
Journal of Anatomy. 2022;240:305–322.	 wileyonlinelibrary.com/journal/joa�  | 305© 2021 Anatomical Society

1  |  INTRODUC TION

The human ankle joint complex is comprised of tibio-talar, talo-
calcaneal, and talo-calcaneonavicular joints. Articulating with all 

these joints, the talus plays a principal role in completion of the leg-
foot force transmission chain directly affecting the postural form 
and locomotion in humans (Brockett & Chapman, 2016). In addi-
tion to the detailed anatomy of the talus, the anatomic variations 
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Abstract
Statistical data pertaining to anatomic variations of the human talus contain valu-
able information for advances in biological anthropology, diagnosis of the talar pa-
thologies, and designing talar prostheses. A statistical shape model (SSM) can be a 
powerful data analysis tool for the anatomic variations of the talus. The main con-
cern in constructing an SSM for the talus is establishing the true geometric corre-
spondence between the talar geometries. The true correspondence complies with 
biological and/or mathematical homologies on the talar surfaces. In this study, we 
proposed a semi-automatic approach to establish a dense correspondence between 
talar surfaces discretized by triangular meshes. Through our approach, homologous 
salient surface features in the form of crest lines were detected on 49 talar surfaces. 
Then, the point-wise correspondence information of the crest lines was recruited to 
create posterior Gaussian process morphable models that non-rigidly registered the 
talar meshes and consequently established inter-mesh dense correspondence. The 
resultant correspondence perceptually represented the true correspondence as per 
our visual assessments. Having established the correspondence, we computed the 
mean shape using full generalized Procrustes analysis and constructed an SSM by 
means of principal component analysis. Anatomical variations and the mean shape of 
the talus were predicted by the SSM. As a clinically related application, we considered 
the mean shape and investigated the feasibility of designing universal talar prosthe-
ses. Our results suggest that the mean shape of (the shapes of) tali can be used as a 
scalable shape template for designing universal talar prostheses.
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of the bone have received considerable attention in several areas 
of research and practice. In biological anthropology, it is believed 
that anatomic variations of the talus provide information on foot 
function, postural and locomotor adaptations, and timing/sequence 
of functional evolution in the foot of human-like terrestrials (Knigge 
et al., 2015; Parr et al., 2014; Püschel et al., 2017; Sorrentino et al., 
2020; Turley & Frost, 2013). From diagnostic perspectives, knowl-
edge of anatomic variations of normal tali helps diagnosis of the 
bone pathologies (Feng et al., 2018; Seki et al., 2019; Tümer et al., 
2016; Tümer, Vuurberg, et al., 2019). Traumatic and atraumatic 
causes, complications of total ankle arthroplasty, tumor resec-
tion, and talectomy may severely affect the integrity of the talus 
up to total loss of the bone (Fang et al., 2018; Pearce et al., 2005; 
Regauer et al., 2017). Besides few treatment methods being avail-
able for total/partial loss of talus (Taniguchi et al., 2012), a more 
recent and so far promising approach is implantation of talar body 
or total talar prostheses (Ando et al., 2016; Angthong, 2014; Bowes 
et al., 2019; Harnroongroj & Harnroongroj, 2014; Harnroongroj 
& Vanadurongwan, 1997; Islam et al., 2014; Magnan et al., 2004; 
Regauer et al., 2017; Ruatti et al., 2017; Stevens et al., 2007; 
Taniguchi et al., 2012; Trovato et al., 2017; Tsukamoto et al., 2010). 
Designing talar prostheses, particularly non-custom-made or uni-
versal prostheses for total talar replacement, requires understand-
ing of anatomic variations of the talus (Bowes et al., 2019; Islam 
et al., 2014; Lenz et al., 2021; Liu et al., 2020; Trovato et al., 2017; 
Tümer, Arbabi, et al., 2019).

Referred to as shape variations, anatomic variations of bones can 
be studied through statistical shape models (SSMs) of landmark (LM) 
configurations (Dryden & Mardia, 2016). Also called landmark-based 
geometric morphometrics (Webster & Sheets, 2010), this approach 
relies on approximating the outlines (surface/curve) of the shapes 
of the same class by discrete LM configurations, that is, point sets. 
Constructing an SSM requires that the LMs in any two different 
configurations are in correspondence, that is, a one-to-one mapping 
between the LMs. Establishing the true correspondence is the main 
challenge in creating an SSM (Chui et al., 2004). The true correspon-
dence is achieved if the correspondence is strictly established based 
on biologically homologous LMs. In practice, inter-specimen biologi-
cal homology is detected by visualization and only a limited number 
of biologically homologous LMs are usually detectable. Therefore, 
this biological constraint is relaxed by defining mathematical/geo-
metric homology. In this regard, LMs (on different specimen) sat-
isfying particular pure mathematical/geometric properties are 
also considered as homologous and hence in true correspondence 
(Cooke & Terhune, 2015; Webster & Sheets, 2010).

Visual recognition of biological LMs, that is, juxtapositions of tis-
sues (denoted as type-I Bookstein, 1991; Cooke & Terhune, 2015) 
on the three-dimensional (3D) surface (particularly a digitized/
scanned surface) of the talus is difficult and non-reliable. Therefore, 
mathematical LMs and/or semi (pseudo) LMs have been utilized 
(Bookstein, 1991; Knigge et al., 2015; Püschel et al., 2017; Sorrentino 
et al., 2020; Turley & Frost, 2013). Mathematical LMs include type-II 
(extrema of curvature), type-III (extremal points or points defined 

based on the locations of other points); and semi LMs are points that 
are distributed (typically equally spaced) between the biological or 
mathematical LMs (Cooke & Terhune, 2015).

Since the process of visually identifying and manually locating 
mathematical LMs is subjective, laborious, and the resultant config-
urations cannot densely discretize/sample the talar geometry, other 
researchers (Liu et al., 2020; Tümer, Arbabi, et al., 2019; Tümer et al., 
2016; Tümer, Vuurberg, et al., 2019) have implemented so-called 
“homology-free” methods. Through a homology-free method, inter-
sample corresponding LMs are automatically identified through 
non-rigid registration/alignment of the discretized surfaces of the 
samples (i.e. triangular meshes), and thereby dense correspondence 
across all the samples is established. Non-rigid registration gener-
ates LM configurations whose LMs are in correspondence, and the 
number of LMs in the configurations is in the order of the cardinality 
of the point sets (i.e. triangular mesh nodes) approximating the out-
line of the shapes.

Although automatic LM identification through non-rigid registra-
tion of surfaces generates a (discretely) dense correspondence, it does 
not guarantee that the correspondence complies with biological and/
or mathematical homologies at every point (Gunz & Mitteroecker, 
2013; Klingenberg, 2008). Therefore, an SSM based on automatic LM 
identification may predict local shape variations and the mean shape 
that are not necessarily biologically interpretable (Gonzalez et al., 
2016; Gunz & Mitteroecker, 2013). This issue becomes even more 
significant if local anatomic novelties exist in some shapes in the set 
under study (Klingenberg, 2008). Consequently, implementation of 
an SSM (based on a homology-free method) for designing universal 
talar prostheses may lead to erroneous talar geometries due to ap-
pearance of non-biological shape variations.

