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1  |  INTRODUC TION

Structurally, the palate is divided into the anterior bony hard pal-
ate and the posterior soft palate. Based on embryological origins, 
the palate comprises primary and secondary palates (Li et al., 2017). 
The primary palate extends from the premaxillary bone to the inci-
sive foramen. The secondary palate consists of the remaining hard 
palate and the muscular soft palate. The secondary palate-derived 

hard palate comprises the palatal process of the maxilla (ppmx) and 
the palatal process of the palatine (ppp) (Xu et al., 2018) and sep-
arates the oral cavity from the nasal cavity, ensuring normal swal-
lowing, speech, and hearing (Boyce et al., 2018). The hard palate 
represents an attractive target for tissue regeneration engineering, 
which requires an accurate understanding of morphogenesis and the 
molecular mechanism of palatal osteogenesis. Studies on palatal os-
teogenesis, however, are quite few and limited (Bush & Jiang, 2012). 
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Abstract
Hard palate consists anteriorly of the palatal process of the maxilla (ppmx) and pos-
teriorly of the palatal process of the palatine (ppp). Currently, palatal osteogenesis is 
receiving increasing attention. This is the first study to provide an overview of the 
osteogenesis process of the mouse hard palate. We found that the period in which 
avascular mesenchymal condensation becomes a vascularized bone structure corre-
sponds to embryonic day (E) 14.5 to E16.5 in the hard palate. The ppmx and ppp differ 
remarkably in morphology and molecular respects during osteogenesis. Osteoclasts 
in the ppmx and ppp are heterogeneous. There was a multinucleated giant osteoclast 
on the bone surface at the lateral-nasal side of the ppmx, while osteoclasts in the ppp 
were more abundant and adjacent to blood vessels but were smaller and had fewer 
nuclei. In addition, bone remodeling in the hard palate was asymmetric and exclusively 
occurred on the nasal side of the hard palate at E18.5. During angiogenesis, CD31-
positive endothelial cells were initially localized in the surrounding of palatal mesen-
chymal condensation and then invaded the condensation in a sprouting fashion. At 
the transcriptome level, we found 78 differentially expressed genes related to osteo-
genesis and angiogenesis between the ppmx and ppp. Fifty-five related genes were 
up/downregulated from E14.5 to E16.5. Here, we described the morphogenesis and 
the heterogeneity in the osteogenic and angiogenic genes profiles of the ppmx and 
ppp, which are significant for subsequent studies of normal and abnormal subjects.
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Osteogenesis is a complicated process, but only early osteoblast dif-
ferentiation is discussed in current studies (Baek et al., 2011; Pauws 
et al., 2009; Wang et al., 2020; Xu et al., 2018, 2019). In addition, 
the investigated periods of early osteoblast differentiation differ in 
multiple publications, making it difficult to understand hard palate 
development.

It is known that the hard palate forms through intramembranous 
ossification (Percival & Richtsmeier, 2013; Santagati & Rijli, 2003), 
but no publication has described the normal osteogenesis process 
of the hard palate thus far. Intramembranous ossification includes 
the pre-osteogenic stage and post-condensation stage (Veselá et al., 
2019). In the pre-osteogenic phage, mesenchymal cells condense; 
this occurrence has been shown in several studies (Baek et al., 
2011; Goodwin et al., 2020; Li et al., 2021; Wang et al., 2020). In the 
post-condensation period, osteogenesis and angiogenesis dominate 
(Grosso et al., 2017), covering bone cells differentiation, extracellu-
lar matrix (ECM) assembly and mineralization, and vascularization. 
Osteogenesis is controlled by multiple genes. Runx2  governs the 
osteogenic fate of multipotent mesenchymal stromal cells (Pratap 
et al., 2003). Osx, downstream of Runx2, is involved in the full dif-
ferentiation of osteoblasts (Nakashima et al., 2002). Preosteoblasts 
undergo three well-characterized differentiation stages to become 
mature osteoblasts (Rutkovskiy et al., 2016; Stein et al., 2004). First-
stage osteoblasts predominantly proliferate and express Fn, colla-
gens, and Opn. In the second stage, osteoblasts exit the cell cycle 
and start differentiation, which is accompanied by the expression of 
alkaline phosphatase and collagen as well as the maturation of bone 
ECM. In the third stage, osteoblasts mature and secrete abundant 
Ocn (Rutkovskiy et al., 2016). Although some aspects of expression 
have been published in the context of comparison to mutant mod-
els (Baek et al., 2011; Levi et al., 2011; Wang et al., 2020; Xu et al., 
2018, 2019), single studies presenting the dynamic expression of os-
teogenic genes during hard palate development are lacking. Much 
has been written on osteoclasts, but no reports have been published 
about osteoclast biology in the hard palate. Osteoclasts are of he-
matopoietic origin (Burger et al., 1982) and proceed through a series 
of differentiation stages to produce multinucleated bone-resorbing 
cells. Osteoclast lineages specifically express tartrate-resistant acid 
phosphatase (TRAP) (M S Burstone, 1959). Pertinently, osteogenesis 
is tightly coupled with angiogenesis. Endochondral angiogenesis has 
been the subject of most studies, but intramembranous angiogen-
esis is poorly understood (Percival & Richtsmeier, 2013), especially 
angiogenesis of the hard palate. Angiogenesis refers to endothelial 
cells differentiating to form new blood vessels, and CD31 is com-
monly used as a marker of endothelial cells (Rakocevic et al., 2017). 
Therefore, the expression profile of these molecular markers in the 
hard palate can be used to outline the process by which palatal mes-
enchymal condensation develops into a mineralized bone structure.

