Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Jan 5;65(3):497–513. doi: 10.1007/s11426-021-1150-7

Two-dimensional material-based virus detection

Wenbin Wang 1, Wei Zhai 2, Ye Chen 3, Qiyuan He 1,, Hua Zhang 2,4,5,
PMCID: PMC8742882  PMID: 35035391

Abstract

Cost-effective, rapid, and accurate virus detection technologies play key roles in reducing viral transmission. Prompt and accurate virus detection enables timely treatment and effective quarantine of virus carrier, and therefore effectively reduces the possibility of large-scale spread. However, conventional virus detection techniques often suffer from slow response, high cost or sophisticated procedures. Recently, two-dimensional (2D) materials have been used as promising sensing platforms for the high-performance detection of a variety of chemical and biological substances. The unique properties of 2D materials, such as large specific area, active surface interaction with biomolecules and facile surface functionalization, provide advantages in developing novel virus detection technologies with fast response and high sensitivity. Furthermore, 2D materials possess versatile and tunable electronic, electrochemical and optical properties, making them ideal platforms to demonstrate conceptual sensing techniques and explore complex sensing mechanisms in next-generation biosensors. In this review, we first briefly summarize the virus detection techniques with an emphasis on the current efforts in fighting again COVID-19. Then, we introduce the preparation methods and properties of 2D materials utilized in biosensors, including graphene, transition metal dichalcogenides (TMDs) and other 2D materials. Furthermore, we discuss the working principles of various virus detection technologies based on emerging 2D materials, such as field-effect transistor-based virus detection, electrochemical virus detection, optical virus detection and other virus detection techniques. Then, we elaborate on the essential works in 2D material-based high-performance virus detection. Finally, our perspective on the challenges and future research direction in this field is discussed. graphic file with name 11426_2021_1150_Fig1_HTML.jpg

Keywords: two-dimensional materials, virus detection, field-effect transistor, biosensor, COVID-19

Acknowledgements

H. Zhang thanks the support from ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), the Research Grants Council of Hong Kong (AoE/P-701/20), the Start-Up Grant (9380100), the grants from the City University of Hong Kong (9610478, 9680314, 7020013, 1886921), and the Science Technology and Innovation Committee of Shenzhen Municipality (JCYJ20200109143412311, SGDX2020110309300301, “Preparation of single atoms on transition metal chalcogenides for electrolytic hydrogen evolution”, CityU). Q. He acknowledges the funding support from the Start-Up Grant (7200656, 9610482) and Grant from the City University of Hong Kong (7020013).

Footnotes

Conflict of interest

The authors declare no conflict of interest.

Contributor Information

Qiyuan He, Email: qiyuanhe@cityu.edu.hk.

Hua Zhang, Email: hua.zhang@cityu.edu.hk.

