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Abstract

Hard palate consists anteriorly of the palatal process of the maxilla (ppmx) and pos-
teriorly of the palatal process of the palatine (ppp). Currently, palatal osteogenesis is
receiving increasing attention. This is the first study to provide an overview of the
osteogenesis process of the mouse hard palate. We found that the period in which
avascular mesenchymal condensation becomes a vascularized bone structure corre-
sponds to embryonic day (E) 14.5 to E16.5 in the hard palate. The ppmx and ppp differ
remarkably in morphology and molecular respects during osteogenesis. Osteoclasts
in the ppmx and ppp are heterogeneous. There was a multinucleated giant osteoclast
on the bone surface at the lateral-nasal side of the ppmx, while osteoclasts in the ppp
were more abundant and adjacent to blood vessels but were smaller and had fewer
nuclei. In addition, bone remodeling in the hard palate was asymmetric and exclusively
occurred on the nasal side of the hard palate at E18.5. During angiogenesis, CD31-
positive endothelial cells were initially localized in the surrounding of palatal mesen-
chymal condensation and then invaded the condensation in a sprouting fashion. At
the transcriptome level, we found 78 differentially expressed genes related to osteo-
genesis and angiogenesis between the ppmx and ppp. Fifty-five related genes were
up/downregulated from E14.5 to E16.5. Here, we described the morphogenesis and
the heterogeneity in the osteogenic and angiogenic genes profiles of the ppmx and

ppp, which are significant for subsequent studies of normal and abnormal subjects.
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1 | INTRODUCTION

Structurally, the palate is divided into the anterior bony hard pal-
ate and the posterior soft palate. Based on embryological origins,
the palate comprises primary and secondary palates (Li et al., 2017).
The primary palate extends from the premaxillary bone to the inci-
sive foramen. The secondary palate consists of the remaining hard

palate and the muscular soft palate. The secondary palate-derived

hard palate comprises the palatal process of the maxilla (ppmx) and
the palatal process of the palatine (ppp) (Xu et al., 2018) and sep-
arates the oral cavity from the nasal cavity, ensuring normal swal-
lowing, speech, and hearing (Boyce et al., 2018). The hard palate
represents an attractive target for tissue regeneration engineering,
which requires an accurate understanding of morphogenesis and the
molecular mechanism of palatal osteogenesis. Studies on palatal os-
teogenesis, however, are quite few and limited (Bush & Jiang, 2012).
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Osteogenesis is a complicated process, but only early osteoblast dif-
ferentiation is discussed in current studies (Baek et al., 2011; Pauws
et al., 2009; Wang et al., 2020; Xu et al., 2018, 2019). In addition,
the investigated periods of early osteoblast differentiation differ in
multiple publications, making it difficult to understand hard palate
development.

It is known that the hard palate forms through intramembranous
ossification (Percival & Richtsmeier, 2013; Santagati & Rijli, 2003),
but no publication has described the normal osteogenesis process
of the hard palate thus far. Intramembranous ossification includes
the pre-osteogenic stage and post-condensation stage (Vesela et al.,
2019). In the pre-osteogenic phage, mesenchymal cells condense;
this occurrence has been shown in several studies (Baek et al.,
2011; Goodwin et al., 2020; Li et al., 2021; Wang et al., 2020). In the
post-condensation period, osteogenesis and angiogenesis dominate
(Grosso et al., 2017), covering bone cells differentiation, extracellu-
lar matrix (ECM) assembly and mineralization, and vascularization.
Osteogenesis is controlled by multiple genes. Runx2 governs the
osteogenic fate of multipotent mesenchymal stromal cells (Pratap
et al., 2003). Osx, downstream of Runx2, is involved in the full dif-
ferentiation of osteoblasts (Nakashima et al., 2002). Preosteoblasts
undergo three well-characterized differentiation stages to become
mature osteoblasts (Rutkovskiy et al., 2016; Stein et al., 2004). First-
stage osteoblasts predominantly proliferate and express Fn, colla-
gens, and Opn. In the second stage, osteoblasts exit the cell cycle
and start differentiation, which is accompanied by the expression of
alkaline phosphatase and collagen as well as the maturation of bone
ECM. In the third stage, osteoblasts mature and secrete abundant
Ocn (Rutkovskiy et al., 2016). Although some aspects of expression
have been published in the context of comparison to mutant mod-
els (Baek et al., 2011; Levi et al., 2011; Wang et al., 2020; Xu et al.,
2018, 2019), single studies presenting the dynamic expression of os-
teogenic genes during hard palate development are lacking. Much
has been written on osteoclasts, but no reports have been published
about osteoclast biology in the hard palate. Osteoclasts are of he-
matopoietic origin (Burger et al., 1982) and proceed through a series
of differentiation stages to produce multinucleated bone-resorbing
cells. Osteoclast lineages specifically express tartrate-resistant acid
phosphatase (TRAP) (M S Burstone, 1959). Pertinently, osteogenesis
is tightly coupled with angiogenesis. Endochondral angiogenesis has
been the subject of most studies, but intramembranous angiogen-
esis is poorly understood (Percival & Richtsmeier, 2013), especially
angiogenesis of the hard palate. Angiogenesis refers to endothelial
cells differentiating to form new blood vessels, and CD31 is com-
monly used as a marker of endothelial cells (Rakocevic et al., 2017).
Therefore, the expression profile of these molecular markers in the
hard palate can be used to outline the process by which palatal mes-
enchymal condensation develops into a mineralized bone structure.

