in groups of varying group sizes. To date, we are unaware of any literature related 

to the question of how to best design such studies. However, in practice it is important to 

consider how large such validation studies would need to be before deciding if group testing 

is a reasonable approach. Another important question is, given that a validation study of a 

certain size is to be carried out, how large of a target population for screening is required 

to see an overall benefit from utilizing group testing. Answers to such questions will vary 

greatly depending on the underlying population and particular assay being used, but it is 

reasonable to assume that such considerations will show group testing is not warranted in 

many situations when such an approach might otherwise be considered.

7.1 | Example

To estimate Se(k) and Sp(k), a simple validation design is described in Algorithm 1 for 

an initial sample of size N and a maximum group size kmax. The maximum group size is 

predetermined by researchers to be the largest possible group size under consideration. Once 

the misclassification parameters have been estimated, they can be used to find kopt from the 

constrained optimization procedure described above in (2) using the estimated sensitivity 

and specificity values. In this section, our goal is to determine how large of an initial 

validation sample size, N, would be required to be confident that the bounding criterion 

in (2) is truly met. Mathematically, for the sensitivity this means we hope to achieve 

ϕ(δ) = P(Se(kopt ) > δ) > ϵ where ϵ is some threshold value. Note that this is conceptually 

similar to a tolerance interval where we can be assured with a certain probability that a 

particular value falls within the interval.

Algorithm 1.

Procedure for validation study

for k = 1, 2, …, kmax do

 if N/k is an integer then Randomly group units into N/k groups of size k

 else Randomly form ⌊N/k⌋ groups of size k and construct a final group with the remaining N − k × ⌊N/k⌋ units and k 
− N + k × ⌊N/k⌋ duplicate units randomly chosen from the othergroups

 end if

 if k > 1 then Assuming estimates from the k = 1 stage 

are correct, estimate Se(k) = #groups with at least one positive member and testing positive
#groups with at least one positive member  and 

Sp(k) = #groups with no positive members and testing negative
#groups with no positive members

 end if

end for
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Algorithm 2.

Pseudo-code for validation study simulations

Let N = 10,000

Let Nmax = 0

Let Nmin = 0

while true do

 for i = 1, 2, …, 50,000 do

  Calculate Se(k)i and Sp(k)i using Algorithm 1 for each k = 1, 2, …, 10 Find kopt solving (2) with δ = 0.95 

based on these estimates

  Set ψi = 1, Se(kopt)i > 0.95
0, otherwise

 end for

 Calculate ϕ(0.95) = ∑i = 1
50, 000 ψi

50000

 if ϕ(0.95) − 0.95 > 0.01 then Let Nmax = N Let N =
N + Nmin

2

 else if ϕ(0.95) − 0.95 < − 0.01 then Let Nmin = N

  if Nmax = 0 then Let N = 2N

  else Let N =
N + Nmax

2

  end if

 else exit while loop

 end if

end while

To determine the necessary validation size, N, we conducted a simulation study with 50 000 

simulations and found the smallest N such that the empirical probability ϕ(0.95) > 0.95. The 

full simulation algorithm is described in Algorithm 2. As above, we assumed Sp(k)=1 for all 

k. For the sensitivity functions, we considered several possibilities:

Se1(k) = 1 − 0.02(k − 1),

Se2(k) = 1 − 0.02 × 2k/2, k = 1, 2, …, 11
0, otherwise

,

Se3(k) = fH(p, k, d = 0.1),

Se4(k) = fH(p, k, d = 0.3),

Gregory Haber et al. Page 12

Stat Med. Author manuscript; available in PMC 2022 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Simulations were carried out for p =0.01, 0.02, …, 0.10 and with kmax=10.

Once the smallest N was determined, we found the smallest total population size, N*, 

required to see a benefit from group testing following such a validation procedure. This 

value was determined by comparing the expected number of tests required to complete 

screening the population plus the total number of tests used in the validation study to the 

total population size, which represents the number of tests required under individual testing. 

Letting TV be the total number of tests required in the validation study, N* can be found by 

solving the inequality

N * − N E(T ∣ p, k, Se(k)) + TV ≤ N * ,

or equivalently

TV − N × E(T ∣ p, k, Se(k))
1 − E(T ∣ p, k, Se(k)) ≤ N * .

The expected value in this expression was taken as the average expected value across all 

simulations for the given validation sample size. Results are shown in Figure 2.