References

  • 1.Peiris JSM, Guan Y, Yuen KY. Nat Med. 2004;10:S88–S97. doi: 10.1038/nm1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Holmes EC, Dudas G, Rambaut A, Andersen KG. Nature. 2016;538:193–200. doi: 10.1038/nature19790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Hutchinson EC. Trends Microbiol. 2018;26:809–810. doi: 10.1016/j.tim.2018.05.013. [DOI] [PubMed] [Google Scholar]
  • 4.Musso D, Gubler DJ. Clin Microbiol Rev. 2016;29:487–524. doi: 10.1128/CMR.00072-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Pedersen SF, Ho YC. J Clin Invest. 2020;130:2202–2205. doi: 10.1172/JCI137647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Guliy OI, Zaitsev BD, Borodina IA. Biosensors for Virus Detection. Macro, Micro, and Nano-Biosensors. Cham: Springer; 2021. pp. 95–116. [Google Scholar]
  • 7.Ji T, Liu Z, Wang GQ, Guo X, Akbar Khan S, Lai C, Chen H, Huang S, Xia S, Chen B, Jia H, Chen Y, Zhou Q. Biosens Bioelectron. 2020;166:112455. doi: 10.1016/j.bios.2020.112455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science. 2004;306:666–669. doi: 10.1126/science.1102896. [DOI] [PubMed] [Google Scholar]
  • 9.Chang C, Chen W, Chen Y, Chen Y, Chen Y, Ding F, Fan C, Jin Fan H, Fan Z, Gong C, Gong Y, He Q, Hong X, Hu S, Hu W, Huang W, Huang Y, Ji W, Li D, Li LJ, Li Q, Lin L, Ling C, Liu M, Liu N, Liu Z, Ping Loh K, Ma J, Miao F, Peng H, Shao M, Song L, Su S, Sun S, Tan C, Tang Z, Wang D, Wang H, Wang J, Wang X, Wang X, T. S. Wee A, Wei Z, Wu Y, Wu ZS, Xiong J, Xiong Q, Xu W, Yin P, Zeng H, Zeng Z, Zhai T, Zhang H, Zhang H, Zhang Q, Zhang T, Zhang X, Zhao LD, Zhao M, Zhao W, Zhao Y, Zhou KG, Zhou X, Zhou Y, Zhu H, Zhang H, Liu Z. Acta Physico Chim Sin. 2021;0:2108017–0. doi: 10.3866/PKU.WHXB202108017. [DOI] [Google Scholar]
  • 10.Wu Z, Qi J, Wang W, Zeng Z, He Q. J Mater Chem A. 2021;9:18793–18817. doi: 10.1039/D1TA03676A. [DOI] [Google Scholar]
  • 11.Chaturvedi A, Chen B, Zhang K, He Q, Nam G, You L, Lai Z, Tan C, Tran TH, Liu G, Zhou J, Liu Z, Wang J, Teo EHT, Zhang H. SmartMat. 2020;1:e1011. doi: 10.1002/smm2.1011. [DOI] [Google Scholar]
  • 12.Ménard-Moyon C, Bianco A, Kalantar-Zadeh K. ACS Sens. 2020;5:3739–3769. doi: 10.1021/acssensors.0c01961. [DOI] [PubMed] [Google Scholar]
  • 13.Morens DM, Folkers GK, Fauci AS. Nature. 2004;430:242–249. doi: 10.1038/nature02759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Stephenson JR, Alan W. Diagnostic Virology Protocols. Totowa: Humana Press; 2011. [Google Scholar]
  • 15.Kudesia G, Wreghitt T. Clinical and Diagnostic Virology. Cambridge: Cambridge University Press; 2009. [Google Scholar]
  • 16.Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JLM, Guimarães KP, Benazzato C, Almeida N, Pignatari GC, Romero S, Polonio CM, Cunha I, Freitas CL, Brandão WN, Rossato C, Andrade DG, Faria DP, Garcez AT, Buchpigel CA, Braconi CT, Mendes E, Sall AA, Zanotto PMA, Peron JPS, Muotri AR, Beltrão-Braga PCB. Nature. 2016;534:267–271. doi: 10.1038/nature18296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Goldsmith CS, Miller SE. Clin Microbiol Rev. 2009;22:552–563. doi: 10.1128/CMR.00027-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Badyda AJ, Dabrowiecki P, Lubinski W, Czechowski PO, Majewski G, Chcialowski A, Kraszewski A. Adv Exp Med Biol. 2013;788:229–235. doi: 10.1007/978-94-007-6627-3_33. [DOI] [PubMed] [Google Scholar]