Osteogenesis and angiogenesis are controlled by multiple signal-
ing pathways. Genes expression patterns present site-specific het-
erogeneity along the anteroposterior axis of the secondary palate 
(Baek et al., 2011; Li et al., 2017; Liu et al., 2008; Pauws et al., 2009; 
Smith et al., 2012; Welsh & O'Brien, 2009; Xu et al., 2019; Yu et al., 

2005; Zhang et al., 2002). Notably, Msx1 (Zhang et al., 2002) and 
Shox2 (Xu et al., 2019; Yu et al., 2005) are specifically expressed 
in the anterior secondary palate, whereas the expression of Meox2 
and Tbx22 is restricted to the posterior palate. Bmpr1a has pref-
erential expression in the anterior secondary palate (Baek et al., 
2011). Also, Barx1 and Mn1 have a posterior-predominant expres-
sion profile within the developing secondary palate (Liu et al., 2008; 
Welsh & O'Brien, 2009). Different gene expression patterns along 
the anterior–posterior axis of the secondary palate indicate distinct 
developmental mechanisms, but the known mechanisms are still far 
from clear and warrant further investigation.

Therefore, the objective of this study was to elucidate the mor-
phogenesis process of the hard palate and identify molecular signal-
ing associated with osteogenesis and angiogenesis.

2  |  METHODS

This study was approved by the Biomedical Ethics Committee of 
Fujian Medical University (FJMU IACUC 2020-0026).

2.1  |  Micro-computed tomography analysis

Heads of embryos at embryonic day (E) 18.5 and adult mice were 
fixed in 4% paraformaldehyde and then transferred to 70% ethanol. 
A micro-computed tomography (micro-CT) system (Research Center 
of Stomatology, Guangzhou Medical University, Guangzhou, China) 
was used to scan tissue at a 12 mm thickness with 55 kV energy and 
145 mA intensity (ICT40).

2.2  |  Histology staining

Skinned heads of mice at E14.5 to E18.5 were fixed in 100% ethanol 
for 1 week, and then the calvaria and mandible were removed before 
tissues were infiltrated in 2% potassium hydroxide (KOH) solution 
for 4 h. Subsequently, tissues were incubated in Alizarin Red solution 
(1% KOH, 75 µg·ml−1 Alizarin Red-S [Sigma]) overnight. Tissues were 
then rinsed in 2% KOH solution for 1 h and finally stored in a mixture 
of 2% KOH and glycerine (1:1).

A TRAP kit (387A-1KT, Sigma, USA) and von Kossa kit (G3282, 
Solarbio, China) were used in this study.

2.3  |  Immunofluorescence staining

Primary antibodies were used as follows: Runx2 (ab192256, Abcam, 
1:300), Osx (ab22552, Abcam, 1:300), Col1 (ab34710, Abcam, 
1:1000), Opn (ab218237, Abcam, 1:500), Ocn (ab93876, Abcam, 
1:500), and CD31 (ab28364, Abcam, 1:300). The secondary anti-
bodies Alexa Fluor 488 and Alexa Fluor 594were used at a dilution 
of 1:250.
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2.4  |  Tissue separation

Timed pregnant mice were killed and soaked in 100% alcohol for 
one minute. Afterward, embryos were obtained and transferred 
to ice-cold Hanks liquid. The mandibles and skulls of the embryos 
were removed. The ppmx and ppp of E14.5 to E16.5 embryos (n = 3 
for each group) were dissected out under a stereomicroscope 
(Supplementary material 1) and then stored in RNAlater (BI, Israel) 
for RNA sequencing (RNA-seq). We compared the expression pat-
terns of osteogenic and angiogenic genes between the ppmx and 
ppp at E14.5, E15.5, and E16.5, with the ppmx groups were used as 
the control groups. We also analyzed changes in genes expression 
from E14.5 to E16.5. And there were E15.5 vs E14.5 pairwise and 
E16.5 vs E15.5 pairwise, with the E14.5 group and E15.5 group were 
used as the control groups, respectively.