In the present study, we hypothesized that the shape of the 
talus contains geometric features in the form of crest lines defined 
by particular mathematical definitions. By visual investigation, we 
then demonstrated that relative anatomic novelties manifested by 
regions of different surface curvatures existed among tali, and not 
all tali had similar types of geometric features, that is, crest lines. We 
then attempted to achieve the purposes of this study as follows. (1) 
Identifying and classifying common crest lines of the talar samples 
for establishing a geometric feature-to-feature dense correspon-
dence. (2) Introducing the feature-to-feature correspondence infor-
mation (as a prior) into a non-rigid registration process automatically 
establishing a dense correspondence between the talar surfaces 
(meshes). (3) Constructing an SSM estimating the mean shape and 
shape variations (modes) of the talus. (4) Computing the average de-
viations of the talar shapes from their mean shape to investigate the 
viability of the mean shape as a shape template of universal talar 
prostheses.

2  |  MATERIAL S AND METHODS

The irregular anatomy of the talus contains salient geometric fea-
tures in the form of convex and concave regions running along 
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curves (paths) that can be visually detected by an observer; meaning 
that one can intuitively draw curves along the loci of points with 
relatively higher/lower curvatures (Figure 1). We hypothesized that 
these curves can be identified as either ridge or valley lines with spe-
cific mathematical definitions. Both types of the feature lines are 
referred to as crest lines.

The talar crest lines can indicate boundaries of the talar articu-
lar surfaces (Figure 1); therefore, it is natural to regard anatomically 
similar crest lines on tali as homologous geometric features. In this 
regard, we established crest-line correspondence prior to automat-
ically establishing talar surface correspondence. This not only as-
sured a true feature-to-feature correspondence but provided prior 
information for estimating dense point-to-point correspondence be-
tween the surfaces of each talar pair. Our approach to construct an 
SSM of the talus is delineated as follows.

2.1  |  Data collection, segmentation, and 
reconstruction of geometric bone surfaces

Computer tomography (CT) data of healthy and intact tali of 49 adult 
subjects (with average age of 37.6 ± 15.1) were anonymously pro-
vided by the University of Alberta Hospital after ethics approval. 
The CT data contained images with slice thickness of 1  mm and 
pixel matrix of 512 × 512 with 0.36 × 0.36 mm2 in-plane resolution. 
Automatic segmentation of the CT data and geometric reconstruc-
tion of the talar (closed) surfaces in the form of triangular meshes 
were performed in Mimics (Materialise Mimics 20.0). The triangu-
lar meshes were processed (in Geomagic Studio 2015.3) to remove 
mesh defects (small holes, non-manifold edges, etc.). The meshes 
were then re-meshed to obtain uniform meshes. The deviations 
emerged from the mesh processing were negligible. The remeshing 
process was accompanied by mesh smoothing. By limiting the inten-
sity of mesh smoothing we preserved the sharpness of the surface 
details and later observed that a slight degree of mesh smoothing led 
to more quality and detailed detection of the talar crest lines (see 
supplemental material Sec. 1 for instances of the mesh sensitivity 
analysis). The average size of the triangles, number of the nodes/

triangles, and triangle density of the processed meshes were 1 mm, 
7600/15,000, and 2 elements/mm2 respectively.

The talar meshes represented the right talar bone or mirrored to 
this side. Each mesh was initially translated, by its centroid (average 
coordinates of the nodes), to the origin of the coordinate system.

2.2  |  Detection of crest lines

Let S ⊂ ℝ
3 be a smooth orientable surface, p ∈ S a point of the 

surface, TpS the tangent plane (of S) at p, and �⃗n p the unit normal vec-
tor to S at p. At any point p ∈ S, a tangent vector t⃗ p ∈ TpS and �⃗n p de-
fine a normal plane intersecting the surface (Figure 2a). The 
intersection is a curve, �np referred to as the normal section of the 
surface at p (Figure 2a). The normal curvature, kp ∈ ℝ, of the surface 
at p is the signed curvature of the normal section of the surface at p 
(Pressley, 2010). If �⃗

⋅⋅

𝛾 np
: = d2𝛾np∕dt

2 where t is the parameter of the 
normal section �np, then kp = ±

‖‖‖‖
�⃗⋅⋅
𝛾 np

‖‖‖‖ such that kp is considered posi-

tive if �⃗
⋅⋅

𝛾 np
⋅ �⃗n p < 0 and negative if �⃗

⋅⋅

𝛾 np
⋅ �⃗n p > 0. This convention leads 

to kp > 0 and kp < 0 for convex and concave regions of a surface 
respectively.

The normal curvature kp is a function of ⃗t p, i.e. kp
(
t⃗ p

)
, because ⃗t p 

determines an orientation for the intersecting plane con-
taining a particular �⃗n p (Figure 2a). The extrema of kp

(
t⃗ p

)
 at p, de-

noted as kmax (p) and kmin (p), are called the principal 
curvatures, and the directions t⃗max (p) ∈ TpS and t⃗min (p) ∈ TpS at 
which the function attains the extremum values are called the prin-
cipal directions (Figure 2b). The principal directions are orthogonal 
(Pressley, 2010).

Crest lines are mathematically identified as loci of points at 
which the (scalar fields of) principal curvatures attain their local ex-
tremum along their corresponding principal directions (Yoshizawa 
et al., 2005). This definition can be separately written in a mathe-
matical form for ridge and valley lines. Let kmax (x) and kmin (x) be 
the scalar fields over S such that kmax (x) > kmin (x), and positive and 
negative values of curvature be associated with convex and con-
cave regions respectively. Then, the definition implies that a point 

F I G U R E  1  Crest lines visually detected and marked by the authors on a three-dimensional print of a (left) talus
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x is a crest-line point if it satisfies either of the following conditions 
(Yoshizawa et al., 2005).

1.	 x ∈ S is a ridge-line point iff 

⎧⎪⎪⎨⎪⎪⎩

kmax (x) >
��kmin (x)

��
emax: =∇kmax (x) ⋅ t⃗max (x) =0

∇emax (x) ⋅ t⃗max (x) <0

2.	 x ∈ S is a valley-line point iff 

⎧⎪⎪⎨⎪⎪⎩

kmin (x) < −kmax (x) �
emin: =∇kmin (x) ⋅ t⃗min (x) =0

∇emin (x) ⋅ t⃗min (x) >0

where, ∇ is the gradient operator. The terms emax and emin are direc-
tional derivatives of kmax (x) and kmin (x) in the directions of t⃗max and 
t⃗min respectively.

The criteria defining a crest-line point requires a smooth surface 
(at least twice differentiable here). A triangular mesh representing a 
talar surface, however, is not a smooth surface. To detect the crest 
lines of a mesh, we mainly followed the method by Yoshizawa et al. 

(2005) on fitting local cubic polynomials on mesh points and estimat-
ing the principal curvature fields and their derivatives. The method 
was implemented by developing custom Python code by the author 
(BV). Each detected crest line was expressed as a piecewise linear 
function, that is, a set of discrete points sequentially connected by 
line segments.