  • 19.Zamora JLR, Aguilar HC. Methods. 2018;134–135:87–97. doi: 10.1016/j.ymeth.2017.12.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Stern D, Pauly D, Zydek M, Miller L, Piesker J, Laue M, Lisdat F, Dorner MB, Dorner BG, Nitsche A. PLoS ONE. 2016;11:e0150110. doi: 10.1371/journal.pone.0150110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Lee KH, Zeng H. Anal Chem. 2017;89:12743–12748. doi: 10.1021/acs.analchem.7b02862. [DOI] [PubMed] [Google Scholar]
  • 22.Freeman B, Lester S, Mills L, Rasheed MAU, Moye S, Abiona O, Hutchinson GB, Morales-Betoulle M, Krapinunaya I, Gibbons A, Chiang C-F, Cannon D, Klena J, Johnson JA, Owen SM, Graham BS, Corbett KS, Thornburg NJ. BioRxiv, 2020
  • 23.Zhou Y, Wu Y, Ding L, Huang X, Xiong Y. TrAC Trends Anal Chem. 2021;145:116452. doi: 10.1016/j.trac.2021.116452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Storch GA. Clin Infect Dis. 2000;31:739–751. doi: 10.1086/314015. [DOI] [PubMed] [Google Scholar]
  • 25.Zhu H, Fohlerová Z, Pekárek J, Basova E, Neužil P. Biosens Bioelectron. 2020;153:112041. doi: 10.1016/j.bios.2020.112041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Shin JH. Nucleic acid extraction techniques. In: Tang YW, Stratton C, editors. Advanced Techniques in Diagnostic Microbiology. Boston: Springer; 2013. pp. 209–225. [Google Scholar]
  • 27.Read SJ, Burnett D, Fink CG. J Clin Pathol. 2000;53:502–506. doi: 10.1136/jcp.53.7.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Santiago GA, Vázquez J, Courtney S, Matías KY, Andersen LE, Colón C, Butler AE, Roulo R, Bowzard J, Villanueva JM, Muñoz-Jordan JL. Nat Commun. 2018;9:1391. doi: 10.1038/s41467-018-03772-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kashir J, Yaqinuddin A. Med Hypotheses. 2020;141:109786. doi: 10.1016/j.mehy.2020.109786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kunze A, Dilcher M, Abd El Wahed A, Hufert F, Niessner R, Seidel M. Anal Chem. 2016;88:898–905. doi: 10.1021/acs.analchem.5b03540. [DOI] [PubMed] [Google Scholar]
  • 31.Ramalingam N, San TC, Kai TJ, Mak MYM, Gong HQ. Microfluid Nanofluid. 2009;7:325. doi: 10.1007/s10404-008-0378-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. Nature. 2017;550:345–353. doi: 10.1038/nature24286. [DOI] [PubMed] [Google Scholar]
  • 33.Houldcroft CJ, Beale MA, Breuer J. Nat Rev Microbiol. 2017;15:183–192. doi: 10.1038/nrmicro.2016.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Briese T, Kapoor A, Mishra N, Jain K, Kumar A, Jabado OJ, Lipkin WI. mBio. 2015;6:e01491. doi: 10.1128/mBio.01491-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Ding X, Yin K, Li Z, Lalla RV, Ballesteros E, Sfeir MM, Liu C. Nat Commun. 2020;11:4711. doi: 10.1038/s41467-020-18575-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Ai JW, Zhang Y, Zhang HC, Xu T, Zhang WH. Emerging Microbes Infects. 2020;9:597–600. doi: 10.1080/22221751.2020.1738905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Shen Z, Xiao Y, Kang L, Ma W, Shi L, Zhang L, Zhou Z, Yang J, Zhong J, Yang D, Guo L, Zhang G, Li H, Xu Y, Chen M, Gao Z, Wang J, Ren L, Li M. Clin Infect Dis. 2020;71:713–720. doi: 10.1093/cid/ciaa203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Yan C, Cui J, Huang L, Du B, Chen L, Xue G, Li S, Zhang W, Zhao L, Sun Y, Yao H, Li N, Zhao H, Feng Y, Liu S, Zhang Q, Liu D, Yuan J. Clin Microbiol Infect. 2020;26:773–779. doi: 10.1016/j.cmi.2020.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Rauch JN, Valois E, Solley SC, Braig F, Lach RS, Audouard M, Ponce-Rojas JC, Costello MS, Baxter NJ, Kosik KS, Arias C, Acosta-Alvear D, Wilson MZ. J Clin Microbiol. 2021;59:e02402–20. doi: 10.1128/JCM.02402-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Lucia C, Federico P-B, Alejandra GC. BioRxiv, 2020, doi: 10.1101/2020.02.29.971127
