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Abstract

We conducted cohort- and race-specific epigenome-wide association analyses of mitochondrial deoxyribonucleic acid
(mtDNA) copy number (mtDNA CN) measured in whole blood from participants of African and European origins in five
cohorts (n = 6182, mean age = 57–67 years, 65% women). In the meta-analysis of all the participants, we discovered 21
mtDNA CN-associated DNA methylation sites (CpG) (P < 1 × 10−7), with a 0.7–3.0 standard deviation increase (3 CpGs) or
decrease (18 CpGs) in mtDNA CN corresponding to a 1% increase in DNA methylation. Several significant CpGs have been
reported to be associated with at least two risk factors (e.g. chronological age or smoking) for cardiovascular disease (CVD).
Five genes [PR/SET domain 16, nuclear receptor subfamily 1 group H member 3 (NR1H3), DNA repair protein, DNA
polymerase kappa and decaprenyl-diphosphate synthase subunit 2], which harbor nine significant CpGs, are known to be
involved in mitochondrial biosynthesis and functions. For example, NR1H3 encodes a transcription factor that is
differentially expressed during an adipose tissue transition. The methylation level of cg09548275 in NR1H3 was negatively
associated with mtDNA CN (effect size = −1.71, P = 4 × 10−8) and was positively associated with the NR1H3 expression level
(effect size = 0.43, P = 0.0003), which indicates that the methylation level in NR1H3 may underlie the relationship between
mtDNA CN, the NR1H3 transcription factor and energy expenditure. In summary, the study results suggest that mtDNA CN
variation in whole blood is associated with DNA methylation levels in genes that are involved in a wide range of
mitochondrial activities. These findings will help reveal molecular mechanisms between mtDNA CN and CVD.

Introduction

Mitochondria are power houses which generate adenosine
triphosphate (ATP) through oxidative phosphorylation (OXPHOS)
(1). ATP is the molecular energy for normal cellular activities.
Mitochondria are also centrally involved in a wide range of
fundamental biochemical processes, including intermediate
metabolite synthesis, ion homeostasis, oxidative stress and pro-
grammed apoptosis (2,3). Furthermore, mitochondria uniquely
harbor their own nuclear double-stranded circular genome,
i.e. mitochondrial DNA (mtDNA). This mtDNA is made up of
16 569 base pairs and contains 37 genes, which code for 13
essential protein subunits of the OXPHOS complexes as well
as two rRNAs and 22 tRNAs required for protein synthesis
within the mitochondrial matrix (4). In addition to the 37
genes in the mtDNA, over 1000 genes in the nuclear genome
also code for mitochondria-related proteins, including those
that are responsible for mtDNA replication and transcription
(5). Unlike the diploid nuclear DNA, individual cells typically
contain hundreds, even thousands of mtDNA copies (6). The
replication of mtDNA is tightly coupled with the transcription
and subsequent expression of mtDNA genes (7), and thus,
mtDNA copy number (mtDNA CN) is strictly regulated to
meet the energy needs of diverse cell types (8). This is critical
for the maintenance of mitochondrial functions and cellular
homeostasis. Human mtDNA CN generally declines after middle
age, and this decline progresses at different rates across tissues
in mice (9) and in humans (10,11). Reduced mtDNA CN has
also been reported in several complex diseases, including
cancers (12), cardiovascular diseases (CVDs) (13), metabolic traits
(14,15), kidney diseases (16) and neurodegenerative disorders
(17–19). These observations suggest a link between mtDNA CN,
mitochondrial dysfunction and impaired energy metabolism in
the pathogenesis of these disorders.

DNA methylation, the addition of methyl groups to the DNA
molecule, is by far its most commonly characterized epigenetic
modification (20). DNA methylation regulates gene expression
(20). Aberrant nuclear DNA methylation levels are associated
with many complex diseases (21,22). Intriguingly, a recent study
found different nuclear DNA methylation patterns in the brain
tissues of a hybrid mouse model that contained identical nuclear
genomes but different mtDNA backgrounds (23). Experimental
studies also revealed that nuclear DNA methylation and gene
expression levels changed after experimentally induced mtDNA
depletion and restoration in human cells (24,25). Conversely,
previous studies have also reported that altering DNA methy-
lation levels in the nuclear-encoded DNA polymerase gamma
catalytic subunit (POLGA) influenced the mtDNA CN levels in a
cell-specific manner (26). These findings suggest the existence
of a dynamic ‘cross-regulation’ between nuclear and mitochon-
drial genomes, and this ‘cross-regulation’ is at least partially
regulated through the methylation of the nuclear genome.