Osteogenesis and angiogenesis are controlled by multiple signal-
ing pathways. Genes expression patterns present site-specific het-
erogeneity along the anteroposterior axis of the secondary palate
(Baek et al., 2011; Li et al., 2017; Liu et al., 2008; Pauws et al., 2009;
Smith et al., 2012; Welsh & O'Brien, 2009; Xu et al., 2019; Yu et al.,
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2005; Zhang et al., 2002). Notably, Msx1 (Zhang et al., 2002) and
Shox2 (Xu et al., 2019; Yu et al., 2005) are specifically expressed
in the anterior secondary palate, whereas the expression of Meox2
and Tbx22 is restricted to the posterior palate. Bmprila has pref-
erential expression in the anterior secondary palate (Baek et al.,
2011). Also, Barx1 and Mn1 have a posterior-predominant expres-
sion profile within the developing secondary palate (Liu et al., 2008;
Welsh & O'Brien, 2009). Different gene expression patterns along
the anterior-posterior axis of the secondary palate indicate distinct
developmental mechanisms, but the known mechanisms are still far
from clear and warrant further investigation.

Therefore, the objective of this study was to elucidate the mor-
phogenesis process of the hard palate and identify molecular signal-

ing associated with osteogenesis and angiogenesis.

2 | METHODS

This study was approved by the Biomedical Ethics Committee of
Fujian Medical University (FJMU IACUC 2020-0026).

2.1 | Micro-computed tomography analysis

Heads of embryos at embryonic day (E) 18.5 and adult mice were
fixed in 4% paraformaldehyde and then transferred to 70% ethanol.
A micro-computed tomography (micro-CT) system (Research Center
of Stomatology, Guangzhou Medical University, Guangzhou, China)
was used to scan tissue at a 12 mm thickness with 55 kV energy and
145 mA intensity (ICT40).

2.2 | Histology staining
Skinned heads of mice at E14.5 to E18.5 were fixed in 100% ethanol
for 1 week, and then the calvaria and mandible were removed before
tissues were infiltrated in 2% potassium hydroxide (KOH) solution
for 4 h. Subsequently, tissues were incubated in Alizarin Red solution
(1% KOH, 75 pg-ml'1 Alizarin Red-S [Sigma]) overnight. Tissues were
then rinsed in 2% KOH solution for 1 h and finally stored in a mixture
of 2% KOH and glycerine (1:1).

A TRAP kit (387A-1KT, Sigma, USA) and von Kossa kit (G3282,

Solarbio, China) were used in this study.

2.3 | Immunofluorescence staining

Primary antibodies were used as follows: Runx2 (ab192256, Abcam,
1:300), Osx (ab22552, Abcam, 1:300), Coll (ab34710, Abcam,
1:1000), Opn (ab218237, Abcam, 1:500), Ocn (ab93876, Abcam,
1:500), and CD31 (ab28364, Abcam, 1:300). The secondary anti-
bodies Alexa Fluor 488 and Alexa Fluor 594were used at a dilution
of 1:250.
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2.4 | Tissue separation

Timed pregnant mice were killed and soaked in 100% alcohol for
one minute. Afterward, embryos were obtained and transferred
to ice-cold Hanks liquid. The mandibles and skulls of the embryos
were removed. The ppmx and ppp of E14.5 to E16.5 embryos (n = 3
for each group) were dissected out under a stereomicroscope
(Supplementary material 1) and then stored in RNAlater (BI, Israel)
for RNA sequencing (RNA-seq). We compared the expression pat-
terns of osteogenic and angiogenic genes between the ppmx and
ppp at E14.5, E15.5, and E16.5, with the ppmx groups were used as
the control groups. We also analyzed changes in genes expression
from E14.5 to E16.5. And there were E15.5 vs E14.5 pairwise and
E16.5 vs E15.5 pairwise, with the E14.5 group and E15.5 group were

used as the control groups, respectively.