  • 41.Seo G, Lee G, Kim MJ, Baek SH, Choi M, Ku KB, Lee CS, Jun S, Park D, Kim HG, Kim SJ, Lee JO, Kim BT, Park EC, Kim SI. ACS Nano. 2020;14:5135–5142. doi: 10.1021/acsnano.0c02823. [DOI] [PubMed] [Google Scholar]
  • 42.Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. Science. 2020;368:489–493. doi: 10.1126/science.abb3221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Diao B, Wen K, Chen J, Liu Y, Yuan Z, Han C, Chen J, Pan Y, Chen L, Dan Y, Wang J, Chen Y, Deng G, Zhou H, Wu Y. MedRxiv, 2020
  • 44.Ihling C, Tänzler D, Hagemann S, Kehlen A, Hüttelmaier S, Arlt C, Sinz A. J Proteome Res. 2020;19:4389–4392. doi: 10.1021/acs.jproteome.0c00280. [DOI] [PubMed] [Google Scholar]
  • 45.Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, Sun R, Wang Y, Hu B, Chen W, Zhang Y, Wang J, Huang B, Lin Y, Yang J, Cai W, Wang X, Cheng J, Chen Z, Sun K, Pan W, Zhan Z, Chen L, Ye F. J Med Virol. 2020;92:1518–1524. doi: 10.1002/jmv.25727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S, Yuen KY. Emerging Microbes Infects. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Zhang H. ACS Nano. 2015;9:9451–9469. doi: 10.1021/acsnano.5b05040. [DOI] [PubMed] [Google Scholar]
  • 48.Chen W, Yan L, Bangal PR. Curr Alzheimer Resbon. 2010;48:1146–1152. [Google Scholar]
  • 49.Lawal AT. Biosens Bioelectron. 2018;106:149–178. doi: 10.1016/j.bios.2018.01.030. [DOI] [PubMed] [Google Scholar]
  • 50.Perumal Veeramalai C, Li F, Xu H, Kim TW, Guo T. RSC Adv. 2015;5:57666–57670. doi: 10.1039/C5RA07478A. [DOI] [Google Scholar]
  • 51.Wu T, Zhang Y, Wei D, Wang X, Yan T, Du B, Wei Q. Sens Actuat B-Chem. 2018;256:812–819. doi: 10.1016/j.snb.2017.10.023. [DOI] [Google Scholar]
  • 52.Sun B, Dong J, Cui L, Feng T, Zhu J, Liu X, Ai S. Biosens Bioelectron. 2019;124–125:1–7. doi: 10.1016/j.bios.2018.09.100. [DOI] [PubMed] [Google Scholar]
  • 53.Wang Y, Hu Y, He Q, Yan J, Xiong H, Wen N, Cai S, Peng D, Liu Y, Liu Z. Biosens Bioelectron. 2020;169:112604. doi: 10.1016/j.bios.2020.112604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Zhu X, Zhang Y, Liu M, Liu Y. Biosens Bioelectron. 2021;171:112730. doi: 10.1016/j.bios.2020.112730. [DOI] [PubMed] [Google Scholar]
  • 55.Wu S, He Q, Tan C, Wang Y, Zhang H. Small. 2013;9:1160–1172. doi: 10.1002/smll.201202896. [DOI] [PubMed] [Google Scholar]
  • 56.Zhang S, Zhang D, Zhang X, Shang D, Xue Z, Shan D, Lu X. Anal Chem. 2017;89:3538–3544. doi: 10.1021/acs.analchem.6b04805. [DOI] [PubMed] [Google Scholar]
  • 57.Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M. Chem Soc Rev. 2021;50:619–657. doi: 10.1039/D0CS00150C. [DOI] [PubMed] [Google Scholar]
  • 58.Ge Y, Shi Z, Tan C, Chen Y, Cheng H, He Q, Zhang H. Chem. 2020;6:1237–1253. doi: 10.1016/j.chempr.2020.04.004. [DOI] [Google Scholar]
  • 59.Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H. Chem Rev. 2017;117:6225–6331. doi: 10.1021/acs.chemrev.6b00558. [DOI] [PubMed] [Google Scholar]
  • 60.Lai Z, He Q, Tran TH, Repaka DVM, Zhou DD, Sun Y, Xi S, Li Y, Chaturvedi A, Tan C, Chen B, Nam GH, Li B, Ling C, Zhai W, Shi Z, Hu D, Sharma V, Hu Z, Chen Y, Zhang Z, Yu Y, Renshaw Wang X, Ramanujan RV, Ma Y, Hippalgaonkar K, Zhang H. Nat Mater. 2021;20:1113–1120. doi: 10.1038/s41563-021-00971-y. [DOI] [PubMed] [Google Scholar]
  • 61.Yu Y, Nam GH, He Q, Wu XJ, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran FR, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H. Nat Chem. 2018;10:638–643. doi: 10.1038/s41557-018-0035-6. [DOI] [PubMed] [Google Scholar]