To that end, we hypothesized that mtDNA CN variation
is associated with DNA methylation changes in the nuclear
genome with downstream transcriptomic features that can
be characterized in whole blood. To map the epigenetic links
between nuclear DNA and mtDNA CN, we conducted cohort-
and race-specific epigenome-wide association studies (EWAS)
of mtDNA CN in whole blood, followed by a meta-analysis of
all participants (n = 6182). In addition, we performed Mendelian
randomization (MR) analyses to infer possible causal effects of
identified DNA methylation sites (CpG) on mtDNA CN variation.
In the whole blood samples from Framingham Heart Study (FHS)
participants, we examined the associations of the identified
CpG sites with the expression levels of the cis-genes. We further
integrated the findings with known biological pathways and
their molecular functions to explore the functional relevance of
the mtDNA CN-associated CpG sites (Fig. 1).
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Figure 1. Flowchart: study design and statistical analysis.

Results
Participant characteristics

This study included a total of 6182 participants (3506 partic-
ipants of European origin and 2676 African origin) from five
cohorts (Supplementary Material, Table S1). The participants
were mostly middle-aged or older (mean age = 57–67 years
across cohorts), and about 65% of them were women. Except
for the Women’s Health Initiative (WHI) study, which recruited
only women, the other four cohorts had both men and women.
Most (n = 4808, n = 78%) participants’ DNA methylation was mea-
sured using HumanMethylation 450K BeadChip arrays, and 1374
(22%) participants’ DNA methylation was measured with Methy-
lationEPIC BeadChip arrays. We prioritized the meta-analysis
results of the common CpGs (n ∼ 430 000) between two platforms
from 6182 participants for subsequent statistical analyses and
functional inference. The results in meta-analysis of 1374 par-
ticipants with additional CpGs that were only measured with
MethylationEPIC BeadChip arrays are presented in Supplemen-
tary Results.

Significant CpGs identified by meta-analyses in all
participants

No substantial inflation was observed in the test statistics in
cohort-specific EWASs (Supplementary Material, Table S2). In
the primary meta-analysis of all cohort participants, 21 CpGs
at 13 genetic loci were significantly associated with mtDNA at
P < 1 × 10−7 (Table 1, Fig. 2), and 285 CpGs showed evidence of
association with mtDNA CN at P < 1 × 10−4 (Supplementary
Material, Table S3). A slightly larger proportion of epigenome-
wide CpGs (56%) were negatively associated with mtDNA CN
(Fig. 3). Of these 21 CpGs, 18 (86%) were negatively associated
with mtDNA CN, with a 1.3–2.6 standard deviation (s.d.) decrease
in mtDNA CN corresponding to 1% increase in DNA methylation
(Table 1). For example, a 1% increase in methylation level of
cg03732020 in the nuclear receptor subfamily 1 group H member
3 (NR1H3) was significantly associated with a 2.2 s.d. decrease
in the mtDNA CN level in the meta-analysis across all par-
ticipants (P = 2.2 × 10−8). Three significant CpGs showed pos-
itive association with mtDNA CN. For example, a 1% increase

in methylation level of cg05673882 in DNA polymerase kappa
(POLK) was significantly associated with a 2.2 s.d. increase in
mtDNA CN level in the meta-analysis across all participants
(P = 2.3 × 10−8).

Comparison of effect sizes between participants
of European and African origins

Six CpGs were significantly (P < 1 × 10−7) associated with
mtDNA CN in the meta-analysis of participants of European
origin (n = 3506), and a total of 183 CpGs displayed evidence
of association with mtDNA CN (P < 1 × 10−4) (Supplementary
Material, Table S4). Three CpGs were found to be significantly
associated with mtDNA CN in the meta-analysis of participants
of African origin (n = 2676), and 72 CpGs displayed evidence
of association with mtDNA CN (P < 1 × 10−4) (Supplementary
Material, Table S5). We compared the effect sizes of the 21
(P < 1 × 10−7 in the meta-analysis of all participants) and 285
(P < 1 × 10−4 in the meta-analysis of all participants) CpGs in
the meta-analyses of participants of European origin to that of
African origin. As expected, these 21 significant CpGs and 285
CpGs showed highly consistent effect sizes, Pearson r = 0.91 and
0.89, respectively, in their associations with mtDNA CN between
participants of the two races (Supplementary Material, Fig. S1).

