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Abstract

Objective: Computer-aided  diagnosis  using  deep  learning  algorithms  has  been  initially  applied  in  the  field  of

mammography, but there is no large-scale clinical application.

Methods: This  study  proposed  to  develop  and  verify  an  artificial  intelligence  model  based  on  mammography.

Firstly,  mammograms  retrospectively  collected  from  six  centers  were  randomized  to  a  training  dataset  and  a

validation  dataset  for  establishing  the  model.  Secondly,  the  model  was  tested  by  comparing  12  radiologists’

performance with and without it. Finally, prospectively enrolled women with mammograms from six centers were

diagnosed by radiologists with the model. The detection and diagnostic capabilities were evaluated using the free-

response receiver operating characteristic (FROC) curve and ROC curve.

Results: The sensitivity of model for detecting lesions after matching was 0.908 for false positive rate of 0.25 in

unilateral images. The area under ROC curve (AUC) to distinguish the benign lesions from malignant lesions was

0.855 [95% confidence interval  (95% CI):  0.830,  0.880].  The performance of  12 radiologists  with the model  was

higher than that of radiologists alone (AUC: 0.852 vs. 0.805, P=0.005). The mean reading time of with the model

was shorter than that of reading alone (80.18 s vs.  62.28 s,  P=0.032).  In prospective application, the sensitivity of

detection reached 0.887 at false positive rate of 0.25; the AUC of radiologists with the model was 0.983 (95% CI:

0.978,  0.988),  with sensitivity,  specificity,  positive predictive value (PPV),  and negative predictive value (NPV) of

94.36%, 98.07%, 87.76%, and 99.09%, respectively.

Conclusions: The  artificial  intelligence  model  exhibits  high  accuracy  for  detecting  and  diagnosing  breast

lesions, improves diagnostic accuracy and saves time.
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Introduction

Breast  cancer  is  the  most  common  malignant  tumor  in
women  (1,2),  and  the  leading  cause  of  cancer  death  in
women worldwide. Early diagnosis can improve the 5-year
survival rate of breast cancer patients from 25% to 99% (3).
Several  imaging  methods  are  used  to  identify  suspicious
malignant  breast  lesions,  while  mammography  is  the  only
screening  method  that  has  been  proved  to  reduce  the
mortality of  breast  cancer (4-6),  which can reduce the risk
of breast cancer death up to 40% (7,8).

Asian women’s mammary glands are denser, reducing the
sensitivity of mammography. The large number of breast
cancer  sc reen ing  popula t ion  re su l t s  in  heavy
mammography  load,  and  uneven  distribution  of  breast
specialists makes difference in the level of mammography
diagnosis. A number of studies have pointed out that about
75% of breast biopsies caused by suspicious mammography
results are finally confirmed as benign changes (9).  The
increase of unnecessary pathological biopsy leads to the
waste  of  medical  resources  and  further  aggravates  the
shortage  of  medical  resources.  Therefore,  it  is  highly
essential  to  effectively  and  accurately  detect  breast
lesions (10).

Computer-aided detection (CAD) uses  computerized
algorithms to identify suspicious regions of interest (ROIs)
on imaging studies. It can assist radiologists as a second
reader in detecting early breast cancer in an efficient way,
especially on screening mammograms (11). Since CAD was
proved to improve the detection rate of cancer in 1998, it
has  been  extensively  applied  thereafter  for  screening
different  types  of  cancer  (12).  In  spite  of  improving
detection rate, CAD increases false positive rate and true
positive rate (13).

In  recent  years,  deep  learning  (DL),  especially
convolution  neural  network  (CNN),  has  remarkably
attracted scholars’ attention for detection and classification
of medical  images (14,15).  Numerous machine learning
models  based  on  artificial  intelligence  (AI)  have  been
successfully  applied  in  imaging  diagnosis  and  efficacy
evaluation of breast, liver, and rectum (16-20). Computer-
aided models for mammographic breast cancer diagnosis
have been proposed (21,22), and studies have shown that
DL-based  CAD  may  assist  radiologists  to  improve
diagnostic efficiency and reduce their work load (23-25).
However, there is no prospective large-scale clinical study
confirming the clinical practicability of DL-based CAD.

Therefore, the main purpose of the present study was to

establish  an  AI  assisted  diagnosis  model  based  on  DL
method,  to  evaluate  the  effectiveness  of  the  model  for
aiding doctors to obtain better accuracy and less working
time, and to finally validate it in real world practice.

Materials and methods

Study design and participants

This  is  a  multicenter  study,  including  both  retrospective
design and prospective design. The study was in accordance
with  the  precepts  established  by  the  Helsinki  Declaration,
and  the  study  protocol  was  approved  by  the  Ethics
Committee  of  Peking  University  Cancer  Hospital
(2018KT47).  The  informed  consent  was  waived  for  the
retrospective  part,  and  obtained  from  all  participants  for
the  prospective  part  (Reg.  No.  NCT03708978).  Web
version  on  PubMed  Central  were  referred  for  additional
files.  Our  study  consisted  of  three  parts,  the  first  part  was
the  retrospective  construction  of  AI  system  and  internal
verification.  The second part  tested  whether  the  diagnosis
efficiency  of  doctors  with  AI  system  assistance  is  higher
than  that  of  doctors  alone.  The  third  part  prospectively
verified  the  effect  of  the  system  in  multicenter  clinical
practice (Figure 1).

Participants of the first part
We retrospectively enrolled patients who were admitted to
Peking  University  Cancer  Hospital  for  screening  clinical
symptoms  from  October  1,  2014  to  September  30,  2016.
Figure 1 shows the study flowchart. Supplementary Table S1
shows the study sites and patients enrolled in this part. The
inclusion criteria were patients with complete clinical data,
mammogram data, and with pathological diagnosis or more
than  2  years’  follow-up  after  the  first  examination.  The
exclusion criteria  included unqualified images  required for
the  segmentation  and  inconsistency  in  the  location  of
lesions between mammograms and pathological results.