2.3  |  Anatomic identification and selection of crest 
lines and their landmarks

Based on our observations, we classified the detected crest lines 
into three types: Type A was referred to crest lines that could be 
(almost) frequently detected on all the meshes and they represented 
noticeable anatomic features. Type B represented crest lines that 
their ends and shapes could not be identically traced on all the 
talar meshes, however, they had anatomic interpretations. Type C 

F I G U R E  2  Geometric demonstrations of (a) tangent plane, tangent and normal vectors, normal plane, and normal curvature, (b) principal 
directions

F I G U R E  3  Classification of the detected crest lines
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denoted crest lines that did not present noticeable anatomic fea-
tures, but they were rather generated due to mesh artifacts. Figure 3 
depicts instances of the three types of crest lines on two different 
talar surfaces. Only type-A crest lines were considered as potentially 
common features of the tali.

Our inter-model observations led to the recognition of two con-
cerns with the detected type-A crest lines. Firstly, some of the crest 
lines contained undetected parts that would have completed circum-
ferential boundaries of articular surfaces (Figure 3). Secondly, some 
type-A crest lines joined/intersected other crest lines (Figure 3). 
Since our SSM required a crest line on a mesh to have a unique cor-
respondence on any other mesh, we defined an ideal or a homolo-
gous set of type-A crest lines that all tali had to contain. This set of 
crest lines were defined based on our visual judgment. Depicted in 
Figure 4, the ideal set of crest lines contained seven classified crest 
lines as:

1.	 PCAS-CL: the crest line (CL) enclosing the posterior calcaneal 
articular surface (PCAS) of the talar body.

2.	 LMS-CL: the superior crest line of the lateral malleolar surface 
(LMS). The end points (I and II) of this crest line was defined based 
on finding the intersection of each end of the crest line with two 
other crest lines. The intersections were either explicitly observed 
or readily inferred on all the tali.

3.	 TC-CL: the crest line of the tarsal canal (TC). The end points (III 
and IV) of the crest line were automatically determined based on 
the crest line detection.

4.	 MMS-CL: the enclosing crest line of the articular surface of the 
medial malleolar surface (MMS).

5.	 MMS-ECL: extended crest line (ECL) of the superior edge of the 
MMS along with the connecting posteromedial tubercle (PMT) 
crest line. The end point (V) of the crest line on the edge of MMS 
was the point where the extension attached to the enclosing 
MMS-CL, and the end point on the PMT (VI) was located by the 
automatic crest line detection.

6.	 TN-CL: posterior crest line of the (middle and/or anterior) calca-
neal articular surface (CAS) of the talar neck (TN). The end point 
(VII) of the crest line on the neck was automatically detected, and 
its other end point connected to the crest line of the head articu-
lar surface (HAS).

7.	 HAS-CL: the crest line of the head articular surface. This crest line 
joined TN-CL on one end and its other end (VIII) terminated at the 
intersection with the anterior crest line of the middle calcaneal 
articular surface of the talar neck.

The end points of the ideal crest lines defined landmarks and 
were referred to as the crest-line landmarks in this study. For a set 
of ideal crest lines, there were eight crest-line LMs as demonstrated 
in Figure 4.

To refine the detected crest lines of each mesh in accordance 
with the ideal set of crest lines, we performed automatic and manual 
filtering, trimming, and completing broken crest lines. The automatic 
and manual filtering of the crest lines were based on a length thresh-
old and type matching of crest lines respectively.

Completing a crest line was performed for the crest lines with 
some part(s) not automatically detected by the detection algorithm. 
Although some regions of a talar surface (in the vicinity of expected 
crest lines) were locally convex/concave along a path, the principal 
curvatures were not extremum there (e.g. locally flat, cylindrical, and 
spherical regions). Consequently, those points were not marked as 
crest-line points by the algorithm. Also, some relatively small (and 
unconnected) pieces of crest lines could have been filtered during 
the automatic filtering. Figure 5a depicts a considerable case of par-
tially undetected/broken MMS-CL.

A gap within a broken crest line was filled by a piecewise con-
tinuous curve whose points tended to align with the direction of 
minimum principal curvature in the convex regions and the direc-
tion of the maximum principal curvature in the concave regions. 
The filling curves then (approximately) followed the curvature 
lines passing through the surface points with locally higher/lower 

F I G U R E  4  The ideal set of crest lines. The arrows point at the crest-line LMs. The blue crest lines are type-B crest lines intersecting with 
the ideal crest lines and defining end-point LMs
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principal curvatures along the convex/concave regions. To find 
such curves, we followed the approach of using anisotropic geo-
desics presented by Zhuang et al. (2014). The implementation of 
anisotropic geodesic in this study was based on Campen's metric 
(Campen et al., 2012; Zhuang et al., 2014), and the method pro-
posed by Kanai and Suzuki (2000) for calculating geodesics on 
triangular meshes.

In some cases, the utilized method of anisotropic geodesics 
failed to generate anatomically desired curves on the triangular 
meshes. This could be due to local alternation between convex 
regions and concave regions in the path of a gap, or accumulation 
of error as the algorithm of anisotropic geodesics traced the cur-
vature lines on a mesh (Kanai & Suzuki, 2000; Zhuang et al., 2014). 
To observe/check the anatomic validity of the generated curvature 
lines, a color map of the mean curvature (kmin + kmax)/2, was utilized. 
The color map assigned warm colors to the convex regions and cold 
colors to the concave regions. Figure 5b depicted the color map of 
the mean curvature on an instance of the talar meshes. The curva-
ture line produced by the anisotropic geodesics to fill the gap in the 
MMS-CL on the mesh is shown in Figure 5c. Figure 5d shows that 
the curvature line falls along a convex region and, by our judgment, 
it approximately marks the boundary of the corresponding articular 
surface. The orientations of the principal curvatures in the vicinity of 
the completed MMS-CL are shown in Figure 5e.

The idealized crest lines of each mesh were resampled for uni-
formly distributed points and mildly smoothened (Laplace smooth-
ing). The aforementioned geodesic detection, and mesh operations 
on crest lines were performed using custom Python code and an ad 
hoc graphical user interface (GUI) prepared by the author (BV) using 
PyVista (Sullivan & Kaszynski, 2019). The generated ideal crest lines of 
instances of the talar meshes are demonstrated in supplemental ma-
terial Sec. 2.

2.4  |  Non-rigid registration of crest lines and 
surfaces for establishing dense correspondences

As a requirement of constructing an SSM, a dense point-to-point cor-
respondence was established between each pair of the talar meshes 
through non-rigid registrations. To this end, we used Gaussian pro-
cess morphable models (GPMMs) (Luthi et al., 2018). A GPMM is 
a probabilistic point distribution model (PDM) in which geometries 
are represented by sets of points and their admissible deformations 
are modeled using a Gaussian process (GP). The fundamentals of the 
method are briefly explained in this section and readers can review 
the details in the work by Luthi et al (Luthi et al., 2018).