Unsurprisingly, for all sensitivity functions we see the required validation sample sizes 

decrease with increasing prevalence. This is expected as smaller numbers of individuals are 

required to ensure an adequate number of groups with at least one positive member. For 

the sensitivity functions on the top row, the decrease in sensitivity is more gradual so that a 

larger group size can be chosen. For these cases, larger validation sample sizes are required 

to accurately estimate the sensitivity function. However, since the larger group sizes will 

allow for a smaller expected number of tests, the additional sample size required to see a 

benefit from group testing is small.

8 | REVISITING THE CASE STUDIES

8.1 | Population-based screening for SARS-CoV-2 infection

Large-scale screening for SARS-CoV-2 is an important and pressing public health issue. 

Implementation of group testing to facilitate such screening currently faces several obstacles 

which must be considered before beginning such a program. First, prevalence values in a 

given region are unknown and constantly changing. This forces any design choices to be 

made somewhat ad hoc. This is particularly an issue as testing protocols and indications 

are currently in flux across state and national health departments, so that the underlying 

screening population characteristics can change at any time. For example, if the positive 

rate of individual tests in an area is approximately 5%, a procedure testing groups of size 5 

could offer significant advantages. If, however, at a later time the prevalence of the screening 

population increases to 29%, or greater, due to testing only individuals at higher risk such 

a procedure would require more tests than individual screening. The inability of testing 

facilities to anticipate such swings could lead to very expensive mistakes.
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A second issue is that it is not known a priori how assay sensitivity changes with group 

sizes. This is particularly true as such values may vary across populations and labs given 

the wide range of testing techniques currently being implemented. While a validation study 

would be feasible for such a use case, it is unlikely that public health officials would be 

willing to reallocate sparse testing materials for large speculative studies at this time. In 

a public health crisis like COVID-19, we recommend that samples be stored so that, at a 

minimum, the feasibility of group testing can be evaluated at a later time.

If despite these concerns a group testing program were to be implemented, a basic 

prevalence estimate could be obtained using recent individual testing data. To carry out 

a validation procedure as described above we show the estimated validation sample sizes, 

total number of tests, and population size required to see a benefit from group testing for 

prevalence values 0.05, 0.1, and 0.25 in Table 2. Values are reported based on two assumed 

underlying sensitivity functions: 1) a linear function, Se(k)=1−0.02(k −1) and 2) the Hwang 

function with d=0.1, fH(d=0.1).

8.2 | Large-scale screening for HIV viral load

The specifics of designing a screening program for monitoring HIV viral load will vary 

as different regions employ differing testing protocols and thresholds. As an example, we 

consider a case with suspected ART failure prevalence around 9%, a value reported among 

those using ART for at least 18 months for a Malawian cohort in Nicholas et al (2019).37 

While studies evaluating the pooled sensitivity for fixed group sizes have been done,14,15 

such values are likely cohort specific and would need to be re-estimated before application 

to a specific population. Furthermore, in order to make informed decisions about an optimal 

group size it would be necessary to first understand how the sensitivity changes with the 

group size. Using the procedure outlined above, we can look at the sample sizes required 

under different assumed sensitivity functions to evaluate how feasible group testing would 

be in this case. For example, if we assumed the linear sensitivity function Se(k)=1−0.02(k 
−1) for a prevalence of 0.09 we would require 18 750 individuals to enroll in a validation 

study requiring 54 920 total tests and a population size to 103 097 to see a benefit from 

group testing. If, however, the sensitivity function was the Hwang function with d =0.1, 

we would require 9375 individuals to enroll in a validation study requiring 27 462 tests 

and a population size of 1 094 884. In either case, for a population of 600 000 screened 

semiannually there is a clear potential for savings from group testing, even after carrying out 

a validation procedure. Without any prior knowledge of the sensitivity function, it would be 

difficult to choose an initial validation sample size as it is impossible to give conservative 

bounds. Still, if the resources are available for an initial large investment for a validation 

study, and health officials are able to deal with the possibility that the pooled sensitivity will 

be too low for practical use, the long term and ongoing nature of HIV viral load screening 

can potentially benefit largely from group testing.