Participants of the second part
To determine the effectiveness of the model for improving
the  accuracy  of  diagnosis,  we  retrospectively  collected
mammograms  from  six  centers  (A,  Peking  University
Cancer Hospital; B, Shunyi Women’s & Children’s Health
Hospital of Beijing Children’s Hospital; C, Beijing Daxing
District Hospital; D, Beijing Chaoyang Maternal and Child
Health  Center;  E,  Shunyi  District  Hospital;  F,  Beijing
Shijingshan  Hospital)  from  October  1  to  31,  2015,  and
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conducted an evaluation of the developed diagnostic system
with participation of 12 radiologists.

Supplementary  Figure  S1  illustrates  the  process  of
collection  of  mammography  data  and  participants’
selection. A step-by-step procedure for estimating power
and sample size was used which was proposed by Hillis
et  al.  (26)  for  planned  multi-reader  receiver  operating
characteristic (ROC) studies. For 12 evaluators, in which
the study efficacy was not less than 0.80, an area under the
curve (AUC) difference of 0.05 required 200 mammograms
(70  pathologically  confirmed  malignant  cases,  30
pathologically or follow-up confirmed false positive cases,
and 100 negative cases).

To ensure  adequate  mammography to  determine the
final sample size, we collected at least 14 cancer patients, 6

false  positive  patients,  and 20 negative  patients  in  each
center (data collected from centers E and F were combined
due to the small number of cases in those centers).  The
inclusion and exclusion criteria are shown in Figure 1.

To  ensure  image  quality,  all  cases  in  this  part  were
reviewed by three radiologists with more than 25 years of
experience in mammography. Each case was available for
pathology  or  follow-up.  After  review,  3  patients  with
unqualified image quality and 66 patients with very obvious
symptoms of breast cancer were excluded.

Participants of the third part
To further investigate the clinical application of the model,
we  prospectively  applied  it  in  six  centers.  Patients
undergoing  mammography  in  each  center  were

 

Figure 1 Workflow diagram for development and application of the model. PACS, picture archiving and communication system.
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prospectively and consecutively enrolled from April 5, 2018
to  May  4,  2018.  The  inclusion  and  exclusion  criteria  are
shown in Figure 1. There were no specific exclusion criteria
in  terms  of  demographic  or  clinical  characteristics  for
participants without lesions.

Quality control of mammogram images

All  mammogram  images  were  stored  using  a  picture
archiving  and  communication  system  (PACS)  in  digital
imaging  and  communications  in  medicine  (DICOM)
format.  Two  standard  views  were  the  craniocaudal  (CC)
and  the  mediolateral  oblique  (MLO).  To  ensure  image
quality, all cases were reviewed by 3 radiologists with more
than 25 years of experience in mammography.

All  pathological  results  were  obtained  from  the
pathology  report  and  reviewed  by  an  experienced
pathologist. Pathological tissues were obtained by hollow
needle  biopsy  or  surgery  and  were  stained  with
hematoxylin and eosin (H&E).

Radiologist’s annotations

Six  certified  and  experienced  radiologists,  each  with  an
average experience of at least 5 (range, 5−10) years and read
an average of 250,000 mammograms, annotated the images.
Six radiologists were trained to read 800 mammograms and
began to draw ROI respectively. The delineation principle
was as follows: 1) manual delineation along the edge of the
lesion;  2)  inclusion  of  all  suspicious  parts  of  the  tumor  in
the sketch; 3) the edge included burrs as far as possible; and
4)  when the  label  was  generated,  the  characteristics  of  the

lesion  were  marked  according  to  the  Breast  Imaging-
Reporting  and  Data  System  (BI-RADS)  (2013  edition),
including  lesion  type  (mass,  calcification,  structural
distortion,  asymmetry),  distribution  characteristics,  and
pathological or follow-up results. In case of doubtfulness, a
radiologist  will  consult  with  other  three  experienced
radiologists to make a correct decision after discussion.

Algorithm development

Following the successful application of DL, we established
the  model  (http://mgshow.yizhun-ai.com/),  containing
various  modules  to  carry  out  automatic  analysis  of
mammograms. It contains three deep neural models: lesion
detection module,  lesion matching module,  and malignant
degree  assessment  module,  which  constitute  a  complete
system for breast lesion analysis (Supplementary Figure S2).
The overview of our system is illustrated in Figure 2.

Lesion detection module
We use Faster R-CNN (27) to detect suspicious lesions in
all  of  the  images  of  one  patient.  Faster  R-CNN is  one  of
the state-of-the-art methods in the area of object detection.
Faster  R-CNN  contains  two  stages,  where  the  first  stage
generates  box  proposals  and  the  second  stage  refines  the
box  localization  and  predicts  the  class  of  each  object.  We
use  ResNet-50  (28)  as  the  backbone  network  and  adopt
feature  pyramid  network  to  enhance  the  detector
performance of small lesions.

Since the huge size of breast images and the existence of
background areas with no information, we first pre-process
the mammogram images before sending them to the neural

 

Figure 2 Pipeline of the model. ROI, regions of interest; CC, craniocaudal; MLO, mediolateral oblique.
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networks. We crop the foreground area of each image by a
simple thresholding method and then resize the images to
keep spacing =0.15 mm. As shown in Figure 2, the detector
takes four images of different views as inputs, and outputs
bounding  boxes  and  lesion  classes  (i.e.,  mass  and
calcification)  for  detected  suspicious  lesions.  In  our
problem,  mass  and calcification can appear  at  the  same
location,  so  we  use  Sigmoid  function  to  generate  the
objectivity score for each class instead of SoftMax. This
modification allows an object to be identified as both mass
and calcification. In practice, if a predicted box has high
confidence in both mass and calcification, we will call this
lesion a mass with calcification.

Lesion matching module
The matching module  is  introduced to  indicate  whether  a
pair  of  detected candidates  are  from different  views of  the
same  lesion.  In  the  clinical  practice  of  mammogram
examination,  it  is  essential  to  combine  the  information  of
multiple  views  (MLO  and  CC).  At  most  of  the  time,  a
lesion could be recognized in both MLO and CC views. If
a  mass  can  be  only  found  in  one  view,  radiologists  may
consider  that  it  is  caused  by  overlapping  glands,  but  not
lesions. According to this principle, it is natural to perform
false  positive  reduction  by  matching  lesions  of  MLO  and
CC view in the CAD system.