3 | RESULTS

3.1 | Osteogenic and angiogenic evaluation of the
ppmx and ppp

Palatal mesenchymal cells start to condense at E14.5 (Baek et al.,
2011; Goodwin et al., 2020; Li et al., 2021), and a hard palate devel-
ops at approximately E18.5. Therefore, we overviewed the osteo-
genesis and angiogenesis process of the hard palate by elucidating
the expression patterns of corresponding markers from E14.5 to
E18.5.

At E14.5, mesenchymal precursors of the ppp were strongly pos-
itive for Runx2 and Col1 (Figure 1D, a, a'), moderately positive for
Osx and Opn (Figure 1D, a", a""), but negative for Ocn (Figure 1D,
a""). CD31-positive cells were mainly located in the loose mesen-
chyme surrounding mesenchymal condensation and started to in-
vade the primordium (Figure 2K). Also, progenitor cells of posterior
ppmx (ppmx-p) were slightly positive for Runx2 and Col1 (Figure 1C,
a, a') but negative for Osx, Opn, and Ocn (Figure 1C, a", a", a"").
CD31-positive cells were few and scattered in the surrounding loose
mesenchyme (Figure 2F). No markers were detected in the anterior
ppmx (ppmx-a) primordium (data not shown).

At E15.5, the ppp calcified first (Figure 1A, b"). In the ppp, the
expression of Osx and Ocn increased (Figure 1D, b", b""). Runx2,
Col1, and Opn expression decreased (Figure 1D, b, b', b""). Abundant
CD31-positive cells invaded the ppp primordium (Figure 2L). In the
ppmx-p, Runx2 and Col1 were strongly expressed (Figure 1C, b, b').
The expression of Osx was evident, while the expression of Opn was
rare, and no Ocn was detected (Figure 1C, b", b"', b""). A large num-
ber of CD31-positive cells were located around the mesenchymal
condensation of the ppmx-p and started to invade the condensation
(Figure 2G). Runx2 and Col1 (Figure 1B, a, a') were slightly expressed
in the mesenchymal progenitors of the ppmx-a, and no other mark-
ers were detected.

At E16.5, the ppp extended toward the midline (Figure 1A, c",
c"). The ppmx-p (Figure 1A, c’, ¢"’) and ppmx-a (Figure 1A, c"') were
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ossified. Inthe ppp, Osx,and Ocn were strongly expressed (Figure 1D,
c", c""). The expression of Runx2 and Opn was decreased (Figure 1D,
¢, ¢"'). Abundant blood vessels were detected (Figure 2M). To illus-
trate bone remodeling in the hard palate, we conducted TRAP stain-
ing of serial sections of the hard palate. The first small mononuclear
TRAP-positive cells were detected in the ppp at E16.5 (Figure 3A).
In the ppmx-p, Osx and Ocn were strongly expressed (Figure 1C,
c", c""). The expression of Opn increased (Figure 1C, c"'), while the
expression of Runx2 and Coll was decreased (Figure 1C, c, c').
CD31-positive cells invaded the ppmx-p (Figure 2H). In the ppmx-a,
Runx2 was visibly expressed, accompanied by rich synthesis of Coll
(Figure 1B, b, b'). In contrast, Osx and Opn were rarely expressed
(Figure 1B, b", b""). CD31-positive cells were adjacent to the mesen-
chymal condensation of the ppmx-a (Figure 2C).

At E17.5, the bilateral ppps approached each other (Figure 1A, d",
d"), and the ppmx extended toward the primary palate (Figure 1A, d,
d"). The expression of osteogenic markers was decreased in the ppp
and ppmx-p (data not shown), and blood vessels had been formed
(Figure 2I,N). The first TRAP-positive cells in the ppmx-p were de-
tected (Figure 3B). In the ppmx-a, the expression of Runx2 and Col1
was reduced (Figure 1B, ¢, ¢'). The expression of Osx, Opn, and Ocn
was significantly increased (Figure 1B, c", c¢", c""). Sprouting blood
vessels invaded the mesenchymal condensation of the ppmx-a
(Figure 2D).