  • 62.Wu S, Zeng Z, He Q, Wang Z, Wang SJ, Du Y, Yin Z, Sun X, Chen W, Zhang H. Small. 2012;8:2264–2270. doi: 10.1002/smll.201200044. [DOI] [PubMed] [Google Scholar]
  • 63.Nasir MZM, Mayorga-Martinez CC, Sofer Z, Pumera M. ACS Nano. 2017;11:5774–5784. doi: 10.1021/acsnano.7b01364. [DOI] [PubMed] [Google Scholar]
  • 64.Wen W, Song Y, Yan X, Zhu C, Du D, Wang S, Asiri AM, Lin Y. Mater Today. 2018;21:164–177. doi: 10.1016/j.mattod.2017.09.001. [DOI] [Google Scholar]
  • 65.He Q, Wu S, Yin Z, Zhang H. Chem Sci. 2012;3:1764–1772. doi: 10.1039/c2sc20205k. [DOI] [Google Scholar]
  • 66.Mao S, Chang J, Pu H, Lu G, He Q, Zhang H, Chen J. Chem Soc Rev. 2017;46:6872–6904. doi: 10.1039/C6CS00827E. [DOI] [PubMed] [Google Scholar]
  • 67.Park H, Han G, Lee SW, Lee H, Jeong SH, Naqi M, AlMutairi AA, Kim YJ, Lee J, Kim WJ, Kim S, Yoon Y, Yoo G. ACS Appl Mater Interfaces. 2017;9:43490–43497. doi: 10.1021/acsami.7b14479. [DOI] [PubMed] [Google Scholar]
  • 68.Huang YC, Liu Y, Ma C, Cheng HC, He Q, Wu H, Wang C, Lin CY, Huang Y, Duan X. Nat Electron. 2020;3:59–69. doi: 10.1038/s41928-019-0356-5. [DOI] [Google Scholar]
  • 69.He Q, Wu S, Gao S, Cao X, Yin Z, Li H, Chen P, Zhang H. ACS Nano. 2011;5:5038–5044. doi: 10.1021/nn201118c. [DOI] [PubMed] [Google Scholar]
  • 70.Mohanty N, Berry V. Nano Lett. 2008;8:4469–4476. doi: 10.1021/nl802412n. [DOI] [PubMed] [Google Scholar]
  • 71.Liu F, Kim YH, Cheon DS, Seo TS. Sens Actuat B-Chem. 2013;186:252–257. doi: 10.1016/j.snb.2013.05.097. [DOI] [Google Scholar]
  • 72.Chen Y, Ren R, Pu H, Guo X, Chang J, Zhou G, Mao S, Kron M, Chen J. Sci Rep. 2017;7:10974. doi: 10.1038/s41598-017-11387-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Maity A, Sui X, Jin B, Pu H, Bottum KJ, Huang X, Chang J, Zhou G, Lu G, Chen J. Anal Chem. 2018;90:14230–14238. doi: 10.1021/acs.analchem.8b03226. [DOI] [PubMed] [Google Scholar]
  • 74.Jin X, Zhang H, Li YT, Xiao MM, Zhang ZL, Pang DW, Wong G, Zhang ZY, Zhang GJ. Microchim Acta. 2019;186:223. doi: 10.1007/s00604-019-3256-5. [DOI] [PubMed] [Google Scholar]
  • 75.Zhang X, Qi Q, Jing Q, Ao S, Zhang Z, Ding M, Wu M, Liu K, Wang W, Ling Y. arXiv preprint, arxiv: 2003.12529, 2020
  • 76.Hideshima S, Hayashi H, Hinou H, Nambuya S, Kuroiwa S, Nakanishi T, Momma T, Nishimura SI, Sakoda Y, Osaka T. Sci Rep. 2019;9:11616. doi: 10.1038/s41598-019-48076-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Kwon J, Lee Y, Lee T, Ahn JH. Anal Chem. 2020;92:5524–5531. doi: 10.1021/acs.analchem.0c00348. [DOI] [PubMed] [Google Scholar]
  • 78.Roberts A, Chauhan N, Islam S, Mahari S, Ghawri B, Gandham RK, Majumdar SS, Ghosh A, Gandhi S. Sci Rep. 2020;10:14546. doi: 10.1038/s41598-020-71591-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Aspermair P, Mishyn V, Bintinger J, Happy H, Bagga K, Subramanian P, Knoll W, Boukherroub R, Szunerits S. Anal Bioanal Chem. 2021;413:779–787. doi: 10.1007/s00216-020-02879-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Islam S, Shukla S, Bajpai VK, Han YK, Huh YS, Kumar A, Ghosh A, Gandhi S. Biosens Bioelectron. 2019;126:792–799. doi: 10.1016/j.bios.2018.11.041. [DOI] [PubMed] [Google Scholar]
  • 81.Chan C, Shi J, Fan Y, Yang M. Sens Actuat B-Chem. 2017;251:927–933. doi: 10.1016/j.snb.2017.05.147. [DOI] [Google Scholar]
  • 82.Sarkar D, Liu W, Xie X, Anselmo AC, Mitragotri S, Banerjee K. ACS Nano. 2014;8:3992–4003. doi: 10.1021/nn5009148. [DOI] [PubMed] [Google Scholar]
  • 83.Liu J, Chen X, Wang Q, Xiao M, Zhong D, Sun W, Zhang G, Zhang Z. Nano Lett. 2019;19:1437–1444. doi: 10.1021/acs.nanolett.8b03818. [DOI] [PubMed] [Google Scholar]