In our model, we use a neural model to conduct lesion
matching. The matching model is after the detector and
takes features of the detected proposals of suspicious lesions
as input. We use vertex coordinates, sizes of the proposals,
probabilities of each class, and the depth of proposals in the
gland as input features. In the matching process, the model
should  use  the  information  of  all  proposals  to  perform
matching, so that we use an attention model (29) to predict
the relationship of all lesion pairs. The input of the model
is  the  concatenated  features  mentioned  above,  and  it
generates the probability of a real lesion pair for all possible
pairs. The lesions with low probabilities will be removed
during the output process.

Malignant degree assessment module
We  use  a  CNN  based  on  ResNet  (30)  to  estimate  the
malignant  degrees  of  lesions.  In  our  model,  we  treat  the
malignant  degree  assessment  problem  as  an  ordinal
regression problem (28). Ordinal regression algorithms are
to solve multi-class classification problem where the labels
have  strong  ordinal  relationships.  In  our  problem,  BI-
RADS  can  represent  a  lesion’s  degree  of  malignancy.  BI-

RADS  sometimes  provides  more  information  than
pathological  results,  since  pathological  results  only  tell  us
whether a lesion is malignant, but BI-RADS can tell us how
malignant  a  lesion’s  degree  of  malignancy.  Therefore,  we
use  BI-RADS  to  train  our  model.  Experimentally,  with
large  amounts  of  BI-RADS  annotations  confirmed  by
experts,  we  find  the  performance  of  our  system  is  better
than  using  the  pathological  results  as  labels,  even  we
evaluate the system according to the pathological results.

Following some previous studies (28), we use integration
of several binary classification problems to solve the ordinal
regression  problem.  We  choose  ResNet-18  as  our
backbone, which is one of the state-of-the-art classification
models  in  the area of  DL (30).  In our data,  there are  8
labels (“false positive”, “BI-RADS 2”, “BI-RADS 3”, “BI-
RADS 4A”, “BI-RADS 4B”, “BI-RADS 4C”, “BI-RADS 5”
and “BI-RADS 6”). Since there are few lesions which are
“BI-RADS 2” or “BI-RADS 6” in our training data,  we
treat “BI-RADS 2” the same as false positive candidates and
merge “BI-RADS 6” and “BI-RADS 5”.  Therefore,  our
model  outputs  5  logits  for  each  lesion,  the  first  logit
predicts whether the BI-RADS of a lesion is larger than
“BI-RADS 3”, the second logit predicts whether the BI-
RADS of a lesion is larger than “BI-RADS 4A” and so on.
Since we hope the network can output the possibility that a
lesion  is  malignant,  we  add  a  fully  connected  layer  to
process the result of ordinal regression, which can be seen
as a simple linear combination.

Development details
To  train  the  models,  the  collected  mammograms  were
chronologically  divided  into  training  dataset  (about  80%)
and validation dataset (about 20%). We trained the models
during the first part of our study and further evaluated the
established system in the next two parts.

We  implemented  all  the  models  using  PyTorch  DL
framework. In the lesion detection module, we used Adam
optimizer  with  the  learning  rate  of  3e−4  to  train  the
detector and the batch size was 8. The training objective
function was following the same with original Faster R-
CNN (27). In the lesion match module, we adopt Focal
Loss to train the lesion pair classification task since the
classification  objects  were  highly  imbalanced.  The
parameters  in  Focal  Loss  were  set  to  alpha=0.5  and
gamma=2.0. Adam optimizer with learning rate 1e−3 and
batch  size  32  was  utilized  to  train  the  model.  In  the
malignant degree assessment module, the ResNet-18 was
selected  as  the  backbone  network.  We  used  Adam
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optimizer with learning rate 1e−3 and batch size 32 to train
the network. The loss function of each binary classification
output was Cross Entropy Loss.

The online demo is shown in Supplementary materials.
To  train  the  models,  the  collected  mammograms  were
chronologically divided into training dataset (about 80%)
and validation dataset (about 20%). We trained the models
during the first part of our study and further evaluated the
established system in the next two parts.

Auxiliary efficacy for models

We  evaluated  the  effectiveness  of  the  model  in  detecting
and  diagnosing  mammograms  by  monitoring  the
performance  of  12  radiologists  under  different  reading
conditions (Supplementary Figure S3).

The 12 radiologists had an average of 9.5 (range, 3−25)
years of experience with the certificate of Mammography
Quality  Standards  Act,  and  had  read  more  than  5,000
mammograms per year over the past two years.

The 12 radiologists  were  blinded of  any  information
about  the  patients,  including  prior  imaging  and
histopathological reports. The assessment consisted of two
stages. The interval between the two assessments should be
at least 4 weeks. Each radiologist received separate training
prior to the first evaluation. The purpose of the training
was to familiarize radiologists with the evaluation criteria
and functions  and operations  of  the  AI-aided diagnosis
model. Besides, 12 radiologists were informed that the rate
of  malignancy  in  the  assessed  dataset  was  higher  than
clinical practice.

For  each  case,  radiologists  employed  BI-RADS
classification (range, 1−5), and labeled suspicious lesions as
benign or malignant, and normal patients without lesions
were taken as negative into account. Radiologists scored
each  case  on  a  difficulty  scale  of  1−9  (9  represents  the
highest difficulty scale).

The evaluation was undertaken in an in-house developed
workstation,  using  a  12-MP  Mammography  Display
System  that  was  calibrated  to  the  medical  grayscale
standard display function of digital imaging. Radiologists
used the AI system to read the film, which can freely adjust
the  window width and window level,  and can scale  and
shift. Ambient lighting was set to about 45 lx.

Prospective clinical applications of models

Prior  to  the  application  of  the  model  in  each  center,
nineteen  radiologists  in  the  six  centers  had  participated  in

the training of the model, in which 200 cases were trained.
The median experience in mammography diagnosis was 9.5
(range, 5−26) years, and the mean number of mammograms
read  each  year  during  the  past  2  years  was  approximately
6,500  (range,  1,400−13,000).  The  purpose  of  the  training
was to make all the radiologists proficient in the operating
system and application interface, so that they could be used
freely in the routine clinical mammography.