The previously identified CpG sites

Six CpGs (cg21051031, cg26563141, cg08899667, cg26094004,
cg14575356 and cg23513930) were recently reported in a study
that used a discovery-validation study design followed by
meta-analysis (27). Of those, four CpGs, cg21051031 (effect
size = 4.5, P = 2.5 × 10−17), cg26563141 (effect size = −2.4, P = 9.1
× 10−22), cg08899667 (effect size = −2.3, P = 1.3 × 10−13) and
cg26094004 (effect size =−2.3, P = 1.3 × 10−22) were also found
to be significant (P < 1 × 10−7) in the meta-analysis of all the
participants in the present study. However, cg21051031 and
cg26563141 were among the list of cross-reactive probes that
were mapped to multiple locations (28,29), and therefore, we
did not include them in the significant CpG list. The two CpGs,
cg14575356 and cg23513930, were not significant in the present
study.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
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Table 1. Epigenome-wide association and meta-analysis of mtDNA CN (P < 1 × 10−7) in 6182 participants

IlmnID Effect size SE P Chr MAPINFO Gene name CpG island Relation CpG
island

cg21848084 −2.158 0.391 3.4E-08 1 3 264 381 PRDM16
cg27187555 −1.478 0.266 2.9E-08 1 3 269 252 PRDM16
cg21393163 3.029 0.474 1.7E-10 1 12 217 629
cg00988037 −1.548 0.276 2.0E-08 1 54 869 007 SSBP chr1:54870853–54 872 476 N_Shore
cg05673882 1.456 0.261 2.3E-08 5 74 862 702 POLK
cg04368724 −1.749 0.294 2.8E-09 6 31 760 593 VARS chr6:31763240–31 763 905 N_Shelf
cg04018738 −1.446 0.256 1.6E-08 6 31 760 616 VARS chr6:31763240–31 763 905 N_Shelf
cg17619755 −1.479 0.219 1.4E-11 6 31 760 629 VARS chr6:31763240–31 763 905 N_Shelf
cg02980249 −2.219 0.317 2.7E-12 6 31 760 762 VARS chr6:31763240–31 763 905 N_Shelf
cg02597894 −2.586 0.356 3.7E-13 6 31 760 796 VARS chr6:31763240–31 763 905 N_Shelf
cg08899667 −2.333 0.315 1.3E-13 6 31 761 055 VARS chr6:31763240–31 763 905 N_Shelf
cg22761205 −2.205 0.404 5.0E-08 11 457 256 PTDSS2 chr11:459088–459 345 N_Shore
cg24420089 −1.784 0.309 7.6E-09 11 457 304 PTDSS2 chr11:459088–459 345 N_Shore
cg03732020 −2.246 0.401 2.2E-08 11 47 282 968 NR1H3
cg09548275 −1.715 0.312 3.8E-08 11 47 282 999 NR1H3
cg10713715 −2.567 0.451 1.3E-08 11 63 533 656 C11orf95 chr11:63535652–63 537 435 N_Shore
cg02194129 −2.237 0.360 5.3E-10 14 1.04E+08 XRCC3
cg27192248 0.712 0.120 3.1E-09 15 65 285 669 chr15:65281928–65 282 375 S_Shelf
cg20507228 −1.329 0.231 9.1E-09 15 91 460 071 MAN2A2
cg04983687 −1.624 0.294 3.4E-08 16 88 558 223 ZFPM1 chr16:88558051–88 558 329 Island
cg26094004 −2.331 0.238 1.3E-22 17 42 075 116 PYY chr17:42072138–42 072 444 S_Shelf

We performed cohort- and race-specific association analysis of mtDNA CN as the outcome variable with DNA methylation. Inverse variance-weighted fixed effect
model was used in all meta-analyses.

Figure 2. Epigenome-wise association and meta- analysis of mtDNA CN. Cohort- and race-specific association analysis of mtDNA CN with DNA methylation was

performed, followed by meta-analysis to combine summary statistics (n = 6182). 23, X-chromosome.

No clear causal effects of validated CpG sites
on mtDNA CN

To investigate the potential causal effects of the 21 mtDNA CN-
associated CpG sites, we browsed the previously established
whole blood meQTL [i.e. single nucleotide polymorphisms (SNPs)
that were associated with DNA methylation] database in the FHS
(30). We found that 19 significant CpGs had at least one indepen-
dent cis-meQTL (P < 5 × 10−8) as instrument variables (IVs) for MR
after pruning at linkage disequilibrium (LD) r2 < 0.01. However,
none of these CpGs showed a significant causal effect on mtDNA
CN variation (MR P < 0.05/20 = 0.0025). One CpG (cg10713715;
C11orf95) showed an evidence, albeit not significant, that it may

have a causal effect on mtDNA CN (P = 0.005) (Supplementary
Material, Table S6).

Genomic features of the top CpGs in the meta-analysis
of all participants

Eleven of the 21 significant CpGs in meta-analysis of all par-
ticipants were located in the shelves or shores of CpG islands,
which was not significantly different from expected (Fisher’s
test, P = 1). We further tested possible enrichment in epigenetic
features of the 285 CpGs with P < 1 × 10−4 in pooled data.
Based on their annotated genomic features, the 285 CpG sites

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
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Figure 3. Volcano plot. A 1-s.d. change in mtDNA CN corresponds to a 1% increase

in DNA methylation difference in the meta-analysis of all participants.

contained a slightly lower proportion of CpG that were located
in CpG island (P = 0.001), while they contained similar propor-
tions of CpGs that were located in shelves or shores of CpG
islands (P > 0.1) as those observed in the whole methylation
sites (Supplementary Material, Table S7). These 285 CpG sites
were significantly overlapped with the three H3 markers and
overlap with DNase I hypersensitive sites (DHSs) across various
tissue types, such as blood, digestive, lung, placenta and diges-
tive and heart tissues (31) (Supplementary Material, Tables S8
and S9).