By E18.5, a blood vessel-rich bone structure had been formed in
the hard palate (Figure 2E,J,0). Also, bone remodeling had started.
Many TRAP-positive cells were scattered in the ppp (Figure 3F).
Most osteoclasts are typically elliptical, with one side facing the bone
and the other side adjacent to the blood vessels (Cappariello et al.,
2014). Compared with the oral side, osteoclasts exclusively lined on
the bone surface of the nasal side of the ppp. In the ppmx, there
was a single giant osteoclast lining, which had numerous nuclei, on
the bone surface of the lateral-nasal side of the ppmx (Figure 3D,E).

Our data demonstrated that the active period in which the hard
palate ossified and vascularized corresponded to E14.5 to E16.5.

3.2 | Expression patterns of osteogenic and
angiogenic genes in the hard palate

To elucidate the heterogeneity of the molecular mechanisms of pala-
tal osteogenesis along the anteroposterior axis of the secondary pal-
ate, the ppmx and ppp at E14.5 to E16.5 were collected for RNA-Seq.
We found that the ppmx and ppp presented obvious transcriptome
differences. Gene Ontology (GO) annotation of the differentially ex-
pressed genes (DEGs) showed that in the top 10 enrichment scores
of biological processes, most terms of E14.5 were related to mus-
cle development, while terms at E16.5 were mainly related to the
nervous system (Figure 4). Bone-associated terms were detected at
E15.5 (Figure 4). Therefore, RNAs with fragments per kilobase of
transcript per million mapped reads (fpkm) =1 at E15.5 were sub-
jected to GO analysis, and the results were summarized according
to the biological processes covering bone formation, osteoblasts,



L ev- ANATQUICH! TR

Whole mount

—
(2)

) E14.5 ppmx-p E15.5 ppmx-p E16.5 ppmx-p

Opn Osx Coll Runx2

Ocn

LIAO ET AL.

E15.5 ppmx-a E16.5 ppmx-a E17.5 ppmx-a

(b)

Runx2

Coll

O_sx

Ocn

Opn

(4 E14.5ppp E15.5 ppp E16.5 ppp

c! :

Runx2

Coll

Opn

Osx

Ocn

FIGURE 1 Osteogenesis process of the hard palate. (a) Morphogenesis of the hard palate from E14.5 to E17.5. a-d, a'-d' and a"-d", von

Kossa staining, morphogenesis of the hard palate in the coronal view. a

-d", Alizarin red staining, morphogenesis of the hard palate in the

transverse view. mx, maxilla; ppmx, palatal process of the maxilla; ppp, palatal process of the palatine. (b-d) Immunofluorescence staining,
expression patterns of Runx2, Col1, Osx, Opn, and Ocn during palatal osteogenesis. B, ppmx-a; C, ppmx-p; D, ppp. Scale bar = 502 pm

blood vessels, and osteoclasts (Supplementary material 2-5). The
expression of these genes between the ppmx and ppp was then fol-
lowed by statistical analysis. Through filtering based on fold change
(FC) 22 and false discovery rate (FDR) (adjusted p-value) <0.05, 78
DEGs between the ppmx and ppp were obtained at E15.5 (Table 1).
Most DEGs at E14.5 and E16.5 were the same with the E15.5 group
(Supplementary material 6-7). Through [log,FC| 22 filtering, the

most striking DEGs in the ppp at E15.5 were Scn10a, Col?al, Myog,
Tnnt2, Col2al, Col11a2, Spp1/Opn, Dmp1, Thbs4, Myl3, Adcyap1l,
Ibsp, Tacl, Rflna, Cacnalb, Foxc2, Kazaldl, Npylr, Cthrcl, Scg2,
Col11al, Ramp1, and Scx, and the most striking DEGs in ppmx were
Mir23b, Shox2, Wnt5a, Alx1, and Dnm3os.