The mammography was conducted by radiologists with
DL model at six centers. The model could automatically
identify suspicious lesions and percentage of malignancy for
reference, and automatically generate structured reports as
well.  The  reading  time  of  each  case  was  automatically
recorded by the system. Pathological and follow-up results
were taken as the gold standard for the diagnosis of benign
and malignant lesions, and three radiologists with more
than 20 years of experience were taken as the gold standard
for detection of lesions, so as to observe the clinical effect
of DL model.

Statistical analysis

Clopper-Pearson  method  was  applied  to  calculate  the
accuracy,  sensitivity,  specificity,  positive  predictive  value
(PPV),  and  negative  predictive  value  (NPV)  of  the  model
which  was  used  to  detect  and  diagnose  mammographic
lesions  (Supplementary  materials).  We  used  free-response
receiver  operating characteristic  (FROC) curve  to  indicate
the  detection  ability  of  the  model  and  further  analyze  its
diagnostic  ability  in  different  types  of  lesions.  The  ROC
curve  was  plotted,  and  the  AUC  was  used  to  evaluate  the
diagnostic performance of the model. All statistical analyses
were  bilateral  with  significance  level  of  0.05.  Statistical
analyses were performed using R software (Version 3.5.1; R
Foundation  for  Statistical  Computing,  Vienna,  Austria)
programming language.

The  end  point  was  to  compare  the  AUC,  sensitivity,
specificity, and reading time of 12 radiologists who read
independently  and  who  read  with  the  model.  P<0.05
indicated a statistically significant difference between the
two reading conditions. In the present study, if a radiologist
did not mark the malignant lesion within the true quadrant
of the lesion, the case was modified to be negative by the
reader.

The  reading  time  of  each  case  was  automatically
measured by the workstation software. The paired sample
t-test or Wilcoxon rank-sum test were used to compare the
average  reading  time  under  two  different  reading
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conditions (reading alone and reading with the model), and
the relationship between reading time and difficulty score
was further analyzed. For this analysis, the outlier (defined
as more than 1.5 times the standard deviation of the data)
was removed.

Outcomes and follow-up

Definition  of  malignant  lesions:  within  2  years  from  the
time  the  patient  came  to  the  hospital  for  the  first
mammogram, the pathological diagnosis of the same lesion
as malignant was defined as malignant lesion. Definition of
benign lesions: 1) pathological diagnosis of the same lesion
within 2 years was benign; and 2) patients were followed up
for  more  than  2  years,  and  mammography  more  than  2
years  after  the  first  mammography  examination  indicated
benign,  without  pathological  diagnosis.  Follow-up  plan  is
in Supplementary materials.

Results

Patients’ baseline data

The  flowchart  of  the  study  design  and  data  collection  is
shown in Figure 1.

The first part: between October 1, 2014 and September
30, 2016, 5,350 participants with suspected lesions from
PACS of  six  centers  were  enrolled,  of  whom 891  were
excluded due to no follow-up data or follow-up for less
than  two  years,  and  92  were  excluded  because  their
pathological results were not obtained. Of the remaining
4,367 participants assessed for quality control, 97 (2.22%)
were excluded due to poor quality of mammography and
151  (3.46%)  were  excluded  due  to  inconsistency  in
anatomical location and pathological report. Eventually,
16,476 images of 4,119 participants were involved in the
analysis, including 2,454 patients with malignant lesions
and  1,665  patients  with  benign  lesions.  Among  them,
pathological  results  of  3,186  patients  were  achieved
through biopsy or surgery. In chronological order, a total
of  3,389  patients  were  used  for  model  training  from
October 1, 2014 to May 31, 2016, and 730 patients were
recruited  for  model  verification  from  June  1,  2016  to
September 30, 2016 (approximately 5:1). The patients’ data
are summarized in Supplementary Table S2.

The second part: the mean age of 200 patients tested for
auxiliary efficacy of the model was 59 years (Supplementary
Table S3), and the detailed pathological types of malignant
cases are presented in Supplementary Table S4.

The third part: a total of 5,809 cases of mammography
were involved, and 63 cases were excluded according to the
exclusion criteria (9 cases had no pathological results, 50
cases  had  no  follow-up  results,  and  4  cases  failed  to
undergo mammography). The remaining 5,746 cases were
included  in  the  analysis.  There  were  495  patients  with
malignant lesions, 337 patients with benign lesions, and
4,914 negative patients. The prevalence of breast cancer in
A−F centers was 15.72%, 5.91%, 7.52%, 3.83%, 11.11%,
and  7.10%,  respectively.  There  was  no  significant
difference  in  patients’  baseline  data  (Supplementary
Table S5).

First part-validation of the model

When  there  was  a  0.25  false  positive  rate  per  image,  the
overall sensitivity of detection in the validation dataset was
0.828. The sensitivity of detection after matching was 0.908
for  false  positive  rate  of  0.25  in  unilateral  images.  Among
all the lesions, the AUC of the model to distinguish benign
lesions from malignant lesions was 0.855 [95% confidence
interval (95% CI): 0.830, 0.880]. For mass and calcification,
the AUC for benign and malignant lesions were 0.865 and
0.841,  respectively  (Figure  3, Supplementary  Table  S6,  and
Supplementary Figure S4)

Second  part-comparing  clinical  data  between  the  model
and 12 radiologists

ROC curve, sensitivity and specificity
The AUC for  the model-independent  diagnosis  was  0.835
(95% CI: 0.819, 0.852). The diagnostic performance of 12
radiologists assisted with the model was higher than that of
12  radiologists  reading  alone  (AUC:  0.852 vs.  0.805,
P=0.005) (Figure 4, Supplementary Table S7). The specificity
of  12 radiologists  assisted with the model  was  higher  than
that  of  reading  alone  (88.34% vs. 82.05%,  P=0.005),  and
there  was  no  significant  difference  in  sensitivity  between
these  two  groups  of  radiologists  (68.78% vs. 68.70%,
P=0.937)  (Supplementary  Table  S8).  The  sensitivity  and
specificity  of  the  model  independent  diagnosis  were
81.40%  and  78.50%,  respectively.  The  sensitivity  and
specificity  of  12  radiologists  reading  alone  are  shown  in
Supplementary Table S9.