3  |  RESULTS

3.1  |  Osteogenic and angiogenic evaluation of the 
ppmx and ppp

Palatal mesenchymal cells start to condense at E14.5 (Baek et al., 
2011; Goodwin et al., 2020; Li et al., 2021), and a hard palate devel-
ops at approximately E18.5. Therefore, we overviewed the osteo-
genesis and angiogenesis process of the hard palate by elucidating 
the expression patterns of corresponding markers from E14.5 to 
E18.5.

At E14.5, mesenchymal precursors of the ppp were strongly pos-
itive for Runx2 and Col1 (Figure 1D, a, a'), moderately positive for 
Osx and Opn (Figure 1D, a", a""), but negative for Ocn (Figure 1D, 
a"''). CD31-positive cells were mainly located in the loose mesen-
chyme surrounding mesenchymal condensation and started to in-
vade the primordium (Figure 2K). Also, progenitor cells of posterior 
ppmx (ppmx-p) were slightly positive for Runx2 and Col1 (Figure 1C, 
a, a') but negative for Osx, Opn, and Ocn (Figure 1C, a", a"', a"''). 
CD31-positive cells were few and scattered in the surrounding loose 
mesenchyme (Figure 2F). No markers were detected in the anterior 
ppmx (ppmx-a) primordium (data not shown).

At E15.5, the ppp calcified first (Figure 1A, b"’). In the ppp, the 
expression of Osx and Ocn increased (Figure 1D, b'', b"'’). Runx2, 
Col1, and Opn expression decreased (Figure 1D, b, b', b'"). Abundant 
CD31-positive cells invaded the ppp primordium (Figure 2L). In the 
ppmx-p, Runx2 and Col1 were strongly expressed (Figure 1C, b, b'). 
The expression of Osx was evident, while the expression of Opn was 
rare, and no Ocn was detected (Figure 1C, b'', b"', b"'’). A large num-
ber of CD31-positive cells were located around the mesenchymal 
condensation of the ppmx-p and started to invade the condensation 
(Figure 2G). Runx2 and Col1 (Figure 1B, a, a') were slightly expressed 
in the mesenchymal progenitors of the ppmx-a, and no other mark-
ers were detected.

At E16.5, the ppp extended toward the midline (Figure 1A, c", 
c"’). The ppmx-p (Figure 1A, c’, c"’) and ppmx-a (Figure 1A, c"’) were 

ossified. In the ppp, Osx, and Ocn were strongly expressed (Figure 1D, 
c", c"'’). The expression of Runx2 and Opn was decreased (Figure 1D, 
c, c"’). Abundant blood vessels were detected (Figure 2M). To illus-
trate bone remodeling in the hard palate, we conducted TRAP stain-
ing of serial sections of the hard palate. The first small mononuclear 
TRAP-positive cells were detected in the ppp at E16.5 (Figure 3A). 
In the ppmx-p, Osx and Ocn were strongly expressed (Figure 1C, 
c", c""). The expression of Opn increased (Figure 1C, c"’), while the 
expression of Runx2 and Col1 was decreased (Figure 1C, c, c’). 
CD31-positive cells invaded the ppmx-p (Figure 2H). In the ppmx-a, 
Runx2 was visibly expressed, accompanied by rich synthesis of Col1 
(Figure 1B, b, b'). In contrast, Osx and Opn were rarely expressed 
(Figure 1B, b'', b"’). CD31-positive cells were adjacent to the mesen-
chymal condensation of the ppmx-a (Figure 2C).

At E17.5, the bilateral ppps approached each other (Figure 1A, d", 
d"’), and the ppmx extended toward the primary palate (Figure 1A, d, 
d"’). The expression of osteogenic markers was decreased in the ppp 
and ppmx-p (data not shown), and blood vessels had been formed 
(Figure 2I,N). The first TRAP-positive cells in the ppmx-p were de-
tected (Figure 3B). In the ppmx-a, the expression of Runx2 and Col1 
was reduced (Figure 1B, c, c’). The expression of Osx, Opn, and Ocn 
was significantly increased (Figure 1B, c", c"’, c""). Sprouting blood 
vessels invaded the mesenchymal condensation of the ppmx-a 
(Figure 2D).