Significant mtDNA CN-associated CpG sites and their
associations with other traits

By querying the EWAS catalog database, we linked the sig-
nificant 21 CpGs (Table 1) to previous publications of EWAS
with various traits. We made two important observations. First,
20 significant mtDNA CN-associated CpGs have been associ-
ated with traits that are related to aging. These traits included
chronological age, gestational age and or age from birth to late
adolescence. Second, in previous EWASs, multiple significant
mtDNA CN-associated CpGs have been significantly associated
with at least two traits (Supplementary Material, Table S10).
For example, the DNA methylation level at cg05673882 in POLK
was positively associated with lung function (forced expiratory
volume), while it was negatively associated with chronological
age (adulthood aging, fetal age and brain development and the
age from birth to late adolescence), birth weight, C-reactive
protein and smoking (and prenatal smoke exposure in newborn)
and forced expiratory volume (Fig. 4, Supplementary Material,
Table S10). Similarly, the DNA methylation level at cg04983687
in zinc finger protein member 1 (ZFPM1) was positively asso-
ciated with age from birth to late adolescence, while it was
negatively associated with childhood asthma, birth weight and
atopy—a disease condition with the tendency to produce an
exaggerated immunoglobulin E (IgE) immune response and with
tumor necrosis factor receptor 2 (Fig. 4, Supplementary Material,
Table S10).

Transcriptomic implications of mtDNA CN-associated
CpG sites

A total of 431 cis-genes were located within ±1 Mb windows
around the 21 CpG sites, which established 922 CpG-gene pairs.
Of those, 30 CpG-gene pairs (19 distinct cis-genes with 10 distinct
CpGs) exhibited P ≤ 0.005, and 120 CpG-gene pairs (73 distinct cis-
genes with 21 CpGs) exhibited P < 0.05 (Supplementary Material,
Table S11). Three CpG-gene pairs showed significant associa-
tions (P < 0.05/923 = 5.4 × 10−5): the DNA methylation levels of
two CpGs (cg03732020 and cg09548275) in the NR1H3 gene at
chromosome 11 were negatively associated with the expression
levels of protein tyrosine phosphatase receptor type J (PTPRJ).
The NR1H3 gene is about 720 kb upstream from the PTPRJ gene.
The third pair was between a CpG in valyl-tRNA synthetase
(VARS) and the transcript of general transcription factor IIH
subunit 4 (GTF2H4A) which was 884 kb downstream. Several
CpGs in the VARS genes also showed small P-values (P < 0.005) for
their associations with several surrounding cis-genes that were
involved in immune responses (Supplementary Material, Table
S11). We further performed Go Ontology enrichment analyses
for these 73 distinct genes, which were nominally associated
with the 21 CpGs. These 73 genes were not enriched in Gene
Ontology (GO) biological processes (FDR > 0.05), while they were
enriched in peptide antigen binding for molecular processes and
in MHC protein complex for cellular components (FDR ≤ 0.05)
(Supplementary Material, Table S12).

Discussion
To test the hypothesis that mtDNA CN variation was associ-
ated with DNA methylation changes in the nuclear genome,
we conducted a large epigenome-wide association and meta-
analysis to investigate mtDNA CN in association with nuclear
DNA methylation levels. We discovered that mtDNA CN were
significantly associated with 21 CpG sites at P < 1 × 10−7 in
the meta-analysis of 6182 participants of European and African
origins from five cohorts. The effect sizes of 21 CpGs-mtDNA
CN associations were consistent between the two races. Several
significant CpGs have been reported to be associated with at
least two CVD risk factors, e.g. chronological age, alcohol con-
sumption, cigarette smoking, lung function and inflammation-
related proteins. These results suggest that epigenetic regulation
pathways underlie mtDNA CN and CVD risk.