Reading time
With the model,  the mean reading time of  12 radiologists
was  significantly  shorter  than that  of  12  radiologists  alone
(62.28±23.12  s vs.  80.18±33.26  s,  P=0.032).  Additionally,
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with the aid of the model, the reading time of 1 radiologist
increased  (6.1%),  while  that  of  11  radiologists  decreased
(range,  9.1%−48.3%)  (Figure  5A).  The  difference  in
reading time caused by  different  difficulty  scores  is  shown
in Figure  5B.  Of  all  the  reading  time,  0.4%  (21  of  4,800)
was  defined  as  an  outlier  and  was  excluded  from  this
analysis.

For cases  with low-difficulty  coefficient  (1−5 points),
with the aid of the model, the average reading time of each
case was reduced by 35.2%. On the contrary, for cases with
high difficulty coefficient (6−9 points), the reading time of
each case was elevated by 6.5%.

Third part-prospective clinical results of the model

With the model, the sensitivity of detection reached 0.887
at  false  positive  rate  of  0.25  (Supplementary  Figure  S5).
With the model, the AUC of differentiating benign lesions
from  malignant  lesions  was  0.983  (95%  CI:  0.978,  0.988)
(Figure  6, Supplementary  Table  S10).  The  sensitivity,

 

Figure 3 FROC and ROC curves in validation dataset. (A) FROC curve for detection; (B) FROC curve for detection after matching; (C)
ROC curve for distinguishing benign lesions from malignant lesions [AUC (95% CI)=0.855 (0.830, 0.880)]; (D) ROC curve of the model to
differentiate  benign  lesions  from  malignant  lesions  for  calcification  [AUC  (95%  CI)=0.841  (0.804,  0.878)]  and  masses  [AUC  (95%
CI)=0.865 (0.839,  0.892)],  respectively  (only  the  detected  lesions  were  considered,  and test  results  and IOU marked by  radiologists  were
>0.25). FROC, free-response receiver operating characteristic; ROC, receiver operating characteristic; AUC, area under the curve; 95% CI,
95% confidence interval; IOU, intersection over Union.

 

Figure  4 ROC  curves  of  diagnosis  assisted  by  the  model  and
diagnosis  alone  for  12  radiologists.  ROC,  receiver  operating
characteristic.  AI,  artificial  intelligence;  AUC,  area  under  the
curve; 95% CI, 95% confidence interval.
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specificity,  PPV  and  NPV  of  diagnosis  were  94.36%,
98.07%,  87.76%  and  99.09%,  respectively.  The  AUC  of
the  model  diagnosing  alone  in  A−F  centers  was  0.959,
0.959,  0.986,  0.970,  0.941  and  0.989,  respectively
(Supplementary  Figure  S6).  The  mean  diagnosis  time
including writing report of each mammogram was 94.23 s.

Discussion

In the present study,  a mammography-based AI model for
breast  cancer  was  established,  and it  was  unveiled  that  the
proposed system had superior diagnostic performance, and
can  assist  radiologists  to  improve  the  diagnostic  accuracy
and  shorten  the  diagnosis  time.  Finally,  through
prospective multicenter population verification, the system

exhibited  a  satisfactory  auxiliary  diagnostic  performance.
To our knowledge, this is a prospective clinical research in
the  field  of  mammography  based  on  AI,  and  outstanding
outcomes could be achieved.

In  order  to  avoid  missed  diagnosis,  an  AI-assisted
diagnosis model may lead to increase of false positive rate.
In clinical application, a model with high false positive rate
may result in over-testing, interfering with radiologists’
attention, consuming radiologist’ energy, and increasing
patients’  psychological  anxiety  and  financial  burden.
Several  AI-based  models  for  mammography  were
previously reported, some of which were developed for the
purposes of detection and classification (31), and some of
which were developed based on clinical data (32,33), while
none of them tackled the above-mentioned deficiencies.

 

Figure 5 Reading times. (A) Graph shows the reading time (circle) and mean reading time (square) of each case for each radiologist; (B) bar
graph  depicts  the  difference  in  reading  time  caused  by  different  difficulty  scores.  AI,  artificial  intelligence;  MAIADS,  mammography
artificial intelligence diagnosis system.

 

Figure 6 Diagnostic performance of radiologists with the aid of the model in the prospective multicenter clinical application. (A) FROC
curve; (B) ROC curve for differentiating malignant lesions [AUC (95% CI)=0.983 (0.978, 0.988)]. FROC, free-response receiver operating
characteristic; ROC, receiver operating characteristic; AUC, area under the curve; 95% CI, 95% confidence interval.
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Our model could make a correlation between the two views
of lesions. Our model used a matching module to combine
the image on the CC position and MLO position to ensure
that the detected lesion was a true positive lesion. It can be
seen from the data obtained before and after matching that
the matching module reduced the false positive rate, while
ensured  the  sensitivity,  and  improved  the  accuracy  of
differentiation of benign lesions from malignant lesions,
indicating the reliable capability of clinical application of
the proposed system.

In our study, three different participants were selected
for model developing, comparative testing and prospective
validation.  During  the  development  of  the  model,  we
selected  the  population  with  suspicious  lesions  in
mammography for better learning. In the comparison test,
the 200 mammogram cases were significantly more difficult
than those in the usual clinical work, in order to better test
the  auxiliary  ability  of  the  model.  In  the  prospective
verification, the cases we collected were as close to the real
world as possible, which is more conducive to observing the
role of  assisted diagnosis  system in the real  world.  The
results presented were different due to the differences in
the population observed. Population in the first part of the
study  are  suspected  cases  and  therefore  the  AUC  of
classification of the model is 0.852, and in the prospective
part,  participants  include  clinic  diagnosis  cases  and
screening cases, as well as breast X-ray negative cases, the
results reached 0.983.

In  the  part  of  testing  whether  the  model  can  assist  a
radiologist  to  improve  the  diagnostic  performance,  we
deliberately selected the difficult and differentiated cases.
This aimed to monitor radiologists’ diagnostic accuracy in
diagnosing difficult cases and simple cases, so as to better
assess capability of the model in assisting radiologists for
diagnosing  and  clarifying  its  clinical  application  value.
With  the  model,  the  12  radiologists’  diagnostic
performance was higher than that without assistance (0.852
vs. 0.808, P=0.005). It indicated that radiologists’ diagnostic
performance  can  be  improved  with  the  DL  model.
Supplementary Figures S7,8 show examples of the correct
number of detection and diagnosis changed under different
reading conditions. The results showed that the sensitivity
of the diagnosis of 12 radiologists reading alone was quite
different (38.8%−98.6%), which is consistent with result of
a  previous  study  (34),  and  is  also  one  of  the  important
reasons for the implementation of double-reading. This
may be related to radiologists’ experience. The AUC of the
model-independent diagnosis was 0.835 (95% CI: 0.819,

0.852),  which was close to some radiologists’  diagnostic
performance. Therefore, it is feasible to make the model
for fast and robust diagnosing patients with breast cancer.