By E18.5, a blood vessel-rich bone structure had been formed in 
the hard palate (Figure 2E,J,O). Also, bone remodeling had started. 
Many TRAP-positive cells were scattered in the ppp (Figure 3F). 
Most osteoclasts are typically elliptical, with one side facing the bone 
and the other side adjacent to the blood vessels (Cappariello et al., 
2014). Compared with the oral side, osteoclasts exclusively lined on 
the bone surface of the nasal side of the ppp. In the ppmx, there 
was a single giant osteoclast lining, which had numerous nuclei, on 
the bone surface of the lateral-nasal side of the ppmx (Figure 3D,E).

Our data demonstrated that the active period in which the hard 
palate ossified and vascularized corresponded to E14.5 to E16.5.

3.2  |  Expression patterns of osteogenic and 
angiogenic genes in the hard palate

To elucidate the heterogeneity of the molecular mechanisms of pala-
tal osteogenesis along the anteroposterior axis of the secondary pal-
ate, the ppmx and ppp at E14.5 to E16.5 were collected for RNA-Seq. 
We found that the ppmx and ppp presented obvious transcriptome 
differences. Gene Ontology (GO) annotation of the differentially ex-
pressed genes (DEGs) showed that in the top 10 enrichment scores 
of biological processes, most terms of E14.5 were related to mus-
cle development, while terms at E16.5 were mainly related to the 
nervous system (Figure 4). Bone-associated terms were detected at 
E15.5 (Figure 4). Therefore, RNAs with fragments per kilobase of 
transcript per million mapped reads (fpkm) ≥1 at E15.5 were sub-
jected to GO analysis, and the results were summarized according 
to the biological processes covering bone formation, osteoblasts, 
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blood vessels, and osteoclasts (Supplementary material 2–5). The 
expression of these genes between the ppmx and ppp was then fol-
lowed by statistical analysis. Through filtering based on fold change 
(FC) ≥2 and false discovery rate (FDR) (adjusted p-value) <0.05, 78 
DEGs between the ppmx and ppp were obtained at E15.5 (Table 1). 
Most DEGs at E14.5 and E16.5 were the same with the E15.5 group 
(Supplementary material 6–7). Through |log2FC| ≥2 filtering, the 

most striking DEGs in the ppp at E15.5 were Scn10a, Col9a1, Myog, 
Tnnt2, Col2a1, Col11a2, Spp1/Opn, Dmp1, Thbs4, Myl3, Adcyap1, 
Ibsp, Tac1, Rflna, Cacna1b, Foxc2, Kazald1, Npy1r, Cthrc1, Scg2, 
Col11a1, Ramp1, and Scx, and the most striking DEGs in ppmx were 
Mir23b, Shox2, Wnt5a, Alx1, and Dnm3os.

During osteogenesis, a series of successive and overlapping events 
occurred, which were regulated by specific genes. Therefore, we 

F I G U R E  1  Osteogenesis process of the hard palate. (a) Morphogenesis of the hard palate from E14.5 to E17.5. a–d, a'–d' and a''–d", von 
Kossa staining, morphogenesis of the hard palate in the coronal view. a"'–d"', Alizarin red staining, morphogenesis of the hard palate in the 
transverse view. mx, maxilla; ppmx, palatal process of the maxilla; ppp, palatal process of the palatine. (b–d) Immunofluorescence staining, 
expression patterns of Runx2, Col1, Osx, Opn, and Ocn during palatal osteogenesis. B, ppmx-a; C, ppmx-p; D, ppp. Scale bar = 502 μm 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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compared gene expression from E14.5 to E16.5 (E15.5 vs E14.5 and 
E16.5 vs E15.5). Through FC ≥2 and FDR <0.05 filtering, 55 genes were 
found to be significantly up/downregulated in the hard palate (Table 2). 
Through |log2FC| ≥2 filtering, genes with the most striking expression 
alterations were Ltf, Dmp1, Spp1, Ibsp, Col11a2, Ifitm5, Ramp1, and 
Kazald1 in the ppmx and Foxn4, Ltf, Cma1, Myl3, and Spp1 in the ppp.