8.3 | Stratified cancer screening

For HPV methylation screening, we consider a program aimed at screening the entire 

US population for HPV related cervical cancer risk. This could be achieved by collecting 

samples from all women, identifying those with high risk HPV subtypes (ie, those that act 
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as cancer precursors), and finally administering methylation testing for the high risk HPV 

group. Those with positive methylation tests would then be followed more intensely to 

ascertain cervical cancer risk. Using 2010 population estimates and estimated prevalences 

from 2014,38 we could approximate that around 20 million women in the US would test 

positive for a high risk HPV subtype and we would like to design a group testing procedure 

to screen each of these women using methylation testing. To date, there are no population 

based estimates of methylation positive testing rates so we will assume a value of 5% for this 

example. Using these values and the validation procedure outlined above, if the underlying 

sensitivity function were the linear function Se(k)=1−0.02(k −1) then we would require a 

validation sample size of 31 679 and a total of 92 789 tests with a required population size 

to see a benefit from group testing of 147 238. If, however, the true sensitivity function were 

the Hwang function with d=0.1, we would require 13 710 women for a validation procedure 

requiring 40 158 tests and a total population size of 1 307 444 to see a benefit from group 

testing. In either case, given the large population required for screening, group testing would 

likely provide large savings in this setting, even with a necessarily large validation study. 

This would be true even if the actual rate of positive methylation tests in the high risk HPV 

infected population were much higher. Here, the only real impediment to using group testing 

would be if health officials were unwilling to accept any additional loss of sensitivity due to 

pooling.

8.4 | Biomarker presence in cohort study

For MGUS screening, we assume a prevalence of 3% and that we would like to determine 

the status of approximately 200 000 individuals. If the true sensitivity function were 

the linear function Se(k)=1−0.02(k −1) then we would require a sample size of 51 250 

individuals for a validation procedure requiring 150 113 tests and a population size of 221 

091 to see a benefit from group testing. If, however, the true sensitivity function were the 

Hwang function with d=0.1, we would require 21 093 individuals for a validation procedure 

requiring 61 785 tests and a population size of 1 832 663 to see a benefit of group testing. 

Given these numbers, and lacking any a priori information on the sensitivity function, it 

is unlikely that researchers would attempt to implement such a validation procedure in 

this case. While the large sample sizes are offset somewhat by the need for repeat testing, 

the nontrivial possibility of finding that pooling of any size reduces the sensitivity to an 

unacceptable level make this an unlikely gamble for resource allocation.

9 | DISCUSSION

In this article we have reviewed several of the issues faced by practitioners when deciding if 

group testing can provide a feasible solution for their screening program. In this context we 

have explored several issues numerically based a simple algorithm (the Dorfman two-stage 

procedure) and several simplifying assumptions. In practice, there exist many additional 

considerations which may alter the final decision concerning whether to implement group 

testing.

For all numerical comparisons, we have assumed grouping does not impact specificity 

(ie, Sp(k)=1 for all k). While this may be reasonable in some settings, the failure of 
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this assumption can result in large increases in the number of individuals required for a 

validation sample. In particular, by using a minimum threshold to determine estimation 

accuracy we have had to assume that ϕ(δ) is monotone as a function of the validation 

sample size. While this holds for Sp(k)=1, this may not be true otherwise, requiring more 

complicated evaluation criteria and larger sample sizes. Furthermore, poor assumptions 

about Sp(k) can contribute to poor estimation of the expected number of tests and, hence, 

exacerbate the issues of selecting an appropriate group testing design.

When designing our validation procedure, we made the assumption that the sensitivity does 

not depend on the number of positives in a given group (ie, we have assumed that the 

sensitivity is only a function of whether or not any group member has the disease, not the 

full distributional makeup of the group). In practice, this assumption may fail resulting in 

significantly more complicated sensitivity functions (which must now be a function of both 

the group size and the number of positives in the group). This could especially be an issue 

when the test classification is a function of underlying continuous test output. If such issues 

could reasonably be suspected, it would be necessary to design the validation study which 

accounts for this issue.

One assumption we have made is that there is a complete lack of a priori information on 

the underlying sensitivity function, necessitating the validation design to be nonparametric. 

However, in cases where researchers are able/willing to make certain simplifying 

assumptions (eg, that sensitivity is linear in k) more efficient validation designs may be 

possible. In such cases, smaller validation studies could potentially make group testing 

feasible in a wider range of settings. However, given that the properties of the final design 

are sensitive to the correct specification of the sensitivity function, we generally make 

the recommendation of a nonparametric approach when designing important screening 

programs using group testing. Furthermore, if assumptions such as monotonicity of the 

sensitivity as a function of group size are made, more efficient adaptive algorithms could 

possibly be developed. This is an important area for future work.