The reading time of 12 radiologists with the model was
significantly  shorter  than  that  of  reading  alone.  The
reading time was shortened in a number of radiologists by
up to 50%. We speculated that this might be related to
radiologists’ experience, and this conclusion was consistent
with a previous research’s outcome (23). When there were
cases  with  low-difficulty  coefficient  (1−5  points),  the
viewing time was markedly shortened with the aid of the
model, indicating that our model can save time and enable
radiologists  to  further  concentrate  on  cases  with  high-
difficulty coefficient, so that radiologists could avoid the
possibility of missed diagnosis and misdiagnosis. For cases
with high-difficulty coefficient, it increased the diagnostic
time while the average increase was only 6.5%, which was
still within the acceptable range.

The  previously  reported  AI-based  models  for
mammography were partially limited to the detection of
lesions (22), and they were partly tested on public datasets
(31). In contrast, the model exhibited high detection and
diagnostic efficacy in prospective clinical applications in six
different  centers.  In  addition,  the  model  showed  high
sensitivity and specificity for detection of the two types of
lesions  (masses  and  calcifications).  In  particular,  the
detection of  calcification accompanied with satisfactory
results under the background of generally dense glands in
Asian women, which greatly shortens the detection time of
lesions and saves radiologists’ energy in detecting lesions,
thereby  assisting  radiologists  to  improve  diagnostic
efficiency. In addition, the prospective application results of
the model  achieved in six  different  centers  reflected its
universality and practicality.

Despite the above-mentioned outstanding results, this
study has several limitations. First, we did not carry out a
prospective  multicenter  randomized  controlled  trial  to
validate  the  superiority  of  auxiliary  diagnosis  with  the
model compared without it, because it is hard to randomly
assign  clinical  cases  through  image  diagnosis  system.
Second, there are still a limited number of deficiencies in
the matching module (i.e., the network cannot deal with
mismatch between lesions and other views). Third, in terms
of clinical applicability, our model was only conducted by
training and validation datasets  in a large population in
mainland China, and its effectiveness in other populations
(such as Western countries) remains to be further studied.
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Conclusions

We  developed  an  AI-assisted  diagnostic  model  for  breast
cancer,  and  demonstrated  that  it  can  improve  the
diagnostic accuracy and shorten the time for breast cancer
diagnosis.  The  clinical  application  of  the  model  was
prospectively  completed  for  the  first  time  in  multicenters,
which highlighted the effectiveness and applicability of the
AI-assisted diagnostic system.
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Supplementary  materials

Online demo of the system

For the online demo, please see http://mgshow.yizhun-ai.com/. The user name is mgshow, and password is mgshow1234.

Follow-up plan

Follow-up plan: 1) retrospective study part: a) Collect mammography from the image workstation for patients with suspicious
breast  lesions  and  collect  pathological  diagnosis  information;  and  b)  For  patients  without  pathological  diagnosis,  all
mammography  information  of  the  patient  was  collected  from  the  image  workstation  to  confirm  whether  the  patient  had
mammography  more  than  2  years  after  the  first  mammography  in  Peking  University  Cancer  Hospital,  and  the  diagnostic
tendency  was  benign;  2)  prospective  study  part:  Mammography  was  performed  for  suspicious  breast  lesions,  and  biopsies
were performed in category of breast imaging reporting and data system (BI-RADS) 4 and 5 patients to obtain pathological
diagnosis and terminate follow-up. Patients with BI-RADS 3 were followed up by mammography every 6 months for more
than 2 years. During the follow-up period, patients diagnosed as BI-RADS 4 and 5 by mammography received biopsy, and
obtained  pathological  diagnosis  and  terminated  the  follow-up.  Patients  in  the  BI-RADS  1  and  2  categories  received
mammography 2 years after the first mammography, and those with BI-RADS 4 and 5 categories received biopsy.

Statistical analysis

We  evaluated  the  diagnostic  accuracy,  sensitivity,  specificity,  and  positive  predictive  value  (PPV)  and  negative  predictive
value (NPV) of the model in the differential diagnosis of cancerous lesions.

1) Detection rate of lesions: the detection rate of lesions in the model was calculated based on the results of pathological
examination and the results of imaging follow-up of more than 2 years, and the detection rates of different types of lesions
were further calculated respectively.

2) Diagnostic accuracy of lesions: the sensitivity, specificity, PPV, NPV and overall accuracy of the model for breast lesions
were calculated, and the diagnostic accuracy of different types of lesions was calculated respectively.

3) Area under the curve (AUC) for patient level diagnosis: to measure the diagnosis performance of the model, we use the
predicted  score  of  the  most  malignant  detected  lesion  as  the  malignant  score  of  a  patient,  and  calculate  AUC with
pathological examination results.
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Figure S1 Selection of 200 patients. Center A, Peking University Cancer Hospital; Center B, Shunyi Women’s & Children’s Hospital of
Beijing Children’s Hospital; Center C, Beijing Daxing District People’s Hospital; Center D, Beijing Chaoyang Maternal and Child Health
Center; Center E, Shunyi District Hospital; Center F, Beijing Shijingshan Hospital; false P, false positive.

 

Figure S2 Diagnostic module of the algorithm. CC, craniocaudal; MLO, mediolateral oblique.



 

Figure S3 Flowchart of cross testing between the model and 12 doctors. AUC, area under the curve; BI-RADS, Breast Imaging-Reporting
and Data System.
 

Figure S4 FROC curve of detection in calcification and mass in 6
centers. FROC, free-response receiver operating characteristic.