Finally, through GO annotation, we revealed the possible spe-
cific roles of the osteogenic and angiogenic genes during hard palate 
development in Tables 3–4. Thus, we have outlined the molecular 
network associated with osteogenesis and angiogenesis in the ppmx 
and ppp.

4  |  DISCUSSION

The maxillofacial region performs critical roles in daily life. Some 
maxillofacial tissues, including teeth (Catón & Tucker, 2009; Zhang 
et al., 2005), jaws (Parada & Chai, 2015; Suzuki et al., 2016; Svandova 
et al., 2020; Yuan & Chai, 2019), tongue (Parada et al., 2012), and lips 
(Jiang et al., 2006), have been extensively studied. Basic studies on 
the hard palate, however, are scarce (Baek et al., 2011; Bush & Jiang, 
2012; Pauws et al., 2009; Wang et al., 2020; Xu et al., 2018, 2019). 
The present study is the first on the normal osteogenesis and angio-
genesis of the hard palate.

F I G U R E  2  Angiogenesis process of the hard palate. (a–o) Immunofluorescence staining, expression patterns of CD-31 in the ppmx and 
ppp from E14.5 to E18.5. White dotted line, palatal processes; arrow, sprouting angiogenesis. Scale bar = 502 μm [Colour figure can be 
viewed at wileyonlinelibrary.com]

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

F I G U R E  3  Osteoclastogenesis in the hard palate. (a–f) TRAP staining, osteoclast lineage in the ppmx and ppp from E16.5 to E18.5. The 
small image in the upper right corner of each picture shows the distribution of osteoclasts on the lateral-medial and nasal-oral sides of the 
hard palate. Arrow, TRAP-positive cell. Scale bar = 502 μm [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d) (e) (f)

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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Bone defects of the hard palate are known as submucous cleft 
palate (SMCP) (Calnan, 1954), a subtype of cleft palate (Burg et al., 
2016), with a reported incidence of 1:1250 to 1:5000 (Velasco et al., 
1988; Weatherley-White et al., 1972). Knowledge of the physiology 
of the hard palate is indispensable for the etiology studies of SMCP 
(Clarke, 2008). In recent phenotypic studies, Runx2 was always used 
to assess osteoblast differentiation (Baek et al., 2011; Pauws et al., 
2009; Wang et al., 2020; Xu et al., 2019), but the presence of Runx2 
alone is not enough to sustain complete osteoblast differentiation 
(Komori, 2010), as osteoblasts still need to go through three distinct 
differentiation stages (Rutkovskiy et al., 2016). The expression pat-
terns of markers of each stage demonstrate that the main period of 
osteoblast differentiation and maturation in the hard palate corre-
sponds to E14.5 to E16.5. And the results of expression patterns of 
osteogenic genes can be used to assess the palatal osteogenesis in 
the subsequent abnormal studies. Osteoclasts are responsible for 
bone resorption (Cappariello et al., 2014). In line with the notion 
of bone site-specific osteoclast heterogeneity (Faloni et al., 2011; 
Everts et al., 2009; Goldberg et al., 2016; Perez-Amodio et al., 2006; 
Quarto et al., 2010), we found for the first time that osteoclasts of 
the ppmx and ppp showed obvious differences in cell and nuclei 
number, size, morphology, and distribution. We assume that asym-
metric bone remodeling in the hard palate is due to the expansion 
of the nasal cavity. Osteoclast heterogeneity implies differences 
in local bone remodeling and corresponding treatment strategies 
(Everts et al., 2009). Therefore, more studies are called to provide 

further insights into the detailed characteristics of the morphology 
and functions of osteoclasts in the ppmx and ppp. Pertinently, os-
teogenesis is tightly coupled with angiogenesis (Cappariello et al., 
2014). Here, we provide the first insight into the angiogenesis of 
the hard palate. In contrast to mouse limb buds (Eshkar-Oren et al., 
2009), an avascular layer of loose mesenchyme was not observed 
during vascularization of the hard palate, indicating distinct devel-
opmental mechanisms between endochondral angiogenesis and 
intramembranous angiogenesis. Intussusceptive angiogenesis, in 
which the primary blood vessel splits into two vessels through the 
transcapillary tissue pillar without endothelial cell proliferation, was 
detected during craniofacial bone development (Spiegelaere et al., 
2010). However, our histological data showed capillaries in the sur-
rounding loose mesenchyme sprouts and invaded the palatal mes-
enchymal condensation, suggesting sprouting angiogenesis (Maes 
et al., 2010) in the hard palate. This finding is further supported by 
the substantial number of genes associated with sprouting angio-
genesis shown in Table 4. Although osteogenesis is closely accompa-
nied by angiogenesis, whether variation in angiogenesis causes bone 
defects is still unknown (Brandi & Collin-Osdoby, 2006), and should 
be investigated in further studies.