During osteogenesis, a series of successive and overlapping events

occurred, which were regulated by specific genes. Therefore, we
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FIGURE 2 Angiogenesis process of the hard palate. (a-o) Immunofluorescence staining, expression patterns of CD-31 in the ppmx and
ppp from E14.5 to E18.5. White dotted line, palatal processes; arrow, sprouting angiogenesis. Scale bar = 502 pm

% /
."_,‘!;w -

ppmx-p E17-$ )

FIGURE 3 Osteoclastogenesis in the hard palate. (a-f) TRAP staining, osteoclast lineage in the ppmx and ppp from E16.5 to E18.5. The
small image in the upper right corner of each picture shows the distribution of osteoclasts on the lateral-medial and nasal-oral sides of the

hard palate. Arrow, TRAP-positive cell. Scale bar = 502 pm

compared gene expression from E14.5 to E16.5 (E15.5 vs E14.5 and
E16.5 vs E15.5). Through FC 22 and FDR <0.05 filtering, 55 genes were
found to be significantly up/downregulated in the hard palate (Table 2).
Through |log,FC| 22 filtering, genes with the most striking expression
alterations were Ltf, Dmp1, Spp1, Ibsp, Col11a2, Ifitm5, Ramp1, and
Kazald1 in the ppmx and Foxn4, Ltf, Cmal, Myl3, and Spp1 in the ppp.

Finally, through GO annotation, we revealed the possible spe-
cific roles of the osteogenic and angiogenic genes during hard palate
development in Tables 3-4. Thus, we have outlined the molecular

network associated with osteogenesis and angiogenesis in the ppmx

and ppp.

4 | DISCUSSION

The maxillofacial region performs critical roles in daily life. Some
maxillofacial tissues, including teeth (Catéon & Tucker, 2009; Zhang
etal., 2005), jaws (Parada & Chai, 2015; Suzuki et al., 2016; Svandova
etal., 2020; Yuan & Chai, 2019), tongue (Parada et al., 2012), and lips
(Jiang et al., 2006), have been extensively studied. Basic studies on
the hard palate, however, are scarce (Baek et al., 2011; Bush & Jiang,
2012; Pauws et al., 2009; Wang et al., 2020; Xu et al., 2018, 2019).
The present study is the first on the normal osteogenesis and angio-

genesis of the hard palate.
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FIGURE 4 GO annotation of the DEGs between the ppmx and ppp at E14.5 to E16.5, with the top 10 enrichment scores, in terms of

biological process

Bone defects of the hard palate are known as submucous cleft
palate (SMCP) (Calnan, 1954), a subtype of cleft palate (Burg et al.,
2016), with a reported incidence of 1:1250 to 1:5000 (Velasco et al.,
1988; Weatherley-White et al., 1972). Knowledge of the physiology
of the hard palate is indispensable for the etiology studies of SMCP
(Clarke, 2008). In recent phenotypic studies, Runx2 was always used
to assess osteoblast differentiation (Baek et al., 2011; Pauws et al.,
2009; Wang et al., 2020; Xu et al., 2019), but the presence of Runx2
alone is not enough to sustain complete osteoblast differentiation
(Komori, 2010), as osteoblasts still need to go through three distinct
differentiation stages (Rutkovskiy et al., 2016). The expression pat-
terns of markers of each stage demonstrate that the main period of
osteoblast differentiation and maturation in the hard palate corre-
sponds to E14.5 to E16.5. And the results of expression patterns of
osteogenic genes can be used to assess the palatal osteogenesis in
the subsequent abnormal studies. Osteoclasts are responsible for
bone resorption (Cappariello et al., 2014). In line with the notion
of bone site-specific osteoclast heterogeneity (Faloni et al., 2011;
Everts et al., 2009; Goldberg et al., 2016; Perez-Amodio et al., 2006;
Quarto et al., 2010), we found for the first time that osteoclasts of
the ppmx and ppp showed obvious differences in cell and nuclei
number, size, morphology, and distribution. We assume that asym-
metric bone remodeling in the hard palate is due to the expansion
of the nasal cavity. Osteoclast heterogeneity implies differences
in local bone remodeling and corresponding treatment strategies
(Everts et al., 2009). Therefore, more studies are called to provide

further insights into the detailed characteristics of the morphology
and functions of osteoclasts in the ppmx and ppp. Pertinently, os-
teogenesis is tightly coupled with angiogenesis (Cappariello et al.,
2014). Here, we provide the first insight into the angiogenesis of
the hard palate. In contrast to mouse limb buds (Eshkar-Oren et al.,
2009), an avascular layer of loose mesenchyme was not observed
during vascularization of the hard palate, indicating distinct devel-
opmental mechanisms between endochondral angiogenesis and
intramembranous angiogenesis. Intussusceptive angiogenesis, in
which the primary blood vessel splits into two vessels through the
transcapillary tissue pillar without endothelial cell proliferation, was
detected during craniofacial bone development (Spiegelaere et al.,
2010). However, our histological data showed capillaries in the sur-
rounding loose mesenchyme sprouts and invaded the palatal mes-
enchymal condensation, suggesting sprouting angiogenesis (Maes
et al., 2010) in the hard palate. This finding is further supported by
the substantial number of genes associated with sprouting angio-
genesis shown in Table 4. Although osteogenesis is closely accompa-
nied by angiogenesis, whether variation in angiogenesis causes bone
defects is still unknown (Brandi & Collin-Osdoby, 2006), and should
be investigated in further studies.