 

Figure S5 Performance of the model in prospective data. (A) Detection performance of the model in prospective data in multicenter; (B)
classification  performance  of  the  model  in  prospective  data  in  multicenter  [AUC  (95%  CI)=0.967  (0.962,  0.972)].  AUC,  area  under  the
curve; 95% CI, 95% confidence interval.



 

Figure  S6 ROC  curves  of  the  model’s  diagnosing  performance  in  6  centers.  (A)  Peking  University  Cancer  Hospital  [sensitivity  (95%
CI)=0.754 (0.699, 0.810), specificity (95% CI)=0.965 (0.954, 0.975), PPV (95% CI)=0.800 (0.747, 0.853) and NPV (95% CI)=0.955 (0.943,
0.966)];  (B) Shunyi Women’s & Children’s  Hospital  of  Beijing Children’s  Hospital  [sensitivity (95% CI)=0.674 (0.575, 0.773),  specificity
(95% CI)=0.979 (0.971, 0.986), PPV (95% CI)=0.667 (0.568, 0.766) and NPV (95% CI)=0.980 (0.972, 0.987)]; (C) Beijing Daxing District
People’s Hospital [sensitivity (95% CI)=0.806 (0.714, 0.897), specificity (95% CI)=0.984 (0.976, 0.992), PPV (95% CI)=0.806 (0.714, 0.897)
and NPV (95% CI)=0.984 (0.976,  0.992)];  (D)  Beijing Chaoyang Maternal  and Child  Health  Center  [sensitivity  (95% CI)=0.690 (0.551,
0.830), specificity (95% CI)=0.985 (0.977, 0.992), PPV (95% CI)=0.644 (0.505, 0.784) and NPV (95% CI)=0.988 (0.981, 0.994)]; (E) Shunyi
District Hospital [sensitivity (95% CI)=0.742 (0.588, 0.896), specificity (95% CI)=0.976 (0.957, 0.995), PPV (95% CI)=0.793 (0.646, 0.941)
and  NPV  (95%  CI)=0.968  (0.946,  0.990)];  (F)  Beijing  Shijingshan  Hospital  [sensitivity  (95%  CI)=0.778  (0.642,  0.914),  specificity  (95%
CI)=0.996  (0.990,  1.002),  PPV  (95%  CI)=0.933  (0.844,  1.023)  and  NPV  (95%  CI)=0.983  (0.972,  0.995)].  ROC,  receiver  operating
characteristic; PPV, positive predictive value; NPV, negative predictive value; 95% CI, 95% confidence interval.

 

Figure S7 A 40-year-old woman with a lobulated mass (red arrow) in the left external breast quadrant on the CC view, and an ambiguous
lesion on the  MLO view,  was  pathologically  confirmed as  invasive  apocrine  carcinoma by biopsy.  Only  4  of  the  12 doctors  detected the
lesion when they read the film alone. When doctors read with the model, 9 of 12 doctors detected the disease. (A) CC view, with local zoom
image in the upper right corner; (B) MLO view; (C) CC view, the yellow line is the detection result of the model. CC, craniocaudal; MLO,
mediolateral oblique.



 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S8 A 51-year-old woman with clustered calcification (red arrow) in the upper quadrant of  her left  breast.  No significant changes
were observed in the 2-year follow-up, which was considered to be benign. When the doctors read alone, 9 of 12 doctors misjudged it as
malignant  lesions.  The  model  accurately  detected  the  lesion  and  suggested  that  the  lesion  type  was  calcification,  and  the  possibility  of
malignancy was 1.8%. BI-RADS 3 was recommended. With the model, 3 of the original 9 doctors changed right. (A) CC view of the first
mammogram; (B) MLO view of the first mammogram; (C) CC view, detection results of the model, and yellow lines delineated the lesion
range  for  the  model;  (D)  MLO  view,  detection  results  of  the  model,  and  yellow  lines  delineated  the  lesion  range  for  the  model;  (E)
mammogram images at  1-year follow-up;  (F)  mammographic images at  2-year follow-up.  BI-RADS, Breast  Imaging-Reporting and Data
System; CC, craniocaudal; MLO, mediolateral oblique.



 
 
 
 
 
 
 
 
 
 

Table S1 Study sites

Centers Institutions No. of patients
enrolled Manufacturer, model name

Center A Peking University Cancer Hospital 1,450 GE MEDICAL SYSTEMS, Senographe Essential VERSION
ADS_54.20; SIEMENS, Mammomat Novation DR

Center B Shunyi Women’s & Children’s Hospital
of Beijing Children’s Hospital 1,454 HOLOGIC Inc. Selenia Dimensions

Center C Beijing Daxing District People’s
Hospital   958 Philips Medical Systems, MammoDiagnost DR

Center D Beijing Chaoyang Maternal and Child
Health Hospital 1,098 SIEMENS, Mammomat Inspiration

Center E Shunyi District Hospital   279 HOLOGIC Inc. Selenia Dimensions

Center F Beijing Shijingshan Hospital   507 GE MEDICAL SYSTEMS, Senograph DS VERSION
ADS_54.20

Table S2 Basic characteristics of patients in developing the model

Variables
n (%)

P
Training set (N=3,389) Verification set (N=730)

Age [mean (range)] (year) 52.45 (19−88) 53.23 (26−85) 0.718

BI-RADS breast density 0.028

　a 177 (5.2) 36 (4.9)

　b 641 (18.9) 153 (21.0)

　c 2,323 (68.6) 509 (69.7)

　d 248 (7.3) 32 (4.4)

Lesion type <0.001

　Malignant type 2,001 453 0.190

　　Mass 1,665 (58.1) 388 (57.0)

　　Calcification 1,122 (39.1) 270 (39.6)

　　Distortion 16 (0.6) 1 (0.2)

　　Asymmetry 64 (2.2) 22 (3.2)

　Benign type 1,388 277 0.199

　　Mass 1,318 (64.5) 251 (62.9)

　　Calcification 619 (30.3) 135 (33.8)

　　Distortion 4 (0.2) 1 (0.3)

　　Asymmetry 102 (5.0) 12 (3.0) 　

BI-RADS, breast imaging reporting and data system.



 
 
 
 
 
 

Table S3 Basic clinical information of 200 tested patients

Variables n (%)

Age (year)

　Mean 59

　Median 59

　Range 33−85

　Interquartile range 46−58

BI-RADS breast density

　a 12 (6.0)

　b 37 (18.5)

　c 82 (41.0)

　d 69 (34.5)

BI-RADS, breast imaging reporting and data system.