Distinct gene patterns between the ppmx and ppp have been 
demonstrated (Pauws et al., 2009; Xu et al., 2019). Our RNA-seq 
analysis provided a comprehensive understanding of the molecular 
heterogeneity between the ppmx and ppp. Consistent with previ-
ous works, Shox2 (Xu et al., 2019) had a higher expression in the 

F I G U R E  4  GO annotation of the DEGs between the ppmx and ppp at E14.5 to E16.5, with the top 10 enrichment scores, in terms of 
biological process [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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ppmx, and Meox2 (Baek et al., 2011) had a higher expression in the 
ppp. However, no difference was detected in the expression of Msx1 
(Zhang et al., 2002), Bmpr1a (Baek et al., 2011) and Tbx22 (Pauws 
et al., 2009) between the ppm and ppp. Also, according to Pauws 

et al (Pauws et al., 2009), Tbx22 expression was restricted to the 
posterior secondary palate at E13.5, while we found that Tbx22 ex-
pression showed no difference between the ppm and ppp during 
E14.5 to E16.5. Bmpr1a is reported to have anterior-predominant 

TA B L E  1  DEGs associated with osteogenesis and angiogenesis between the ppmx and ppp at E15.5. |log2FC| ≥1 and –log10(padj) >1.30103  
were used as the thresholds