Several significant CpGs are located in genes known to be
involved in mitochondrial biosynthesis and mtDNA replication:
cg21848084 and cg27187555 in PR/SET domain 16 (PRDM16)
(32); cg03732020 and cg09548275 in NR1H3 (33); cg02194129
in DNA repair protein XRCC3 (34); cg05673882 in POLK (35)
and cg22761205 and cg24420089 in decaprenyl-diphosphate
synthase subunit 2 (PDSS2) (36). PRDM16 encodes a tran-
scription coregulator that controls the development of brown
adipocytes in brown adipose tissue that contains densely packed
mitochondria. The expression of PRDM16 elevates the mRNA
levels of many genes involved in OXPHOS and also stimulates
mitochondrial biogenesis (32). The transcription factor encoding
by NR1H3 was found to be differentially expressed during the
adipose tissue transition from brown adipose to white adipose
and was also linked to energy expenditure, lipolysis and glucose
transport (37). mtDNA CN was previously reported to drastically
decline during brown-to-white adipose transformation (37).
XRCC3, a part of the mitochondrial nucleoid, facilitates mtDNA
replication and maintains the integrity of the mitochondrial
genome (34). A previous study showed that XRCC3 is localized

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
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Figure 4. Examples that mtDNA CN-associated CpGs were also associated with aging and multiple CVD risk factors: (A) cg04983687 (ZFPM1) cg04983687 in ZFPM1; (B)

cg0567388 in POLK.

to mitochondria and participates in the maintenance of mtDNA
integrity during oxidative stress (38). POLK encodes the nuclear
POLK. A previous study found that POLK localizes to mitochon-
dria in the protozoan parasite Trypanosoma cruzi (35). The protein
encoded by PDSS2 is an enzyme that synthesizes the prenyl side-
chain of coenzyme Q, or ubiquinone, one of the key elements
in the mitochondrial respiratory chain (36). Previous studies
have shown that coenzyme Q deficiency triggers mitochondria
degradation by mitophagy (39), and PDSS2 deficiency induces
hepatocarcinogenesis by decreasing mitochondrial respiration
and reprogramming glucose metabolism (40). The peptide
YY (PYY) gene harbors the most significant CpG, cg26094004,
with mtDNA CN. The PYY gene encodes peptide tyrosine
tyrosine. The primary function of the PYY peptide is to slow
gastric emptying, and obese people secrete less PYY peptide
than non-obese people (41). Therefore, PYY peptide has been
used directly as a weight-loss drug with some success (42).
Although the mechanism of the PYY peptide action has not
been fully established, previous studies have demonstrated
that the PYY receptor stimulation increases protein kinase C
activity, which couples to inhibit apoptosis (43) via mitochondrial
pathways.

At the Bonferroni correction P < 5.4 × 10−5, the methylation
levels of the significant CpGs in PRDM16, NR1H3, XRCC3, POLK,
PDSS2 and PYY were not significantly associated with the tran-
scription levels of these genes. The Bonferroni correction may
be too conservative because some of these CpGs or genes were
expected to be correlated (e.g. see Supplementary Material, Fig.
S2). Nevertheless, the DNA methylation levels of cg09548275 and
cg03732020 in the NR1H3 were positively correlated with the
expression level of NR1H3 at P = 0.0003 and 0.0046, respectively.
Along with the finding that the methylation levels of cg09548275
and cg03732020 were negatively associated with mtDNA CN, one
might expect that the increase in DNA methylation levels in
cg09548275 and cg03732020 may underlie the drastic decline
of mtDNA CN in brown-to-white adipose transformation (37).
In addition, at P < 5.4 × 10−5, cg09548275 and cg03732020 were
negatively associated with the expression levels of the PTPRJ
gene that is located 720 kb away. The PTPRJ gene is involved in
dephosphorylation of many proteins in cell adhesion, migration,
proliferation and differentiation (44). A previous study in lung
cancer patients found that PTPRJ negatively modulated several
proteins that are related to mitochondrial functions (45). Six
CpGs in the VAR gene showed small P < 0.005 with surround-
ing gene expression levels that are involved in immune func-
tions. mtDNA CN was significantly associated with white blood
cell counts and differential counts, indicating that mtDNA CN
is involved in inflammation. Future studies are warranted to
study the roles of DNA methylation levels in the VAR gene that
underlies mtDNA CN and inflammation.