Table  S4 Pathological  results  and  morphological  features  of
lesions in 70 malignant patients

Characteristics n

Histological type

　Invasive ductal carcinoma 53

　Ductal carcinoma in situ 10

　Invasive papillary carcinoma   6

　Others   1

Lesion type*

　Mass 49

　Calcification 20

　Asymmetry   6

　Structural distortion   5

*, 10 cases presented with mass with calcification.

Table S5 Basic information of prospective application cases of the model

Variables Center A
(N=1,450)

Center B
(N=1,454)

Center C
(N=958)

Center D
(N=1,098)

Center E
(N=279)

Center F
(N=507) P

Age (year) [mean
(range)] 50.35 (26−85) 50.57 (25−86) 50.84 (29−82) 49.99 (26−79) 51.50 (30−77) 50.61 (33−85)   0.652

BI-RADS breast
density <0.001

　a 38 75 68 56 41 31

　b 101 261 246 253 64 161

　c 1,000 1,062 551 732 157 300

　d 311 56 93 57 17 15

Lesion type <0.001

　Malignant type 228 86 72 42 31 36

　Mass 195 71 61 36 28 31

　Calcification 144 47 40 26 16 21

　Distortion 1 0 0 0 0 0

　Asymmetry 8 5 2 2 2 3

Benign type 144 69 41 36 17 30

　Mass 132 69 30 32 17 26

　Calcification 54 34 24 14 7 24

　Distortion 0 0 0 0 0 1

　Asymmetry 11 4 1 2 0 1
Negative 1,078 1,299 845 1,020 231 441

BI-RADS, breast imaging reporting and data system.



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S6 Classification performance of the model (by lesions)

Variables Validation

Malignant mass (n=397)

　Accuracy (95% CI) 0.784 (0.752, 0.816)

　Sensitivity (95% CI) 0.743 (0.700, 0.786)

　Specificity (95% CI) 0.853 (0.808, 0.899)

　PPV (95% CI) 0.897 (0.864, 0.930)

　NPV (95% CI) 0.660 (0.606, 0.714)

Malignant calcification (n=264)

　Accuracy (95% CI) 0.769 (0.726, 0.812)

　Sensitivity (95% CI) 0.788 (0.739, 0.837)

　Specificity (95% CI) 0.722 (0.638, 0.807)

　PPV (95% CI) 0.874 (0.832, 0.916)

　NPV (95% CI) 0.582 (0.499, 0.666)

Total malignant lesions (n=468)

　Accuracy (95% CI) 0.769 (0.740, 0.799)

　Sensitivity (95% CI) 0.726 (0.686, 0.767)

　Specificity (95% CI) 0.836 (0.795, 0.878)

　PPV (95% CI) 0.872 (0.839, 0.905)

　NPV (95% CI) 0.666 (0.619, 0.713)

95% CI,  95% confidence interval;  PPV, positive predictive
value; NPV, negative predictive value.

Table S7 AUC for each radiologist and reader-averaged AUCs
for reading mammograms unaided and with AI support

Radiologists Read alone Read with the model

A 0.781 0.836

B 0.765 0.824

C 0.829 0.877

D 0.821 0.794

E 0.775 0.865

F 0.793 0.828

G 0.891 0.905

H 0.796 0.852

I 0.889 0.891

J 0.777 0.893

K 0.788 0.846

L 0.758 0.812

Average 0.805 0.852

AUC, area under the curve; AI, artificial intelligence.

Table S8 Mean sensitivity and specificity across radiologists

Variables
%

P
Radiologists alone Radiologist with the model

Sensitivity   68.70±16.34   68.78±18.67 0.937

Specificity 82.05±4.65 88.34±6.93 0.005



 

 
 
 
 
 
 
 
 
 
 
 

Table S9 Sensitivity and specificity of 12 radiologists read alone
and read with the model

Radiologists

%

Radiologist alone Radiologist with the
model

Sensitivity Specificity Sensitivity Specificity

A 72.9 76.9 58.5 98.5

B 38.6 91.5 35.7 93.8

C 62.9 86.9 77.1 96.2

D 70.0 80.0 47.1 84.6

E 60.0 85.4 67.1 96.2

F 67.1 81.5 60.0 85.4

G 94.3 82.3 95.7 82.3

H 70.0 80.0 81.4 81.5

I 98.6 78.5 100 78.5

J 51.4 86.2 65.7 88.5

K 64.3 80.0 77.1 81.5

L 74.3 75.4 60.0 93.1

Table S10 Performance of the model in prospective clinical application in each center (by patients)

Variables
Prospective application performance (N=5,746)

Center A (n=1,450) Center B (n=1,454) Center C (n=958) Center D (n=1,098) Center E (n=279) Center F (n=507)

Accuracy
(95% CI)

0.959
(0.948, 0.969)

0.959
(0.949, 0.969)

0.986
(0.979, 0.994)

0.970
(0.960, 0.980)

0.941
(0.913, 0.969)

0.989
(0.979, 0.998)

Sensitivity
(95% CI)

0.754
(0.699, 0.810)

0.674
(0.575, 0.773)

0.806
(0.714, 0.897)

0.690
(0.551, 0.830)

0.742
(0.588, 0.896)

0.778
(0.642, 0.914)

Specificity
(95% CI)

0.965
(0.954, 0.975)

0.979
(0.971, 0.986)

0.984
(0.976, 0.992)

0.985
(0.977, 0.992)

0.976
(0.957, 0.995)

0.996
(0.990, 1.002)

PPV
(95% CI)

0.800
(0.747, 0.853)

0.667
(0.568, 0.766)

0.806
(0.714, 0.897)

0.644
(0.505, 0.784)

0.793
(0.646, 0.941)

0.933
(0.844, 1.023)

NPV
(95% CI)

0.955
(0.943, 0.966)

0.980
(0.972, 0.987)

0.984
(0.976, 0.992)

0.988
(0.981, 0.994)

0.968
(0.946, 0.990)

0.983
(0.972, 0.995)

95% CI, 95% confidence interval; PPV, positive predictive value; NPV, negative predictive value.