We have emphasized the importance of estimating the sensitivity and specificity for different 

size groups in the same population that we intend to screen. The validation study design 

assumes that sample is collected from a random sample of individuals from the population 

at hand and groups of varying size be randomly formed from these samples. There are 

different alternative designs for the validation sample that may lead to efficiency gains in 

some situations. For example, if a researcher assumes that the specificity is 1 for all group 

sizes (here, we assumed it was necessary to estimate these specificities in order to confirm 

this in our calculations), we may save resources by never grouping all negative samples 

together. Alternatively, rather than attempt to find the optimal design, we could simply 

evaluate the properties of a group testing design for a single fixed group size. If the false 

negative rate is too high, we could sequentially evaluate the properties for a smaller group 

size. This approach may be advantageous for the COVID-19 example, where it is more 

important to obtain a good design quickly than to spend more time to find the optimal design 

(ie, the perfect is the enemy of the good). In many cases, obtaining a random sample from a 

population to do a full validation procedure may be impossible but researchers may still be 

interested in studying the properties of a group testing procedure. An approach that could be 
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taken in such cases is to use a spiked procedure in which known concentrations of the agent 

being tested are included in samples of different sizes to simulate the conditions observable 

in the full population. Such a procedure could greatly reduce the number of validation 

tests required and could utilize pre-selected samples, resulting in savings of both time and 

cost. The primary concern with such a procedure is that the validity of the results relies 

heavily on the correctness of the assumptions made concerning the underlying population 

characteristics and their relationship to the trait being screened for. For a given application, 

researchers would have to balance their comfort level with such assumptions with the need 

for empirically verified estimates.

An additional assumption we have made is that the underlying population is homogeneous 

with respect to the primary trait of interest. In many cases, this is reasonable as long 

as the validation sample is chosen representatively across the entire population and the 

subsequent samples are not grouped based on underlying heterogeneous clusters. The impact 

of heterogeneity will include additional challenges to determine the size of the validation 

sample and to ensure a feasible solution to the optimization problem (2). The issue is that 

even under the perfect assay setting, we need to determine not only group sizes but also 

the members of the groups, and number of such possibilities (number of the partition of 

the population) is astronomical even for the small population size. In fact, under error-free 

testing, the optimal partition is known only for the Dorfman procedure.27,28 From a the 

practical perspective, Hwang’s method can be used for Dorfman’s procedure, and the 

methods developed in References 39,40 can be used for other group testing procedures. 

Another possibility, which also may be logistically easier to implement, is a stratification of 

the population, such that in each stratum, there is a homogeneous population. In such a case, 

the methodology developed in the present work can be used with respect to each stratum 

separately.

In this article, we have focused exclusively on the Dorfman design. In the case of 

a homogeneous population, there are more efficient designs than Dorfman’s two-stage 

procedure.41–43 In many of these designs, the expected number of tests E(T|p, k, Se(k)) is 

not given in closed form, but rather calculated using recursion or dynamic programming.39 

In the presence of differential misclassification or dilution effects, expressions for the 

expected number of tests (an important component in the objective function to evaluate) 

are difficult to obtain in these cases.

Our work focused on the screening of a single disease. However, occasionally screening 

for multiple diseases from a single assay may be of interest. Group testing for disease 

screening for multiple diseases with test misclassification is an area for future research. 

With respect to feasibility, the subject of the current paper, we want to emphasize that any 

design would need a validation sample sized to be sufficient to estimate the more complex 

misclassification structure that would be required for such designs.
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FIGURE 1. 
Plot of sensitivity function, Se(k)=fH(p, k, d) for p=0.1 for various values of k and d
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FIGURE 2. 
Barplots showing required validation study size, N, total number of assay tests in validation 

study, TV, and minimum population size to see a benefit from group testing, N* for various 

underlying true sensitivity functions. The bottom axes are values of p
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TABLE 2

Estimated validation sample size, N, number of validation tests, TV, and necessary population size to see a 

benefit from group testing, N*, for a COVID – 19 screening program based on prevalence values of 0.05, 0.1, 

and 0.25

Se(k) = 1 − 0.02(k − 1) fH(d = 0.1)

Prevalence N TV N* N TV N*

0.05 31 679 92 789 147 238 13 710 40 158 1 307 444

0.1 17 500 51 259 100 771 8 906 26 090 1 077 732

0.25 1640 4806 31 494 10 781 31 582 4 754 298

Note: Values are calculated separately for two underlying sensitivity functions: Se(k) = 1 − 0.02(k − 1) and fH(d = 0.1).
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