Strengths and weaknesses

We explored the relationship of mtDNA CN with nDNA methy-
lation in a large human population. The estimation of mtDNA
CN using whole genome sequencing (WGS) has proven to be
more accurate than mtDNA CN obtained from other methods
(46). In addition, we applied careful consideration to account for
batch effects and unobserved confounders, although residual
confounding might still remain. Despite these strengths, sev-
eral limitations should be noted in the present study. Previous
studies have showed that mtDNA CN are associated with a
range of pathologies, including CVD (13) and metabolic traits
(14,15). Future studies may be needed to adjust for comorbidities
in EWAS of mtDNA CN to understand the interplay between
mtDNA CN, these comorbidities and DNA methylation. DNA
methylation and mtDNA CN were measured in peripheral whole
blood samples, and thus, our findings may not be generalizable
to other tissues. However, whole blood samples circulate to
all parts of the body. Additionally, the procurement of specific
tissues (e.g. adipose or arterial tissue) is not feasible in large-
scale cohort studies. For this reason, mtDNA CN variation and
DNA methylation changes in readily accessible whole blood may
reflect the metabolic health status across multiple systems.
Indeed, a recent study showed that blood-derived mtDNA CN is
associated with gene expression across various tissues (47). In
addition, this study showed that mtDNA CN derived in whole
blood is predictive for incident neurodegenerative disease (47).
These observations provide further evidence supporting the use
of blood-derived measures in association analyses to reveal
mechanisms which underlie mtDNA CN, DNA methylation and
human disease. The MR analyses did not find sufficient evidence
that the newly discovered CpG sites might be causally linked to
mtDNA CN. A recent genome-wide association analysis discov-
ered 96 independent loci (P < 5e-8), and these loci jointly explain
a small proportion of the variance (∼1%) (48). However, there
was a great degree of pleiotropy for the identified SNPs, making
it challenging to use MR approaches to establish causality of
mtDNA CN with DNA methylation. In summary, the results in
the present study suggest that mtDNA CN variation in peripheral
blood cells is associated with DNA methylation levels in genes
related to a wide range of mitochondrial activities. These find-
ings, if confirmed in future studies, may contribute to under-
standing the molecular mechanisms of mitochondria-related
diseases.

Materials and Methods
Study design and study participants

This study was carried out in three major stages (Fig. 1). First,
we performed cohort- and race- specific epigenome-wide

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab240#supplementary-data
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association analyses in several studies, including the Atheroscle-
rosis Risk in Communities (ARIC) study (n = 2027, 75.6% African
origin) (49), the FHS (n = 1952, 100% European origins) (50,51),
the Genetic Epidemiology Network of Arteriopathy (GENOA,
n = 797, 100% African origin) (52), the Multi-Ethnic Study
of Atherosclerosis (MESA, n = 577, 31.5% African origin) (17)
and the WHI (n = 829, 20.4% African origins). To maximize
the power, we performed a meta-analysis in all participants
(n = 6182) of both races. We also performed race-specific meta-
analysis in participants of European origin (n = 3506) or African
origin (n = 2676). Fixed effects inverse variance method was
conducted to combine summary statistics from individual
cohorts. Detailed information on all participating studies (FHS,
WHI, GENOA, MESA and ARIC) has been described previously (49–
54) (Supplementary Materials). Lastly, we performed analyses to
infer the biological functions of the selected CpG sites from
the primary meta-analyses. The study-specific protocols were
approved by the institutional review board of each study. Written
informed consent for genetic research was obtained for all
participants.

DNA methylation measurement in whole blood
and quality control

Fasting morning peripheral whole blood samples were obtained
during routine research clinic visits. Genomic DNA was
extracted from whole blood samples and bisulfite-converted
for methylation profiling. DNA samples then underwent whole
genome amplification, fragmentation, array hybridization
and single-base pair extension following the manufacturer’s
protocols (55,56). In FHS, WHI and ARIC, DNA methylation
levels were measured using the Infinium HumanMethylation
450K BeadChip array (Illumina, Inc., San Diego, CA), which
simultaneously queries the methylation state of over 480 000
CpG sites in the nuclear genome. In GENOA and MESA, DNA
methylation profiling was performed using the Infinium
MethylationEPIC BeadChip array (Illumina, Inc.), which covers
more than 850 000 CpG sites across the genome. Detailed
information about DNA extraction, bisulfite conversion, DNA
methylation profiling, normalization and quality control (QC)
procedures in each cohort are described in the Supplementary
Methods. In brief, we excluded cross-reactive probes that
mapped to multiple locations (28,29). We also excluded low-
quality probes if these probes with high missing rate (>20%),
with detection P-value > 0.01 (57), and those with SNPs at CpG
sites or ≤10 bp of single base extension. After QC procedures, we
excluded bad samples if the samples were multi-dimensional
scaling (MDS) outliers (58), high missing rate (>1%) and poor
matching to SNP genotype (Supplementary Methods).

Measurement of mtDNA CN in whole blood

mtDNA CN estimation in WGS. mtDNA CN was estimated by
a ratio of two times of average coverage of mtDNA to average
coverage of nDNA from WGS data (∼30×) through the NHLBI
Trans-Omics for Precision Medicine (TOPMed) Consortium (Sup-
plementary Material, Table S1). The coverage was defined as the
number of reads that were mapped to a given nucleotide in the
reconstructed sequence. Samples from ARIC were sequenced
at the Human Genome Sequencing Center at Baylor College of
Medicine and at the Broad Institute; FHS, WHI and MESA were
sequenced at the Broad Institute of MIT and Harvard, while sam-
ples from the GENOA study were sequenced at the University
of Washington Northwest Genomics Center. Detailed methods

of DNA sample handling, library construction, data acquisition,
processing and QC were described previously (59). Briefly, after
sequencing, the reads were aligned to human genome build
GRCh37 at each sequencing center, and the resulting BAM files
were transferred from all centers to the TOPMed’s Informat-
ics Research Center (IRC) where they were re-aligned to build
GRCh37 using a common pipeline to produce a set of ‘harmo-
nized’ BAM files (60).