Registering a geometric object ΓR ⊂ ℝ
3 onto another object 

ΓT ⊂ ℝ
3 is performed by finding a deformation field u(x) such that,

where ΓR ⊂ ℝ
3 and ΓT ⊂ ℝ

3 are, respectively, referred to as the refer-
ence and target objects, � ⊂ ℝ

3 is an open set, and u(x) is a (smooth) 
vector field that transforms ΓR onto ΓT.

The deformation field is not unique and may not be readily found 
by analytic solutions. The approach of a GPMM is based on estimat-
ing a deformation field by imposing a prior probability distribution 
over admissible transformations of the reference object using a GP 
defined as (Luthi et al., 2018),

where μ(x) and k
(
x, x′

)
 are the mean and kernel (covariance function) 

respectively.
Seeking the transformation morphing ΓR onto ΓT by a GPMM is 

formulated through a Bayesian inference problem. The Bayes’ rule 

(1)ΓT = ΓR + u =
{
x + u (x) |x ∈ ΓR ⊂ � ⊂ ℝ

3, u:� → ℝ
3
}

(2)u∼�� (�, k) , such that �:�→ℝ
3 and k:�×�→ℝ

3×3

F I G U R E  5  (a), (b) Considerable case of undetected/broken MMS-CL on a talar mesh and the color map of the principal curvatures on the 
talar mesh, (c), (d) the completed MMS-CL and the color map of the mean curvature, (e) orientations of the principal curvatures in the vicinity 
of the completed MMS-CL
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for the linear model ΓT = ΓR + u states that p(u|ΓT ,ΓR) = p(u)p(ΓT |u,ΓR)
p(ΓT |ΓR)  

where p(u) represents the GP prior which is a joint Gaussian proba-
bility density function (pdf) for its argument evaluated at a finite 
number of points. For a fixed ΓR and ΓT, that is, observed data, the 
terms p(ΓT∕ΓR)p(ΓT |ΓR) are the likelihood (function of u) and a con-
stant respectively. A deformation field uI such that ΓT ≈ Γ̃T = ΓR + uI , 
is inferred by resorting to a maximum a posteriori (MAP) probability 
estimate as (Luthi et al., 2018),

where Γ̃T is called the registered/fitted object, and the likelihood func-
tion is defined as p

(
ΓT |u,ΓR

)
: =

1

Z
e
−

1

�
D[ΓR ,ΓT ,u], with � ∈ ℝ

+, Z ∈ ℝ
+, 

and D, respectively, being a weighting parameter, a normalizing factor, 
and a distance/metric function measuring the similarity of ΓR and ΓT 
(Luthi et al., 2018; Paragios et al., 2003). Thereby, Eq. 3 is equivalently 
expressed as,

To computationally implement this optimization problem (Eq. 4), 
the GP u ∼ �� (�, k) is (approximately) expressed by a finite sum of 
r basis (stochastic) functions. This approximation is called the low-
rank approximation of the Karhunen-Loève expansion of the GP and 
is formulated as (Luthi et al., 2018),

in which �i ∈ ℝ has the normal distribution � (0, 1) such that any two 
difference �i’s are uncorrelated, each pair (�i ,�i) contains an Eigenvalue 
and Eigenvector of the Hilbert–Schmidt integral operator associated 
with the kernel of the GP. By this expansion, the optimization problem 
(MAP) is solved for �i’s. The accuracy of the calculated uI depends on 
the number of the terms (r) in the low-rank approximation.

A transformation, u(x), registering a reference object onto a tar-
get object is not unique; any smooth transformation is legitimate. 
Although being legitimate, a transformation does not necessarily 
map the points of the reference object to their biologically/math-
ematically homologous points of the target object. Nevertheless, a 

(3)uI = argmax
u

p (u) p(ΓT |u,ΓR)

(4)uI = argmin
u

D
[
ΓR,ΓT , u

]
− �log (p (u))

(5)u ∼ �� (�, k) ⇔ u (x) ≈ � (x) +

r�
i=1

�i
√
�i�i (x) , s. t �i ∼ � (0, 1)

transformation that at least satisfies the correspondence of known 
biological/mathematical homologous LMs can be found. To this end, 
the inference of the transformation must incorporate our knowledge 
of the deformation vectors constructed between known homolo-
gous LMs of the reference and the target object.

If 
{
(LR

i
, LT

i
)|LR

i
∈ ΓR, L

T
i
∈ ΓT , i = 1,…, n

}
 is a discrete set of the 

coordinate pairs of n visually identifiable homologous LMs on the 
geometries of the reference and target objects, the known defor-
mation vectors at LR

i
 for i = 1,…, n can be collected in a discrete set 

Su ⊂ ℝ
3 as (Luthi et al., 2018),

Consequently, the inference problem (Eq. 3) can incorporate the 
known deformation vectors by letting the prior term, p(u) in Eq. 3, 
become conditional on Su. In this regard, a conditional (or posterior) 
PDF p̃ (u) is defined as (Luthi et al., 2018),

where u|Su can be proved to be a GP, that is, u|Su ∼ ��
(
�p , kp

)
, over 

ΓR and it is called the posterior GP. All deformation fields presented by 
u|Su contain known/pre-determined deformation vectors at some finite 
number of points of ΓR. The mean and kernel functions of ��

(
�p , kp

)
 

differ from those of the prior GP, u ∼ �� (�, k), in Eq. 2 and can be 
written in closed-form expression involving the mean and kernel of the 
prior, and the data provided by Su (see Luthi et al., 2018 for details).

In this study, the implementation of GPMMs was performed 
through our custom coding in Scala programming language and using 
Scalismo, an open source library for statistical shape modeling and 
model-based image analysis in Scala (Scalismo, 2020). We carried 
out the registration of the talar meshes through two steps:

2.4.1  |  Step 1: Registration of crest lines

A talar mesh was randomly selected to be the reference mesh. The 
ideal crest lines (section 2–3) of the reference mesh were collected 
in a set denoted as the reference crest-line object. Each set of the 
ideal crest lines of other meshes formed a target crest-line object 
(Figure 6).

(6)Su =
{
LT
i
− LR

i
|LR

i
∈ ΓR, L

T
i
∈ ΓT , i = 1,…, n

}

(7)p̃ (u) : = p
(
u|Su

)

F I G U R E  6  The reference and instances of target crest-line objects
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The reference crest-line object contained 843 points out of 
which eight points where the LMs of its ideal crest lines (section 
2–3). Other crest-line objects had different numbers of points but 
contained eight LMs being in correspondence with those in the ref-
erence and other crest-line objects (Figure 6).

The vectors from the LMs of the reference crest-line object to 
the corresponding LMs of a target crest-line object defined a set of 
known deformation vectors (Eq. 6) recruited to obtain a posterior 
GP (Eq. 7) over the reference crest-line object. We employed a zero-
mean prior GP (Eq. 2) with a multi-scale isotropic Gaussian kernel for 
generating a GPMM. The multi-scale Gaussian kernel was defined as 
(Luthi et al., 2018),

where si ∈ ℝ is the scale, �i ∈ ℝ denotes the bandwidth param-
eter defining the spatial range over which deformations are cor-
related, and I3×3 is the identity matrix. The values of the parameters 
were obtained by trial and error (considering the size of the ref-
erence object and permissible magnitudes of its deformations) as 
(si , � i) ∈ {(0.15, 1.0) , (0.12, 0.5) , (0.1, 0.1) , (0.09, 0.05) , (0.04, 0.02)}.