Distinct gene patterns between the ppmx and ppp have been
demonstrated (Pauws et al., 2009; Xu et al., 2019). Our RNA-seq
analysis provided a comprehensive understanding of the molecular
heterogeneity between the ppmx and ppp. Consistent with previ-
ous works, Shox2 (Xu et al., 2019) had a higher expression in the
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TABLE 1 DEGs associated with osteogenesis and angiogenesis between the ppmx and ppp at E15.5. [log,FC| 21 and -log,,(padj) >1.30103
were used as the thresholds

Symbol log,FC Padj Symbol log,FC Padj

High expression in the ppp
Scn10a 9.591499538 2.49E-12 Ifitm5 1.851754718 3.83E-13
Col9al 6.570633904 1.96E-67 Papss2 1.8379630%94 5.43E-52
Myog 6.303915197 2.28E-114 Ank2 1.829135049 2.51E-42
Tnnt2 5.898981913 4.77E-93 Mgp 1.742981717 2.18E-41
Col2al 5.744304477 0 Ehd3 1.643032172 2.23E-15
Col11a2 5.704230139 0 Isl1 1.638112603 0.027915933
Sppl 5.148137557 4.10E-247 Bmper 1.581241277 6.25E-21
Dmp1 4.991634104 1.57E-79 Akapé 1.44691446 3.78E-10
Thbs4 4.217114168 1.78E-108 Col27a1 1.439996102 1.21E-29
Myl3 4.146011115 1.17E-18 Nov 1.42649332 8.68E-22
Adcyapl 4.003542866 2.48E-15 Foxcl 1.39633194 3.59E-24
Ibsp 3.809411598 1.44E-23 Fzd9 1.38497715 7.00E-16
Tacl 3.578181803 6.07E-20 Fam20c 1.350633496 2.13E-17
Rflna 3.316821695 3.66E-37 Sema3c 1.339160102 3.51E-29
Cacnalb 3.310130619 2.48E-38 Cspg4 1.263057425 5.35E-22
Foxc2 3.004089488 4.08E-53 Sparc 1.210904981 2.57E-19
Kazald1 2.699804254 3.90E-56 Mmp9 1.202183164 5.28E-10
Npy1r 2.621082966 1.08E-12 Fgfr3 1.197479491 1.43E-18
Cthrcl 2.55430716 2.67E-115 DIx3 1.114111316 5.02E-08
Scg2 2.48744079 1.01E-20 Gpméb 1.105363816 2.59E-22
Col11a1 2.333644302 3.55E-103 Fap 1.061569852 2.02E-15
Ramp1 2.159554058 1.52E-29 Ctsk 1.031890629 7.04E-18
Scx 2.089468826 1.23E-30 Kcna5 1.031170175 2.08E-05
Aldhla2 1.944167101 2.89E-50 Rspo3 1.02591278 3.76E-09
Meox2 1.914361189 1.45E-28 Penk 1.012068873 2.25E-15

High expression in the ppmx
Mir23b -5.018114542 0.000232574 F2rl1 -1.194842949 1.52E-08
Shox2 -3.199056015 1.87E-201 Osr2 -1.192260465 5.70E-21
Wnhnt5a -2.465423799 2.62E-60 Whnt4 -1.189283116 5.08E-25
Alx1 -2.23040588 2.52E-08 Meis1 -1.185517387 3.97E-18
Dnm3os -2.028866374 4.16E-48 Ednra -1.1643281 1.66E-14
Dsg2 -1.957744884 9.07E-43 Frem1 -1.152077166 1.11E-18
Cyp26b1 -1.828771248 1.58E-64 Lrp5 -1.122373497 3.07E-17
Cmal -1.809241542 2.21E-07 B8 -1.122091691 5.48E-12
Spintl -1.644091561 4.36E-26 Arid5b -1.115445376 8.75E-12
Foxn4 -1.466455897 6.94E-11 Plxnb1 -1.088087234 7.93E-32
Ephal -1.348374277 1.15E-18 Cacnalc -1.046899968 1.19E-15
Tnc -1.308829953 9.96E-26 Mmp13 -1.035840382 0.000124128
Prrx1 -1.289753145 2.73E-36 Alx4 -1.012359884 1.84E-15
Foxf2 -1.271639053 6.64E-12 Sfrp2 -1.007554322 1.89E-19