mtDNA CN estimation by low-pass WGS in ARIC. Low-pass WGS
data (>4-fold) for ARIC was generated at the Baylor College of
Medicine Human Genome Sequencing Center using Nano or
PCR-free DNA libraries on the Illumina HiSeq 2000 (Supplemen-
tary Material, Table S1). Sequence reads were mapped to the
human genome build GRCh37 using BWA (61). QC was performed
as previously described (62). A count for the total number of
reads in a sample was scraped from the NCBI sequence read
archive using the R package RCurl, while reads aligned to the
mitochondrial genome were downloaded directly through Sam-
tools (version 1.3.1). mtDNA CN estimation from low-pass WGS
was calculated as the ratio of mitochondrial reads to the number
of total aligned reads.

Gene expression profiling

Details of gene expression profiling in FHS were described previ-
ously (63). In brief, fasting peripheral whole blood samples were
collected in PAXgene blood tubes (PreAnalytiX, Hombrechtikon,
Switzerland) at the same time as DNA methylation profiling.
Gene expression was assayed using the Affymetrix Human Exon
1.0 ST GeneChip platform (Affymetrix Inc., Santa Clara, CA, USA),
which contained > 5.5 million probes covering 17 873 distinct
genes. Collected gene expression values were normalized using
the robust multi-array average (RMA) method and were adjusted
for chip batch effects, first principal component and several
technical factors (64).

Statistical analyses

Association analysis and meta-analysis of mtDNA CN with
epigenome-wide DNA methylation. Outcome and predictor
variables: DNA methylation residuals (predictors) were obtained
by regressing beta values on age, sex, imputed white blood cell
count and fractions, surrogate variables (SVs) and technical
covariates (plate/row/column numbers on the methylation chip).
The residuals of mtDNA CN were obtained by adjusting for age,
age2, sex, imputed white blood cell count and fractions and
platelet count and the year of blood collection (as a cluster
variable to account for additional batch effect). The mtDNA CN
residuals were then standardized to have a mean of 0 and a s.d. of
1 (outcome). The mtDNA CN standardized residuals were used
as the outcome variables in all models. All clinical covariates
were contemporaneous to blood collection for DNA methylation
and WGS. The white blood cell fractions were imputed using the
Houseman method (65) via a reference panel, which included
CD8+ T cells, CD4+ T cells, natural killer cells, B cells, monocytes
and granulocytes. SVs were imputed to account for hidden
confounders (66,67). The mtDNA CN variable was put in the
model so it was ‘protected’ from being treated as unexplained
heterogeneity in SV analysis.

Association analyses. We performed power estimation (Sup-
plementary Methods). We performed cohort- and race-specific
association analysis of mtDNA CN with DNA methylation. In all
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models across studies, the residuals of CpG levels at each CpG
site were used as the independent variable and the standard-
ized residuals of mtDNA CN as the dependent variable. Linear
regression models or linear mixed effects models were used for
cohorts with unrelated or families, respectively. The genomic
control factor (λ) was used to evaluate any possible inflation (68).
All association analyses were performed using the ‘lme’ function
within the R package ‘nlme’ (69).

Meta-analyses. We performed meta-analysis to combine sum-
mary statistics from individual studies rather than a direct anal-
ysis of pooled individual-level data. The primary results were
obtained by meta-analysis in participants of both African and
European origins for common DNA methylation CpGs between
MethylationEPIC BeadChip and HumanMethylation 450K Bead-
Chip arrays. We also applied race-specific meta-analysis. We
compared effect sizes of significant associations in pooled meta-
analyses between participants of African origin and European
origins. Inverse variance weighted fixed effect models were used
in all meta-analyses with the ‘metagen’ function of the R pack-
age ‘meta’ (70). About 430 000 CpGs were common between
MethylationEPIC BeadChip and HumanMethylation 450K Bead-
Chip arrays. Therefore, we prioritized these common CpGs in
reporting meta-analysis results. To correct for multiple testing,
we applied Bonferroni correction (P < 1 × 10−7 = 0.05/430 000) for
significance in the primary meta-analysis. In Supplementary
file, we reported CpGs with P < 1 × 10−4 from the primary meta-
analysis and meta-analysis for the CpGs that were only covered
by MethylationEPIC BeadChip array (Supplementary Material,
Table S13).