Symbol log2FC Padj Symbol log2FC Padj

High expression in the ppp

Scn10a 9.591499538 2.49E-12 Ifitm5 1.851754718 3.83E-13

Col9a1 6.570633904 1.96E-67 Papss2 1.837963094 5.43E-52

Myog 6.303915197 2.28E-114 Ank2 1.829135049 2.51E-42

Tnnt2 5.898981913 4.77E-93 Mgp 1.742981717 2.18E-41

Col2a1 5.744304477 0 Ehd3 1.643032172 2.23E-15

Col11a2 5.704230139 0 Isl1 1.638112603 0.027915933

Spp1 5.148137557 4.10E-247 Bmper 1.581241277 6.25E-21

Dmp1 4.991634104 1.57E-79 Akap6 1.44691446 3.78E-10

Thbs4 4.217114168 1.78E-108 Col27a1 1.439996102 1.21E-29

Myl3 4.146011115 1.17E-18 Nov 1.42649332 8.68E-22

Adcyap1 4.003542866 2.48E-15 Foxc1 1.39633194 3.59E-24

Ibsp 3.809411598 1.44E-23 Fzd9 1.38497715 7.00E-16

Tac1 3.578181803 6.07E-20 Fam20c 1.350633496 2.13E-17

Rflna 3.316821695 3.66E-37 Sema3c 1.339160102 3.51E-29

Cacna1b 3.310130619 2.48E-38 Cspg4 1.263057425 5.35E-22

Foxc2 3.004089488 4.08E-53 Sparc 1.210904981 2.57E-19

Kazald1 2.699804254 3.90E-56 Mmp9 1.202183164 5.28E-10

Npy1r 2.621082966 1.08E-12 Fgfr3 1.197479491 1.43E-18

Cthrc1 2.55430716 2.67E-115 Dlx3 1.114111316 5.02E-08

Scg2 2.48744079 1.01E-20 Gpm6b 1.105363816 2.59E-22

Col11a1 2.333644302 3.55E-103 Fap 1.061569852 2.02E-15

Ramp1 2.159554058 1.52E-29 Ctsk 1.031890629 7.04E-18

Scx 2.089468826 1.23E-30 Kcna5 1.031170175 2.08E-05

Aldh1a2 1.944167101 2.89E-50 Rspo3 1.02591278 3.76E-09

Meox2 1.914361189 1.45E-28 Penk 1.012068873 2.25E-15

High expression in the ppmx

Mir23b −5.018114542 0.000232574 F2rl1 −1.194842949 1.52E-08

Shox2 −3.199056015 1.87E-201 Osr2 −1.192260465 5.70E-21

Wnt5a −2.465423799 2.62E-60 Wnt4 −1.189283116 5.08E-25

Alx1 −2.23040588 2.52E-08 Meis1 −1.185517387 3.97E-18

Dnm3os −2.028866374 4.16E-48 Ednra −1.1643281 1.66E-14

Dsg2 −1.957744884 9.07E-43 Frem1 −1.152077166 1.11E-18

Cyp26b1 −1.828771248 1.58E-64 Lrp5 −1.122373497 3.07E-17

Cma1 −1.809241542 2.21E-07 F3 −1.122091691 5.48E-12

Spint1 −1.644091561 4.36E-26 Arid5b −1.115445376 8.75E-12

Foxn4 −1.466455897 6.94E-11 Plxnb1 −1.088087234 7.93E-32

Epha1 −1.348374277 1.15E-18 Cacna1c −1.046899968 1.19E-15

Tnc −1.308829953 9.96E-26 Mmp13 −1.035840382 0.000124128

Prrx1 −1.289753145 2.73E-36 Alx4 −1.012359884 1.84E-15

Foxf2 −1.271639053 6.64E-12 Sfrp2 −1.007554322 1.89E-19



392  |    LIAO et al.

expression in the secondary palate (Baek et al., 2011), but we agree 
that there is no difference in the expression of Bmpr1a between the 
ppmx and ppp. This expression pattern can account for the bone 
defect in both the ppmx and ppp of Bmpr1a-deficient embryos 
(Baek et al., 2011). Barx (Welsh & O'Brien, 2009) and Mn1 (Liu et al., 
2008) have posterior-predominant expression in the secondary 
palate. We found that Barx1 expression was higher in the ppp, but 

the expression of Mn1 was higher in the ppmx, and neither of these 
levels of expression was statistically significant. Mn1 acts upstream 
of Tbx22 (Liu et al., 2008), and neither differed in expression be-
tween the ppmx and ppp during the investigated period. Therefore, 
more research is needed to understand the dynamic expression 
and function of Mn1 and Tbx22 in the hard palate. Notably, Wnt5a, 
Osr2, and Mir23b in the palate (Ding et al., 2016; Li, et al., 2017) 

TA B L E  2  Alterations in the expression of genes associated with osteogenesis and angiogenesis in the hard palate from E14.5 to E16.5.