ppmx, and Meox2 (Baek et al., 2011) had a higher expression in the et al (Pauws et al., 2009), Tbx22 expression was restricted to the
ppp. However, no difference was detected in the expression of Msx1 posterior secondary palate at E13.5, while we found that Tbx22 ex-
(Zhang et al., 2002), Bmpria (Baek et al., 2011) and Tbx22 (Pauws pression showed no difference between the ppm and ppp during
et al.,, 2009) between the ppm and ppp. Also, according to Pauws E14.5 to E16.5. Bmprla is reported to have anterior-predominant
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TABLE 2 Alterations in the expression of genes associated with osteogenesis and angiogenesis in the hard palate from E14.5 to E16.5.

Symbol log,FC Padj

Up/downregulated genes in the ppmx

E15.5vs E14.5

Ltf* 2.15378898 0.043021091
Foxn4 1.557394999 2.69E-07
Lgals3* 1.437719272 8.06E-12
Cmal* 1.36656634 4.44E-05
Omd 1.334254895 0.032271601
Agt* 1.268471791 0.000317523

E16.5 vs E15.5
Dmp1l 4.893081456 9.68E-18
Sppl 4.357012202 3.23E-23
Ibsp 3.999788019 2.14E-40
Ltf* 3.527561242 3.55E-60
Coll1a2 3.226632731 1.01E-97
Ifitm5 2.667139769 1.25E-52
Ramp1 2.496575838 1.43E-37
Kazald1 2.333194143 7.35E-30
Thbs4 1.844485995 4.16E-09
Lgals3* 1.708034468 1.17E-23
Agt* 1.558723803 5.72E-17
Hspb1* 1.515062516 3.33E-19
DIx3 1.513046123 2.24E-22
Mgp 1.454681049 2.67E-32
Cd36 1.429263433 1.23E-10
Cthrcl 1.429221534 2.22E-19

Up/downregulated genes in the ppp

E15.5vs E14.5
Foxn4 3.660115444 7.28E-13
Ltf* 3.479635311 8.54E-12
Cmal* 2.310002924 0.000108205
MylI3 2.158833966 1.39E-08
Sppl 2.000435645 0.005462396
Agt 1.75550345 1.76E-07
Nov 1.545673867 7.74E-18
Dmp1 1.43026483 0.049514675
Lgals3 1.326787269 0.000318359

E16.5 vs E15.5
Cmal* 1.561561868 0.044229736

Symbol log,FC Padj
Ctsh 1.237571711 5.64E-10
Tyrobp 1.044075577 4.78E-05
Hspb1* 1.036045595 1.65E-08
F2ri1 1.031570169 5.63E-06
Mmp9 -1.45320693 8.80E-25
Apoe 1.384113672 1.44E-27
Cmatl* 1.350053063 4.40E-08
Collal 1.303618956 1.56E-19
Tmem119 1.284455644 2.40E-27
Sparc 1.254426106 5.69E-24
Junb 1.219990382 1.46E-12
Sp7 1112163014 2.50E-10
Ctsk 1.090241856 5.93E-20
Penk 1.08660747 6.51E-18
Colla2 1.062894677 7.00E-13
Ifitm1 1.022842904 4.56E-08
Cebpb 1.00611054 4.57E-10
Vkorcl 1.003499791 0.000321281
Sox11 -1.001192676 6.97E-10
Shox2 -1.03305727 1.11E-20
Asb4 -1.414681717 5.62E-18
Thyl 1.227010303 9.04E-05
Coll1al 1.14810264 0.025309416
KIf5 1.117954649 5.61E-05
Hspb1 1.115826523 5.41E-09
Whnt7b 1.113565905 9.92E-07
Ctsh 1.113400904 5.23E-11
Pf4 1.072620078 0.000520339
Dnm3os -1.607919034 4.82E-15
Ltf* 1.662509957 1.11E-05

Note: Genes detected in both the E15.5 vs E14.5 group and E16.5 vs E15.5 group are marked with an asterisk.