Using the multi-scale kernel allowed modeling different scales 
of deformations needed for registration of different-scale geomet-
ric details (Luthi et al., 2018). To relieve the model from including 
global translations and rotations, each crest-line object was already 
aligned to the reference set of crest line through a partial ordinary 
Procrustes analysis (Dryden & Mardia, 2016) involving translations 
and rotations. It is worth mentioning that each deformation field 
generated by the GPMM model was a smooth vector field and it 
would deform the entire reference crest-line object.

The quality of the registrations was visually assessed and it 
demonstrated high accuracy of fit. In some cases, local discrepancies 
of relatively moderate orders were observed. To achieve a perfect 
fit, the registered object (the deformed reference object) was pro-
jected onto the target object. The projection was based on finding 
the closest-point on the target object.

The non-rigid registration, morphing the reference crest-line ob-
ject onto each target crest-line object, resulted in fitted crest-line 
objects each having 835 pseudo LMs in addition to the end-point 
LMs. This established dense correspondence between each pair of 
the crest-line objects.

2.4.2  |  Step 2: Registration of the triangular meshes

To establish dense correspondence across the talar meshes, the 
randomly selected talar mesh was set as the reference mesh and 
non-rigidly registered onto the rest of the meshes. The registration 
followed the same procedure performed for the registration of the 
crest-line objects.

A set of known deformation vectors (from the reference mesh 
to a target mesh) needed for defining a posterior deformation field 
was determined based on the established dense correspondence 
between the reference crest-line object and the crest-line object 
associated with a target mesh. The points of a crest-line object (of a 
mesh) defines 835 pseudo LMs and 8 end-point LMs (end points of 
the crest lines) on the mesh. Figure 7 demonstrates an instance of 
the known deformation field directed from the crest-line LMs of the 
reference mesh to the crest-line LMs of a target mesh.

Prior to determining the kernel of a GPMM for non-rigid regis-
tration of the meshes, each (target mesh) was rigidly aligned to the 
reference mesh. The rigid alignment of each mesh used the crest-line 
LMs (roughly outlining the global boundaries of the mesh) in par-
tial ordinary Procrustes analysis (Dryden & Mardia, 2016). The rigid 
alignment brought two meshes close enough so that the non-rigid 
registration would dominantly include (local) deformations (of the 
reference mesh) rather than translations and rotations. The kernel 
of the GPMM, generating dominantly local deformation fields over 
the reference mesh, was defined by multiplication of two Gaussian 
isotropic kernels as,

(8)k
(
x, x�

)
: =

n∑
i

siI3×3e
−||x−x�||2∕�2

i

(9)k
�
x, t�

�
= s1I3×3e

−‖x−x�‖2
∕𝜎2

1 ⊙ s2I3×3e
−‖x−x�‖2

∕𝜎2
2

F I G U R E  7  An instance of the known deformation field directed from the crest-line LMs of the reference mesh to the crest-line LMs of a 
target mesh
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where ⊙ denotes element-wise multiplication, (si , � i) = (0.05, 0.7)

si , � i) = (0.05, 0.2).
The quality of each fit was first assessed visually by scrolling 

through the cross sections of the fitted mesh displayed over the cor-
responding target mesh. Additionally, the Hausdorff distance (Alt & 
Scharf, 2008) between a fitted mesh and the corresponding target 
mesh was obtained. The average Hausdorff distance taken over all 
the cases was 0.01 ± 0.004 mm. This value was far less than 1 mm 
being the average size of the triangles.

Non-rigid registration of the reference mesh onto each talar 
mesh created a fitted mesh whose nodes were in correspondence 
with the nodes of the reference mesh. This consequently estab-
lished a point-wise correspondence (with nodes as LMs) between 
each pair of meshes.

To assess the registration in terms of establishing the true bio-
logic/mathematical correspondence, we manually collected 44 LMs 
on the reference mesh and observed their post-registration loca-
tions on each fitted mesh. It was attempted to use observable salient 
anatomic features (Turley & Frost, 2013) for locating the LMs.

2.5  |  Constructing an SSM

An SSM is based on a set of training shapes with known inter-shape 
geometric correspondence; here, point-wise correspondence. By 
definition, the shape of a geometric object is all the geometrical in-
formation modulo location, rotation, scale. We performed full gen-
eralized Procrustes analysis (GPA) (Dryden & Mardia, 2016) on the 
non-rigidly registered talar meshes (i.e. the fitted meshes), to obtain 
their shapes as the training shapes in the form of triangular meshes 
each having N = 17424 nodes. Moreover, the analysis determined 
the mean shape/mesh of the training shapes (Dryden & Mardia, 
2016). As a technical remark, our application of the full GPA did not 
include normalizing the (centroid) sizes of the meshes, therefore, the 
size of the resultant mean shape was in the order of the average size 
of the meshes in the data set.

We constructed a Gaussian PDM-type SSM of the talus ex-
pressed as (Cootes et al., 1995a; Luthi et al., 2018),

where s ∈ ℝ
3N contained the coordinates of the points of a predicted 

talar shape, and s ∈ ℝ
3N collected the coordinates of the points of the 

mean shape (Γ ⊂ ℝ
3) of the training talar shapes. Obtained from the 

principal component analysis (PCA) of the training shape data, the 
terms λi and vi are, respectively, an eigenvalue and its corresponding 
eigenvector of the covariance matrix Σ of the training data, and t is 
the number of non-zero eigenvalues of Σ. The covariance matrix is 
defined as,

(10)s = s +

t�
i=1

�i
√
�ivi with �i ∼ � (0, 1)

(11)Σ =
1

n − 1

n∑
i=1

(
si − s

) (
si−s

)T

in which si ∈ ℝ
3N denotes the coordinate vector of a training shape, 

and n = 49 is the number of the training shapes.
According to the model (Eq. 10), vi is a deformation mode and �i 

quantifies the variance associated with the i-th deformation mode. The 
significance of the shape variation produced by a single or collectively 
by m deformation modes is expressed by (Cootes et al., 1995b),

where the denominator is the total variance associated with all modes.
By defining a modal shape parameter (weight) as bi: = �i

√
�i , as-

sociated with the i-th deformation mode vi, the vector of the i-th 
shape mode �i ∈ ℝ

3N can be written as (Cootes et al., 1995a; Dryden 
& Mardia, 2016),

where bi is left to vary three-times of its standard deviation (SD) about 
its mean, that is, − 3

√
�i ≤ bi ≤ + 3

√
�i. Since bi has a Gaussian distri-

bution, this range encompasses nearly hundred percent of the possible 
values of bi. The shape modes are sorted from the largest to the small-
est variances (significance values).