Symbol log2FC Padj Symbol log2FC Padj

Up/downregulated genes in the ppmx

E15.5 vs E14.5

Ltf* 2.15378898 0.043021091 Ctsh 1.237571711 5.64E-10

Foxn4 1.557394999 2.69E-07 Tyrobp 1.044075577 4.78E-05

Lgals3* 1.437719272 8.06E-12 Hspb1* 1.036045595 1.65E-08

Cma1* 1.36656634 4.44E-05 F2rl1 1.031570169 5.63E-06

Omd 1.334254895 0.032271601 Mmp9 -1.45320693 8.80E-25

Agt* 1.268471791 0.000317523

E16.5 vs E15.5

Dmp1 4.893081456 9.68E-18 Apoe 1.384113672 1.44E-27

Spp1 4.357012202 3.23E-23 Cma1* 1.350053063 4.40E-08

Ibsp 3.999788019 2.14E-40 Col1a1 1.303618956 1.56E-19

Ltf* 3.527561242 3.55E-60 Tmem119 1.284455644 2.40E-27

Col11a2 3.226632731 1.01E-97 Sparc 1.254426106 5.69E-24

Ifitm5 2.667139769 1.25E-52 Junb 1.219990382 1.46E-12

Ramp1 2.496575838 1.43E-37 Sp7 1.112163014 2.50E-10

Kazald1 2.333194143 7.35E-30 Ctsk 1.090241856 5.93E-20

Thbs4 1.844485995 4.16E-09 Penk 1.08660747 6.51E-18

Lgals3* 1.708034468 1.17E-23 Col1a2 1.062894677 7.00E-13

Agt* 1.558723803 5.72E-17 Ifitm1 1.022842904 4.56E-08

Hspb1* 1.515062516 3.33E-19 Cebpb 1.00611054 4.57E-10

Dlx3 1.513046123 2.24E-22 Vkorc1 1.003499791 0.000321281

Mgp 1.454681049 2.67E-32 Sox11 -1.001192676 6.97E-10

Cd36 1.429263433 1.23E-10 Shox2 -1.03305727 1.11E-20

Cthrc1 1.429221534 2.22E-19 Asb4 -1.414681717 5.62E-18

Up/downregulated genes in the ppp

E15.5 vs E14.5

Foxn4 3.660115444 7.28E-13 Thy1 1.227010303 9.04E-05

Ltf* 3.479635311 8.54E-12 Col11a1 1.14810264 0.025309416

Cma1* 2.310002924 0.000108205 Klf5 1.117954649 5.61E-05

Myl3 2.158833966 1.39E-08 Hspb1 1.115826523 5.41E-09

Spp1 2.000435645 0.005462396 Wnt7b 1.113565905 9.92E-07

Agt 1.75550345 1.76E-07 Ctsh 1.113400904 5.23E-11

Nov 1.545673867 7.74E-18 Pf4 1.072620078 0.000520339

Dmp1 1.43026483 0.049514675 Dnm3os -1.607919034 4.82E-15

Lgals3 1.326787269 0.000318359

E16.5 vs E15.5

Cma1* 1.561561868 0.044229736 Ltf* 1.662509957 1.11E-05

Note: Genes detected in both the E15.5 vs E14.5 group and E16.5 vs E15.5 group are marked with an asterisk.
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had higher expression in the ppmx. The anterior secondary palate 
is thought to be more important because there are numerous spe-
cific genes (Smith et al., 2012), but we found 50 DGEs in the ppp 
and 28 DEGs in the ppmx. The collagens of the secondary palate 
(Logan et al., 2020), including Col2a1, Col9a1, Col11a1, Col11a2, 
and Col27a1, are mainly expressed in the ppp. Furthermore, anno-
tation of DEGs in the ppp through the NCBI Gene Database showed 
that Spp1, Dmp1, Ibsp, Kazald1, Ifitm5, Mgp, Bmper, Fad9, Fam20c, 
Sparc, Mmp9, Fgfr3, Gpm6b, Ctsk, and Rspo3 have a role in osteo-
genesis and that Ctrc1 acts on angiogenesis. Retinoic acid regulates 
the expression of Spp1 in the palate (Peng et al., 2020), and Aldh1a2, 
which is highly expressed in the ppp, can promote the synthesis of 
retinoic acid (Shabtai et al., 2016), suggesting the possible role of 
Aldh1a2 in osteogenesis in the ppp. Regarding ppmx DEGs, Cy26b1, 
Wnt4, Lrp5, Mmp13, and Alx4 are critical for osteogenesis, and 
Cmal, F2rl1, Ednral, and F3 are required for angiogenesis. Also, an-
notation of all the DEGs through the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database shows that Fzd9, Rspo3, Wnt4, Lrp5, 
F3, and Sfrp2 affect Wnt signaling, highlighting the significance of 
Wnt signaling during palatal osteogenesis. Therefore, more research 
is needed to explore the functions of these DEGs during hard palate 
development.

Hard palate ossifies in an intramembranous fashion (Percival, 
2013; Santagati & Rijli, 2003), involving osteoblast differentiation, 
ECM assembly and mineralization, vascularization and osteoclast 
differentiation (Clarke, 2008; Matsuura et al., 2014). These events 
are controlled by specific molecules. Analysis of alterations in gene 
expression over time revealed that changes in gene expression in 
the ppp and ppmx mainly occurred at E15.5 and E16.5, respectively, 
which is consistent with the posterior-to-anterior osteogenesis pat-
tern of the hard palate. The ppp was ossified in a very short period, 
and mesenchymal cells condensed at E14.5, ECM calcified at E15.5, 
and bone remodeling began at E16.5. Therefore, there were few os-
teogenic and angiogenic genes with altered expression in the ppp 
during the investigated period, with only the expression of the os-
teogenic gene Spp1 and angiogenic genes Foxn4, Myl3, Hspb1, and 
Wnt7b increasing during the investigated period, as shown in Tables 
3-4. In the ppmx, as expected, genes involved in osteoblast differ-
entiation, including Spp1, Ibsp, Cthrc1, Tmem119, Sp7, Penk, Ifitm1, 
and Cebpb, and genes functioning in bone mineralization, including 
Ifitm5, Tmem119, Ibsp, and Mgp, were increased at E16.5, as shown 
in Table 3. However, the expression of Sox11 and Shox2 was de-
creased, suggesting a function in early osteoblast differentiation (Xu 
et al., 2019). Paralleled the first osteoclasts detected in the ppmx at 
E17.5, Ctsk (Kiviranta et al., 2005) and Ltf were upregulated at E16.5. 
More research is needed to explore the specific roles of these genes 
during palatal osteogenesis. In addition, osteogenic and angiogenic 
genes with constant high expression or without expression differ-
ences between the ppmx and ppp warrant further investigation.

This study helps improve the present understanding of normal 
palatal osteogenesis, calls for more attention to be paid to hard pal-
ate development, and offers an essential foundation for subsequent 
studies of normal and abnormal subjects.
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