Furthermore, we investigated the results of the six CpGs
(cg21051031, cg26563141, cg08899667, cg26094004, cg14575356
and cg23513930) in this study. These six CpGs were recently
reported from a meta-analysis (27). Of note, mtDNA-CN in ARIC
cohort was estimated from Affymetrix Human SNP 6.0 arrays in
the previous study (27).

MR analysis

We previously conducted methylation quantitative trait loci
(meQTL) mapping in FHS (30). SNPs were imputed from the 1000
Genomes Project panel (Phase 3, version 5) using MaCH/Minimac
software (71). SNPs (meQTLs) with minor allele frequency
(MAF) > 0.01 and imputation quality ratio > 0.5 were used to
identify instrument variables (IVs) for MR analysis. We selected
the independent cis-meQTL (residing within 1 Mb of the CpG
sites with LD r2 < 0.01) with the lowest SNP-CpG P-value using
the ‘clump_data’ function within the R package ‘TwoSampleMR’
(72). The LD proxies were defined using the 1000 Genomes
European samples (73). Two-step MR, with CpGs as the exposure
and mtDNA CN as the outcome, was performed to test for
the significant CpGs (P < 1 × 10−7) selected from the primary
meta-analysis.

Association analysis of selected CpG sites with
expression levels of cis-gene

To explore the possible roles of DNA methylation on regulating
of gene expression, we performed association analyses between
the significant CpG sites and the transcript expression levels
of the genes residing within ±1 Mb of each of the CpG sites
(cis-genes) for the significant CpGs (P < 1 × 10−7). The residuals
of methylation levels at each CpG site were used as the inde-
pendent variables in the models. The residuals of expression

levels (dependent variable) of each transcript were obtained
by regressing on age, sex, imputed white blood cell fractions
based on Houseman method (65) and cohort index. Linear mixed
effects models were applied to account for family structure in
the FHS data. Statistically significant associations were define
as P < 0.05/n, where n was the number of CpG-gene pairs. CpG-
cis-gene association analyses were performed using the ‘lme’
function within the R package ‘nlme’.

Functional inference analyses

We performed several analyses to infer functional relevance
for mtDNA CN-associated CpG sites. For mtDNA CN-associated
CpG sites (P < 1 × 10−7), genomic features (74) of CpG sites
were annotated. Hypergeometric tests were used to evaluate if
the identified CpG sites were enriched with a genomic feature.
We also used eFORGE (v2.0) (31) to determine if two set of
selected CpG sites (P < 1 × 10−7 and P < 1 × 10−4) were enriched
across 15 chromatin states and overrepresented at loci with over-
lapping histone modifications (H3K4me1, H3K4me3, H3K9me3,
H3K27me3 and H3K36me3) across multiple cell lines and tis-
sues from the Roadmap Epigenomics Project (75), BLUEPRINT
Epigenome (76) and Encyclopedia of DNA Elements (ENCODE)
(77) data. Furthermore, we searched the EWAS Catalog database
(78) to link the validated CpG sites with specific disease/trait
phenotypes in previously published EWAS of DNA methylation.
For cis-genes that were associated with mtDNA CN-associated
CpG sites, we used the PANTHER (79) overrepresentation test
(release: 14 February 2020) to assess whether the identified
cis-genes were overrepresented in specific GO biological pro-
cesses, molecular functions and cellular component pathways
with Fisher’s exact test. We used FDR-corrected P < 0.05 (i.e.
FDR < 0.05) for significance.

Supplementary Material
Supplementary Material is available at HMG online.

Data Availability
We describe data availability in the following: In ARIC, DNA
methylation data are available upon request at https://site
s.cscc.unc.edu/aric/distribution-agreements. The mtDNA CN
data were calculated using TOPMed sequencing data on the
Database of Genotypes and Phenotypes (dbGaP): phs000993. In
FHS, the methylation data can be downloaded at the dbGaP:
phs000724. The mtDNA CN data were calculated using TOPMed
sequencing data on the dbGaP: phs000974. In GENOA, the
methylation data from the EPIC array are on Gene Expression
Omnibus (GEO): GSE157131. The mtDNA CN data were estimated
using the GENOA TOPMed sequencing data on the dbGaP:
phs001345. Owing to IRB restriction, mapping of the sample
IDs between genotype data in dbGaP and methylation data in
GEO cannot be provided publicly but are available upon written
request to J.A.S. and Sharon LR Kardia. In MESA, the individual-
level genotype, phenotype and methylation data are available
on dbGaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000209.v13.p3). The mtDNA CN data were
calculated using TOPMed sequence data. In WHI, a part of DNA
methylation data are under phs000200 and phs001335. Because
DNA methylation data were not covered by the genetic data rules
when it was generated, users should contact C.K. for requesting
DNA methylation. The mtDNA CN data can be accessed using
the TOPMed sequence data on dbGaP: phs001237.
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