2.6  |  Average shape deviation

In order to measure and visualize the deviations of the shapes of the 
tali from their mean shape, the following average magnitude field of 
shape deviation (in millimeters) was computed over the domain of 
the mean shape/mesh Γ,

where xi ∈ Γ and xj ∈ Γj are, respectively, the coordinate vectors of the 
i-th node of the mean shape /mesh and its corresponding node/LM of 
the j-th training shape/mesh Γj in the data set. Each Γj was already rig-
idly aligned onto Γ by full ordinary Procrustes analysis (OPA) (Dryden 
& Mardia, 2016). The constant k = 49 is the number of the meshes. In 
addition to translation and rotation, the full OPA scaled each mesh to 
reach the closest alignment with the mean mesh.

Moreover, the average shape deviation was relatively expressed 
by normalizing the average field (d) as,

where ‖‖Γ‖‖C = 22.3 mm is the centroid size of Γ. The centroid size of a 
mesh Γ is defined as (Dryden & Mardia, 2016),

(12)g (m) =

∑m

i=1
�i∑t

i=1
�i

(13)�i = s + bivi

(14)d:Γ → ℝ
+�d �xi

�
: =

∑k

j=1
��xi − xj��
k

(15)dN: =
1

‖‖Γ‖‖C
d

(16)‖Γ‖C : =
√∑

i��xi − x��2√
n
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in which xi ∈ Γ, x and n are respectively the coordinate vector of the 
i-th node, the coordinate vector of the centroid, and the number of the 
nodes of the mesh. Having the unit of length, the centroid size is in fact 
the root mean square of the distances of the nodes of the mesh from 
its centroid.

2.7  |  Inter-study comparison of mean shapes

As our data set was merely a limited sample of the population, we 
compared the talar mean shape of this study with few available 
mean shapes presented by other researchers. By the comparison, 
we attempted to demonstrate instances of methodological and sam-
ple effects on the calculated mean shapes. The mean shapes ob-
tained by the works of Liu et al. (2020), Trovato et al. (2017), and 
Lenz et al. (2021) were available to us. The data set of our study 
intersected with the data set used by Liu et al and Trovato et al, how-
ever, they utilized different shape registration methods to establish 
correspondence and obtain the mean shape. Liu et al followed the 
shape registration method proposed by van de Giessen et al. (2012). 
Trovato et al attempted to define and find the “best talar shape,” 
which is the geometry of the talus whose surface had the lowest 
average deviation from the surface of other tali in the data set. To 
find the best talar shape, they merely recruited a rigid registration 

method (iterative closest point method). The data set of the study 
by Lenz et al was completely different from ours and they used the 
registration method proposed by Cates et al. (2007).

Using a GPMM followed by full OPA, we registered each mean 
shape onto our calculated mean shape. Then, the magnitude fields 
of shape deviation between our mean shape and the other mean 
shapes were obtained and plotted over the domain of our mean 
shape. The deviation fields were presented as both percentage of 
the centroid size of our mean shape and as absolute magnitude in 
millimeters.

3  |  RESULTS

3.1  |  Geometric features and anatomic novelties in 
talar samples

The detected (type-A and type-B) crest lines of four instances of 
talar meshes are demonstrated in Figure 8. Color maps of the mean 
curvatures providing clear visualization of the concave (cold colors) 
and convex (warm colors) areas of the tali are also depicted on the 
surfaces. The results clearly indicated that the curvature-based geo-
metric features (crest lines, concave, and convex areas) appeared 
differently in (class of) shape and local occurrence. We interpreted 

F I G U R E  8  The detected (type-A and type-B) crest lines and color maps of the mean curvatures of four instances of talar meshes
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a geometric feature as an anatomic novelty when its shape or its 
occurrence could not be traced on different tali. For clarification, 
some instances of regions containing noticeable anatomic novelties 
are as follows.

1.	 The medial crest line of the talar neck. As indicated by an 
arrow(s) in Figure 8  medial view, the crest line is broken and 
missing parts in talar samples A, C, and D.

2.	 The inferior crest line of the LMS. The lateral view in Figure 
8 shows that this crest line, denoted by an arrow(s), loses parts in 
tali B, C, and D due to interference with concave regions.

3.	 Anterior CAS of the talar head and middle CAS of the talar neck. 
The inferior view of talus A in Figure 8 shows that the anterior 
CAS and HAS are fused into a whole surface (arrow), while these 
two surfaces (pointed by arrows) are separated by a crest line (of 
a ridge) in the other tali.

4.	 PMT (marked by a dashed ellipse). The inferior view of the tali 
in Figure 8 shows that PMT of talus D can have a different class 
(type) of shape compared with the PMT of the other tali.

3.2  |  Assessing the true correspondence

The 44 manually selected LMs on the reference surface and their 
corresponding LMs on a fitted surface are demonstrated in Figure 9. 
Two LMs with the same color are in correspondence (supplemental 
material Sec. 3 presents more instances of comparison). Our judg-
ment, through visualization, suggested that the non-rigid registra-
tion produced a perceptually true biologic and/or mathematical 
correspondence to the extent that could be visually and qualitatively 
assessed.

3.3  |  The mean shape

Figure 10 depicts the mean shape of the 49 talar meshes. The crest 
lines (all types and with no manual gap filling) and the mean curva-
ture map of the mean shape surface were also computed and visu-
alized. Compared with other tali (e.g. instances shown in Figure 8), 
the mean shape contained mild local curvature fluctuations and 
smoother crest lines with fewer gaps.

3.4  |  Shape modes

The PCA-based SSM contained 48 shape modes (as defined by Eq. 
13). The first seven shape modes plus the 10th mode are demon-
strated in Figure 11. For each mode, two limits of the deformed 
mean shape are demonstrated. The parameters of the limit shapes 
are equal to − 3SD and + 3SD of the values of modal shape param-
eters. Calculated by Eq. 12 and expressed in percentage, the signifi-
cance of each mode is also shown beside each mode.

The first seven modes described 58% of the total shape variation 
of the talus. Other modes, not demonstrated here, individually de-
scribed relatively localized shape variations gaining less than 4% of 
significance of a mode. Exceptionally, we illustrated the 10th mode 
describing lateral/medial rotation of the talar head. The depicted 
modes were described as follows.

Mode 1: overall ovalization/spherization of the talus through 
elongation/contraction of the length and contraction/elongation of 
the height of the talus.

Mode 2: change in the sphericity of the talar head, and variation 
in neck-head transition region including the CAS of the talar neck; 
the posterior edge of the CAS demonstrated a significant deforma-
tion. Additionally, the posterior process medially/laterally deformed 
in this mode.

Mode 3: change in the inclination angle of the talar neck, and 
local shape changes in PMT and MMS.

Mode 4: variation in the overall curvature of PCAS and the 
length of the talar neck (the deeper the articular surface the shorter 
the neck). The shape of the posterior edge of the CAS also experi-
enced deformation.

Mode 5: simultaneous local expansion/contraction of the talar 
head and posterior process regions.

Mode 6: concurrent lateral/medial bending of the talar neck and 
local contraction/expansion of PMT.

Mode 7: change in the width of the trochlear surface (along with 
some local variations in the HAS region).

Mode 10: lateral/medial rotation of the talar head.