  • 84.Fathi-Hafshejani P, Azam N, Wang L, Kuroda MA, Hamilton MC, Hasim S, Mahjouri-Samani M. ACS Nano. 2021;15:11461–11469. doi: 10.1021/acsnano.1c01188. [DOI] [PubMed] [Google Scholar]
  • 85.Lu C, Liu Y, Ying Y, Liu J. Langmuir. 2017;33:630–637. doi: 10.1021/acs.langmuir.6b04502. [DOI] [PubMed] [Google Scholar]
  • 86.Nagar B, Balsells M, de la Escosura-Muñiz A, Gomez-Romero P, Merkoçi A. Biosens Bioelectron. 2019;129:238–244. doi: 10.1016/j.bios.2018.09.073. [DOI] [PubMed] [Google Scholar]
  • 87.Li J, Li Y, Zhai X, Cao Y, Zhao J, Tang Y, Han K. Electrochem Commun. 2020;110:106601. doi: 10.1016/j.elecom.2019.106601. [DOI] [Google Scholar]
  • 88.Gong Q, Han H, Yang H, Zhang M, Sun X, Liang Y, Liu Z, Zhang W, Qiao J. J Materiomics. 2019;5:313–319. doi: 10.1016/j.jmat.2019.03.004. [DOI] [Google Scholar]
  • 89.Xiang Q, Huang J, Huang H, Mao W, Ye Z. RSC Adv. 2018;8:1820–1825. doi: 10.1039/C7RA11945C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Wang T, Zhu R, Zhuo J, Zhu Z, Shao Y, Li M. Anal Chem. 2014;86:12064–12069. doi: 10.1021/ac5027786. [DOI] [PubMed] [Google Scholar]
  • 91.Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K. Biosens Bioelectron. 2015;64:386–391. doi: 10.1016/j.bios.2014.09.030. [DOI] [PubMed] [Google Scholar]
  • 92.Liu X, Shuai HL, Liu YJ, Huang KJ. Sens Actuat B-Chem. 2016;235:603–613. doi: 10.1016/j.snb.2016.05.132. [DOI] [Google Scholar]
  • 93.Singhal C, Khanuja M, Chaudhary N, Pundir CS, Narang J. Sci Rep. 2018;8:7734. doi: 10.1038/s41598-018-25824-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Li F, Li Y, Feng J, Gao Z, Lv H, Ren X, Wei Q. Biosens Bioelectron. 2018;100:512–518. doi: 10.1016/j.bios.2017.09.048. [DOI] [PubMed] [Google Scholar]
  • 95.Giang H, Pali M, Fan L, Suni II. Electroanalysis. 2019;31:957–965. doi: 10.1002/elan.201800845. [DOI] [Google Scholar]
  • 96.Tian J. Int J Electrochem Sci. 2017;12:2658–2668. doi: 10.20964/2017.04.30. [DOI] [Google Scholar]
  • 97.Anik Ü, Tepeli Y, Sayhi M, Nsiri J, Diouani MF. Analyst. 2018;143:150–156. doi: 10.1039/C7AN01537B. [DOI] [PubMed] [Google Scholar]
  • 98.Gao Z, Li Y, Zhang X, Feng J, Kong L, Wang P, Chen Z, Dong Y, Wei Q. Biosens Bioelectron. 2018;102:189–195. doi: 10.1016/j.bios.2017.11.032. [DOI] [PubMed] [Google Scholar]
  • 99.Singh R, Hong S, Jang J. Sci Rep. 2017;7:42771. doi: 10.1038/srep42771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Huang J, Xie Z, Huang Y, Xie L, Luo S, Fan Q, Zeng T, Zhang Y, Wang S, Zhang M, Xie Z, Deng X. Sci Rep. 2020;10:13869. doi: 10.1038/s41598-020-70877-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Su S, Han X, Lu Z, Liu W, Zhu D, Chao J, Fan C, Wang L, Song S, Weng L, Wang L. ACS Appl Mater Interfaces. 2017;9:12773–12781. doi: 10.1021/acsami.7b01141. [DOI] [PubMed] [Google Scholar]
  • 102.Li X, Wang Y, Zhang X, Gao Y, Sun C, Ding Y, Feng F, Jin W, Yang G. Microchim Acta. 2020;187:217. doi: 10.1007/s00604-020-4166-2. [DOI] [PubMed] [Google Scholar]
  • 103.Zhou D, Wang M, Dong J, Ai S. Electrochim Acta. 2016;205:95–101. doi: 10.1016/j.electacta.2016.04.101. [DOI] [Google Scholar]
  • 104.Liu C, Dong J, Ning S, Hou J, Waterhouse GIN, Cheng Z, Ai S. Microchim Acta. 2018;185:423. doi: 10.1007/s00604-018-2930-3. [DOI] [PubMed] [Google Scholar]
  • 105.Zhang H, Zhang H, Aldalbahi A, Zuo X, Fan C, Mi X. Biosens Bioelectron. 2017;89:96–106. doi: 10.1016/j.bios.2016.07.030. [DOI] [PubMed] [Google Scholar]
  • 106.Wen J, Li W, Li J, Tao B, Xu Y, Li H, Lu A, Sun S. Sens Actuat B-Chem. 2016;227:655–659. doi: 10.1016/j.snb.2016.01.036. [DOI] [Google Scholar]