expression in the secondary palate (Baek et al., 2011), but we agree
that there is no difference in the expression of Bmprila between the
ppmx and ppp. This expression pattern can account for the bone
defect in both the ppmx and ppp of Bmprla-deficient embryos
(Baek et al., 2011). Barx (Welsh & O'Brien, 2009) and Mn1 (Liu et al.,
2008) have posterior-predominant expression in the secondary
palate. We found that Barx1 expression was higher in the ppp, but

the expression of Mn1 was higher in the ppmx, and neither of these
levels of expression was statistically significant. Mn1 acts upstream
of Thx22 (Liu et al., 2008), and neither differed in expression be-
tween the ppmx and ppp during the investigated period. Therefore,
more research is needed to understand the dynamic expression
and function of Mn1 and Tbx22 in the hard palate. Notably, Wnt5a,
Osr2, and Mir23b in the palate (Ding et al., 2016; Li, et al., 2017)
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had higher expression in the ppmx. The anterior secondary palate
is thought to be more important because there are numerous spe-
cific genes (Smith et al., 2012), but we found 50 DGEs in the ppp
and 28 DEGs in the ppmx. The collagens of the secondary palate
(Logan et al., 2020), including Col2a1, Col9a1, Coll1al, Coll1a2,
and Col27a1, are mainly expressed in the ppp. Furthermore, anno-
tation of DEGs in the ppp through the NCBI Gene Database showed
that Spp1, Dmp1, lbsp, Kazald1, Ifitm5, Mgp, Bmper, Fad9, Fam20c,
Sparc, Mmp9, Fgfr3, Gpméb, Ctsk, and Rspo3 have a role in osteo-
genesis and that Ctrc1 acts on angiogenesis. Retinoic acid regulates
the expression of Spp1 in the palate (Peng et al., 2020), and Aldh1a2,
which is highly expressed in the ppp, can promote the synthesis of
retinoic acid (Shabtai et al., 2016), suggesting the possible role of
Aldh1a2 in osteogenesis in the ppp. Regarding ppmx DEGs, Cy26b1,
Wnt4, Lrp5, Mmp13, and Alx4 are critical for osteogenesis, and
Cmal, F2rl1, Ednral, and F3 are required for angiogenesis. Also, an-
notation of all the DEGs through the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database shows that Fzd9, Rspo3, Wnt4, Lrp5,
F3, and Sfrp2 affect Wnt signaling, highlighting the significance of
Wht signaling during palatal osteogenesis. Therefore, more research
is needed to explore the functions of these DEGs during hard palate
development.

Hard palate ossifies in an intramembranous fashion (Percival,
2013; Santagati & Rijli, 2003), involving osteoblast differentiation,
ECM assembly and mineralization, vascularization and osteoclast
differentiation (Clarke, 2008; Matsuura et al., 2014). These events
are controlled by specific molecules. Analysis of alterations in gene
expression over time revealed that changes in gene expression in
the ppp and ppmx mainly occurred at E15.5 and E16.5, respectively,
which is consistent with the posterior-to-anterior osteogenesis pat-
tern of the hard palate. The ppp was ossified in a very short period,
and mesenchymal cells condensed at E14.5, ECM calcified at E15.5,
and bone remodeling began at E16.5. Therefore, there were few os-
teogenic and angiogenic genes with altered expression in the ppp
during the investigated period, with only the expression of the os-
teogenic gene Sppl and angiogenic genes Foxn4, Myl3, Hspb1, and
Wnt7b increasing during the investigated period, as shown in Tables
3-4. In the ppmyx, as expected, genes involved in osteoblast differ-
entiation, including Spp1, Ibsp, Cthrc1, Tmem119, Sp7, Penk, Ifitm1,
and Cebpb, and genes functioning in bone mineralization, including
Ifitm5, Tmem119, Ibsp, and Mgp, were increased at E16.5, as shown
in Table 3. However, the expression of Sox11 and Shox2 was de-
creased, suggesting a function in early osteoblast differentiation (Xu
et al., 2019). Paralleled the first osteoclasts detected in the ppmx at
E17.5, Ctsk (Kiviranta et al., 2005) and Ltf were upregulated at E16.5.
More research is needed to explore the specific roles of these genes
during palatal osteogenesis. In addition, osteogenic and angiogenic
genes with constant high expression or without expression differ-
ences between the ppmx and ppp warrant further investigation.

This study helps improve the present understanding of normal
palatal osteogenesis, calls for more attention to be paid to hard pal-
ate development, and offers an essential foundation for subsequent
studies of normal and abnormal subjects.
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