3.5  |  Average magnitude field of shape deviations

Figure 12  shows the deviation fields d and dN (Eqs. 14 and 15) 
contour-plotted with different scales on the mean shape/mesh. The 
values of d and dN are expressed in millimeters and percentage re-
spectively. The results showed that the average deviations of the 
talar shapes from their mean shape varied from 0.45 mm to 2.23 mm 
(i.e. 2–10% of the size of the mean shape). The deviation notably at-
tained smaller magnitudes on the articular surfaces (except at small 
region of ACAS) in comparison with the deviation magnitudes on 
non-articular surfaces, that is, the articular boundary regions and 
talar processes. This became distinctively observable upon setting a 
deviation threshold of 1.34 mm or 6% of the size of the mean shape.

3.6  |  Inter-study comparison of mean shapes

Figure 13 demonstrates the magnitude fields of shape deviations 
between our mean shape and the best talar shape found by Trovato 
et al. (2017), and the mean shapes obtained by Liu et al. (2020) and 
Lenz et al. (2021). The deviation fields indicated that the best talar 
shape presented by Trovato et al was more deviated from our pre-
dicted mean shape than the mean shapes predicted by Liu et al and 
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Lenz et al. Both mean shapes by Liu et al and Lenz et al demonstrated 
magnitudes of deviation to be <1.84  mm or 8.2% from our mean 
shape; particularly the deviations of the articular surfaces were 
<1.34 mm (6%) and mostly <0.67 mm (3%).

4  |  DISCUSSION

In this study, geometric features in the form of crest lines (ridge and 
valley lines) were detected on talar surfaces. Our results indicate the 
repeatability of the crest lines detection for different tali, and there-
fore, confirm that crest lines can be regarded as anatomic features 
manifested in the form of ridge and valley lines. Displaying the crest 
lines and curvature maps of the talar geometries (Figure 8), the re-
sults support our initial hypothesis suggesting the existence of ana-
tomic novelties (i.e. anatomic features observable in some tali but 
not all) in talar shapes. This, in fact, agrees with anatomical observa-
tions on cadaveric samples (Kelikian, 2011). For instance, the fusion 

of the articular surfaces and severe change in the shape of the PMT 
are also reported in Ref. (Kelikian, 2011).

Appearance of anatomic novelties should raise a caveat regard-
ing studies based on talar homology-free SSMs in which dense cor-
respondences are automatically established without prior inclusion 
of known homologous data. To mitigate this potential issue, we, 
for the first time, proposed the recruitment of classified crest lines 
(Figure 4) whose inter-sample correspondence provided a (true) 
feature-to-feature correspondence between the samples. The prior 
inclusion of the crest-line correspondence (using a GPMM) in the 
process of establishing a dense point-wise correspondence between 
the talar meshes successfully led to a correspondence that could 
perceptually represent the true correspondence as per our visual 
assessments (Figure 9 and supplemental material Sec. 3). We should 
emphasize that the fidelity of visual assessments of the true corre-
spondence can be argued; particularly where there is no conspicu-
ous biological (type-I) LMs or other loci, for example, crest lines, and 
where there exist local anatomic novelties. However, as inevitably 

F I G U R E  9  Manually selected LMs on the reference surface (mesh) and their corresponding LMs on a fitted surface. Two LMs with the 
same color are in correspondence

F I G U R E  1 0  The mean shape of 49 talar meshes
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followed in this study, the approximate and qualitative assessments 
of the correspondence regarding the selected LMs suggest that the 
established correspondence is reasonably consistent with visible 
geometric features of the talar surfaces.

Having established the dense correspondence, we computed 
the mean shape and the shape modes regarding the talar data set. 
As expected, averaging the shapes led to geometric regulations in 
the sense of removing local curvature fluctuations. This in turn re-
sulted in (qualitatively) smoother articular surfaces and peripheral 
processes.

The shape variations about the mean shape were described by 
the shape modes. The pattern of the seven modes and the 10th 
mode, describing more than 60% of the shape variations, could be 
clearly recognized. The main reason for not reporting other modes 
was that describing higher modes with relatively small variance was 
difficult, if not impossible, as they contained rather localized defor-
mations containing noise (mainly due to segmentation and discreti-
zation errors).

Shape modes revealed in this study agree in shape with modes 
reported by other studies on statistical shape variations of the 
human talus (Lenz et al., 2021; Tümer, Arbabi, et al., 2019; Tümer 
et al., 2016; Tümer, Vuurberg, et al., 2019). However, the significance 
values of the modes, hence their relative participations in describing 
the talar shape variations are different among studies including the 
present study. For example, Tümer et al reported the rotation of the 
talar head as the first mode (highest significance) in two different 
studies (Tümer, Arbabi, et al., 2019; Tümer, Vuurberg, et al., 2019) 
whereas this shape mode was not reported in another study (Tümer 
et al., 2016) by the same group. The latter study only reported 
modes with significance values larger than 5%; therefore, this mode 
had less significance as seen in the present study (mode 10 with 3% 
of significance). It is worth mentioning that despite showing a small 
modal significance, the rotation of the talar head is a realistic bio-
logical mode which is clinically observed (Kelikian, 2011). Another 
example can be the shape mode describing the change in the length 
of the talus (mode 1 in this study). This mode was accompanied by 

F I G U R E  11  Shape modes of the talus. The number between the parentheses denotes the significance of each mode
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different significance values in this study and in the works of Tümer, 
Arbabi, et al. (2019), Tümer et al. (2016), Tümer, Vuurberg and et al., 
(2019) and study by Lenz et al. (2021).

The diversity in the mode shapes and their significance values in 
particular, suggests that the talar sample groups involved in differ-
ent studies have not fully represented the population; most probably 
due to their limited sizes and the part of the population available 
for the sampling. The registration methods used in different studies 
for establishing the geometric correspondence may also affect the 
mode shapes and the mean shape as well. The significance of this 
concern needs further investigations; particularly considering the 
method proposed in this study and the methods recruited by works 
of Tümer, Arbabi, et al. (2019), Tümer et al. (2016), Tümer, Vuurberg, 
et al. (2019) and Lenz et al. (2021). Tümer et al and Lenz et al fol-
lowed probabilistic methods of non-rigid registration, respectively, 
proposed by van de Giessen et al. (2012) and Cates et al. (2007, 
2017).

One application of an SSM of the talus is to explore the possi-
bility of designing universal talar prostheses having a few different 
shapes and sizes matching the majority of the population. Compared 
with custom-made prostheses (Fang et al., 2018; Ruatti et al., 2017; 
Taniguchi et al., 2012), the main benefit of the universal prosthe-
ses will be reduction in the surgery cost and preoperative waiting 
time (Bowes et al., 2019). The first choice for the shape template 
of universal talar prostheses can be the mean shape which is also 
proposed by other researchers (Liu et al., 2020; Trovato et al., 2017).

Maintaining the joint congruency is the foremost factor deter-
mining whether the mean shape of a talar population can be served 
as a scalable template for universal talar prostheses or not. Our 

results, demonstrating the average deviation magnitudes of the talar 
shapes from their mean shape (Figure 12), state that uniform scal-
ing of the mean shape to generate different sizes of the universal 
prosthesis may introduce some degrees of incongruency between 
the prosthesis and its correspondent natural talus. However, we 
can speculate that incongruency due to the shape deviations may 
be regarded as negligible and amenable when considering the mean 
shape as the shape template for the universal prostheses.