  • 107.Waiwijit U, Phokaratkul D, Kampeera J, Lomas T, Wisitsoraat A, Kiatpathomchai W, Tuantranont A. J Biotechnol. 2015;212:44–49. doi: 10.1016/j.jbiotec.2015.08.003. [DOI] [PubMed] [Google Scholar]
  • 108.Kong RM, Ding L, Wang Z, You J, Qu F. Anal Bioanal Chem. 2015;407:369–377. doi: 10.1007/s00216-014-8267-9. [DOI] [PubMed] [Google Scholar]
  • 109.Singh P, Gupta R, Sinha M, Kumar R, Bhalla V. Microchim Acta. 2016;183:1501–1506. doi: 10.1007/s00604-016-1762-2. [DOI] [Google Scholar]
  • 110.Kenry, Geldert A, Zhang X, Zhang H, Lim CT. ACS Sens. 2016;1:1315–1321. doi: 10.1021/acssensors.6b00449. [DOI] [Google Scholar]
  • 111.Oudeng G, Au M, Shi J, Wen C, Yang M. ACS Appl Mater Interfaces. 2018;10:350–360. doi: 10.1021/acsami.7b18102. [DOI] [PubMed] [Google Scholar]
  • 112.Achadu OJ, Takemura K, Khoris IM, Park EY. Sens Actuat B-Chem. 2020;321:128494. doi: 10.1016/j.snb.2020.128494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Peng X, Zhang Y, Lu D, Guo Y, Guo S. Sens Actuat B-Chem. 2019;286:222–229. doi: 10.1016/j.snb.2019.01.158. [DOI] [Google Scholar]
  • 114.Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus MS, Zhang J, Liu Z. Nano Lett. 2010;10:553–561. doi: 10.1021/nl903414x. [DOI] [PubMed] [Google Scholar]
  • 115.Xu W, Ling X, Xiao J, Dresselhaus MS, Kong J, Xu H, Liu Z, Zhang J. Proc Natl Acad Sci USA. 2012;109:9281–9286. doi: 10.1073/pnas.1205478109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Ling X, Fang W, Lee YH, Araujo PT, Zhang X, Rodriguez-Nieva JF, Lin Y, Zhang J, Kong J, Dresselhaus MS. Nano Lett. 2014;14:3033–3040. doi: 10.1021/nl404610c. [DOI] [PubMed] [Google Scholar]
  • 117.Jiang J, Zou J, Wee ATS, Zhang W. Sci Rep. 2016;6:34599. doi: 10.1038/srep34599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Li Z, Jiang S, Xu S, Zhang C, Qiu H, Chen P, Gao S, Man B, Yang C, Liu M. J Alloys Compd. 2016;666:412–418. doi: 10.1016/j.jallcom.2016.01.126. [DOI] [Google Scholar]
  • 119.Sarycheva A, Makaryan T, Maleski K, Satheeshkumar E, Melikyan A, Minassian H, Yoshimura M, Gogotsi Y. J Phys Chem C. 2017;121:19983–19988. doi: 10.1021/acs.jpcc.7b08180. [DOI] [Google Scholar]
  • 120.He S, Liu KK, Su S, Yan J, Mao X, Wang D, He Y, Li LJ, Song S, Fan C. Anal Chem. 2012;84:4622–4627. doi: 10.1021/ac300577d. [DOI] [PubMed] [Google Scholar]
  • 121.Yang L, Zhen SJ, Li YF, Huang CZ. Nanoscale. 2018;10:11942–11947. doi: 10.1039/C8NR02820F. [DOI] [PubMed] [Google Scholar]
  • 122.Achadu OJ, Abe F, Suzuki T, Park EY. ACS Appl Mater Interfaces. 2020;12:43522–43534. doi: 10.1021/acsami.0c14729. [DOI] [PubMed] [Google Scholar]
  • 123.Wong WR, Sekaran SD, Mahamd Adikan FR, Berini P. Biosens Bioelectron. 2016;78:132–139. doi: 10.1016/j.bios.2015.11.030. [DOI] [PubMed] [Google Scholar]
  • 124.Omar NAS, Fen YW, Abdullah J, Sadrolhosseini AR, Mustapha Kamil Y, Fauzi NIM, Hashim HS, Mahdi MA. Nanomaterials. 2020;10:569. doi: 10.3390/nano10030569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Omar NAS, Fen YW, Abdullah J, Kamil YM, Daniyal WMEMM, Sadrolhosseini AR, Mahdi MA. Sci Rep-Uk. 2020;10:1–15. doi: 10.1038/s41598-019-56847-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Omar NAS, Fen YW, Abdullah J, Zaid MHM, Daniyal WMEMM, Mahdi MA. Optics Laser Tech. 2019;114:204–208. doi: 10.1016/j.optlastec.2019.01.038. [DOI] [Google Scholar]
  • 127.Chiu NF, Fan SY, Yang CD, Huang TY. Biosens Bioelectron. 2017;89:370–376. doi: 10.1016/j.bios.2016.06.073. [DOI] [PubMed] [Google Scholar]
  • 128.Chiu NF, Lin TL. Talanta. 2018;185:174–181. doi: 10.1016/j.talanta.2018.03.073. [DOI] [PubMed] [Google Scholar]