The first issue that an incongruent prosthesis may cause is diffi-
culty of implantation due to excess (outward) shape deviations from 
the shape template, that is, the mean shape. Our results showed 
that generating the geometry of a talus by scaling the mean shape 
could averagely produce up to 1.34 mm, but mainly <1.15 mm, of 
shape deviation at the articular surfaces (Figure 12). These values 
are rather conservative since the predicted shape deviations only 
included bone-to-bone deviations and did not account for the car-
tilage thickness. Therefore, scaling the mean shape to obtain the 
geometry of a prosthesis that has no cartilage will leave space of 
tolerance for excess (outward) shape deviations. Considering the 
average cartilage thickness of the talus as 1.1 ± 0.18 mm (Millington 
et al., 2007) and comparing it with the maximum shape deviation 
of 1.34  mm, we can conclude that the major part of the excess 
deviations falls within the cartilage thickness and hence reduces 
to an order of 0.24 mm (on average). This highly mitigates the dif-
ficulty of implantation that may arise due to uniform scaling of the 
mean shape. Shape deviations at non-articular surfaces may lead 
to implantation difficulty as well. The results predicted a maximum 
shape deviation of 2.23 mm on non-articular regions. Non-articular 
shape deviations do not affect the joint congruency and can be 

F I G U R E  1 2  Average magnitude field of shape deviations of the tali from their mean shape
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locally rectified when designing the shape template for universal 
prostheses.

Congruency of a prosthesis can also be considered in terms of 
articular surface curvatures. Therefore, the second concern on gen-
erating the geometry of a prosthesis by uniformly scaling the mean 
shape is maintaining the natural articular curvatures. In this regard, 
Lenz et al. (2021) used a curvature-based congruency index and 
demonstrated that inter-individual talar shape variations (i.e. devia-
tions) with respect to the mean shape had minimal effect on the joint 
congruency at the articular surfaces.

Further justifications of our speculation on the congruency of 
a talar prosthesis was designed by scaling the mean shape needs 
evidence from clinical practices. To our knowledge, there is no study 
but only one that implicitly justifies our speculation. In an innova-
tive attempt by Bowes et al. (2019), a shape template for universal 
talar prostheses was initially chosen based on the work of Trovato 
et al. (2017) defining the “best talar shape” The defined best talar 
shape (i.e. the talus that its surface had the lowest average deviation 
from the surface of other tali under study) can be regarded as an 
approximation to the mean shape defined in our work. The shape 

template was then scaled to generate the geometries of ten univer-
sal prostheses with different sizes. For a particular patient whose 
both tali were collapsed, a proper size of the prosthesis was chosen. 
Then, prior to manufacturing and clinical implantation, geometric 
modifications had to be made on the geometry of the prosthesis to 
remove larger peripheral prominences from non-articular surfaces 
to facilitate easier insertion. Except the adjustments that had to be 
made on the non-articular regions, they did not encounter joint in-
congruency issues upon obtaining the geometry of the prosthesis by 
scaling the shape template. This agrees with our speculation stating 
that a universal prosthesis designed through scaling the mean shape 
may need local rectification of non-articular surfaces, and will have 
minimal and hence negligible incongruency at the articular surfaces.

Although our justification for the viability of the mean shape as 
a shape template of the universal prostheses is based on our limited 
data set and the SSM, the inter-study compression results, shown in 
Figure 13, suggest that different samples and approaches for obtaining 
the mean shape can have minimal effect on the resultant mean shape.

The mean shape comparisons (Figure 13) showed that the best 
talar shape presented by Trovato et al. deviated much more from our 

F I G U R E  1 3  Shape deviations of the best talar shape presented by Trovato et al. (2017), and the mean shapes obtained by Liu et al. (2020) 
and Lenz et al. (2021) from the mean shape predicted in this study
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mean shape than the mean shapes obtained by Liu et al. and Lenz et al. 
did. This observation was in fact expected since the best talar shape 
suggested by Trovato et al was one of the (scaled) tali geometry in 
the data set rather than being a statistically computed mean shape. 
Our work and the works by Liu et al. and Lenz et al. established dense 
correspondences between the talar shapes in their data sets by using 
three different methods of shape registration. Moreover, our data set 
intersected with data set in the work of Liu et al., and yet completely 
differed from the data set of Lenz et al. Despite the differences in the 
methods and data sets, the mean shapes predicted by Liu et al. and 
Lenz et al are close to our mean shape by <1.34 mm and 0.67 mm of 
overall and articular surface deviations respectively.

Although limited, this inter-study comparison may indicate that 
talar shapes have relatively small variations about their population 
mean shape and hence the mean shape can definitely be a promising 
shape template for universal talar prostheses. This assertion can be 
further confirmed by SSMs of talar data sets that are large enough 
to present at least particular target populations.

To this date, there are only few and limited studies investigating 
the geometry of the talus with the intention of prosthetic design. 
Our study is another step contributing to this new area although it 
has some limitations to be considered. As the first limitation, the 
data set did not contain large number of talar shapes from differ-
ent target populations. Definitely, using a larger data set would have 
led to more comprehensive prediction of the mean shape and shape 
modes. Second, detection of the end points defining the crest-line 
landmarks (Figure 4) might depend on parameters of the crest-line 
detection algorithm and mesh attributes (e.g. smoothness). Not re-
jecting this limitation though, based on our sensitivity analysis (e.g. 
supplemental material Sec. 1) on the detection algorithm, we deduce 
that this is not a major source of error that can globally affect the 
mean shape and the mode shapes. Third, our approach contained 
some manual and subjective steps (i.e. filtering, trimming, and com-
pleting crest lines) for setting idealized crest lines on each mesh. This 
reduced the model preparation speed and might introduce some 
local error in shape variations.

Detecting and identifying homologous crest lines of the talus 
can also be extended to other bones with surface irregularities. For 
instance the calcaneus, pelvis, and femur contain potentially homol-
ogous crest lines. By the same method employed for the talus, we 
detected the crest lines of the aforementioned bones and demon-
strated them in supplemental material Sec. 4. In general, crest lines 
manifest higher order anatomic features when compared with LMs 
that are merely points. Other than being considered as homologous 
loci in shape registration and SSMs, they can have pure applications 
in descriptive anatomical studies as well.

5  |  CONCLUSIONS

This study demonstrated that the talus has surface complexities in 
the form of salient crest lines which can be repeatedly detected and 
utilized as homologous features of tali. As the novelty of this study, 

we recruited (posterior) GPMMs to incorporate the correspondence 
data of the crest lines in the process of establishing the correspond-
ence between talar surfaces (meshes). Based on our visual judgment, 
this approach can conduct the registration method (GPMM) toward 
establishing the true correspondence.

As a clinically related aspect of this study, the SSM of the talus 
revealed geometric information that can be beneficial for designing 
universal talar prostheses. The mean shape of the talar shapes in a 
data set can be recommended as a scalable shape template for uni-
versal talar prostheses.
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