  • 129.Nie W, Wang Q, Yang X, Zhang H, Li Z, Gao L, Zheng Y, Liu X, Wang K. Anal Chim Acta. 2017;993:55–62. doi: 10.1016/j.aca.2017.09.015. [DOI] [PubMed] [Google Scholar]
  • 130.Zhan L, Li CM, Wu WB, Huang CZ. Chem Commun. 2014;50:11526–11528. doi: 10.1039/C4CC05155F. [DOI] [PubMed] [Google Scholar]
  • 131.Zhang YW, Liu WS, Chen JS, Niu HL, Mao CJ, Jin BK. Sens Actuat B-Chem. 2020;321:128456. doi: 10.1016/j.snb.2020.128456. [DOI] [Google Scholar]
  • 132.Liu Y, Nie Y, Wang M, Zhang Q, Ma Q. Biosens Bioelectron. 2020;148:111823. doi: 10.1016/j.bios.2019.111823. [DOI] [PubMed] [Google Scholar]
  • 133.Wells DB, Belkin M, Comer J, Aksimentiev A. Nano Lett. 2012;12:4117–4123. doi: 10.1021/nl301655d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Adv Mater. 2018;30:1704680. doi: 10.1002/adma.201704680. [DOI] [PubMed] [Google Scholar]
  • 135.Chen W, Liu GC, Ouyang J, Gao MJ, Liu B, Zhao YD. Sci China Chem. 2017;60:721–729. doi: 10.1007/s11426-016-9016-5. [DOI] [Google Scholar]
  • 136.Crick CR, Sze JYY, Rosillo-Lopez M, Salzmann CG, Edel JB. ACS Appl Mater Interfaces. 2015;7:18188–18194. doi: 10.1021/acsami.5b06212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Shankla M, Aksimentiev A. ACS Appl Mater Interfaces. 2020;12:26624–26634. doi: 10.1021/acsami.0c04523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Graf M, Lihter M, Altus D, Marion S, Radenovic A. Nano Lett. 2019;19:9075–9083. doi: 10.1021/acs.nanolett.9b04180. [DOI] [PubMed] [Google Scholar]
  • 139.Danda G, Masih Das P, Chou YC, Mlack JT, Parkin WM, Naylor CH, Fujisawa K, Zhang T, Fulton LB, Terrones M, Johnson ATC, Drndic M. ACS Nano. 2017;11:1937–1945. doi: 10.1021/acsnano.6b08028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA. Nature. 2010;467:190–193. doi: 10.1038/nature09379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Garaj S, Liu S, Golovchenko JA, Branton D. Proc Natl Acad Sci USA, 2013, 110: 12192–12196 [DOI] [PMC free article] [PubMed]
  • 142.Arima A, Harlisa IH, Yoshida T, Tsutsui M, Tanaka M, Yokota K, Tonomura W, Yasuda J, Taniguchi M, Washio T, Okochi M, Kawai T. J Am Chem Soc. 2018;140:16834–16841. doi: 10.1021/jacs.8b10854. [DOI] [PubMed] [Google Scholar]
  • 143.Arima A, Tsutsui M, Harlisa IH, Yoshida T, Tanaka M, Yokota K, Tonomura W, Taniguchi M, Okochi M, Washio T, Kawai T. Sci Rep. 2018;8:16305. doi: 10.1038/s41598-018-34665-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Arima A, Tsutsui M, Washio T, Baba Y, Kawai T. Anal Chem. 2021;93:215–227. doi: 10.1021/acs.analchem.0c04353. [DOI] [PubMed] [Google Scholar]
  • 145.Darvish A, Lee JS, Peng B, Saharia J, VenkatKalyana Sundaram R, Goyal G, Bandara N, Ahn CW, Kim J, Dutta P, Chaiken I, Kim MJ. Electrophoresis. 2019;40:776–783. doi: 10.1002/elps.201800311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Oh S, Lee MK, Chi SW. ACS Sens. 2019;4:2849–2853. doi: 10.1021/acssensors.9b01558. [DOI] [PubMed] [Google Scholar]
  • 147.Barati Farimani A, Heiranian M, Min K, Aluru NR. J Phys Chem Lett. 2017;8:1670–1676. doi: 10.1021/acs.jpclett.7b00385. [DOI] [PubMed] [Google Scholar]
  • 148.Qi H, Sun B, Dong J, Cui L, Feng T, Ai S. Sens Actuat B-Chem. 2019;285:42–48. doi: 10.1016/j.snb.2019.01.028. [DOI] [Google Scholar]
  • 149.Li PP, Liu XP, Mao CJ, Jin BK, Zhu JJ. Anal Chim Acta. 2019;1048:42–49. doi: 10.1016/j.aca.2018.09.063. [DOI] [PubMed] [Google Scholar]
  • 150.Chen Y, Lai Z, Zhang X, Fan Z, He Q, Tan C, Zhang H. Nat Rev Chem. 2020;4:243–256. doi: 10.1038/s41570-020-0173-4. [DOI] [PubMed] [Google Scholar]

Articles from Science China. Chemistry are provided here courtesy of Nature Publishing Group

RESOURCES