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Abstract

Purpose of Review—The ability to analyze the molecular events occurring within individual 

cells as opposed to populations of cells is revolutionizing our understanding of musculoskeletal 

tissue development and disease. Single cell studies have the great potential of identifying cellular 

subpopulations that work in a synchronized fashion to regenerate and repair damaged tissues 

during normal homeostasis. In addition, such studies can elucidate how these processes break 

down in disease as well as identify cellular subpopulations that drive the disease. This review 

highlights three emerging technologies: single cell RNA sequencing (scRNA-seq), Assay for 

Transposase-Accessible Chromatin using sequencing (ATAC-seq), and Cytometry by Time-Of-

Flight (CyTOF) mass cytometry.

Recent Findings—Technological and bioinformatic tools to analyze the transcriptome, 

epigenome, and proteome at the individual cell level have advanced rapidly making data collection 

relatively easy; however, understanding how to access and interpret the data remains a challenge 

for many scientists. It is, therefore, of paramount significance to educate the musculoskeletal 

community on how single cell technologies can be used to answer research questions and advance 

translation.

Summary—This article summarizes talks given during a workshop on “Single Cell Omics” at 

the 2020 annual meeting of the Orthopedic Research Society. Studies that applied scRNA-seq, 

ATAC-seq, and CyTOF mass cytometry to cartilage development and osteoarthritis are reviewed. 
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This body of work shows how these cutting-edge tools can advance our understanding of the 

cellular heterogeneity and trajectories of lineage specification during development and disease.
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Introduction

Musculoskeletal conditions, such as osteoarthritis, osteoporosis, sarcopenia, and muscular 

dystrophy, are characterized by a high molecular heterogeneity of cellular populations 

within diseased tissues as well as differences from the normal state. This heterogeneity 

is one of the major barriers to make progress in understanding the pathogenesis of these 

and other diseases. The development of next generation sequencing (NGS) technologies 

has revolutionized the entire field of biology. While these technologies have allowed 

researchers to unravel new and potentially novel biological discoveries, much of the data 

have been collected from bulk cell populations rather than individual cells, thus, limiting 

our understanding of disease processes to the majority of cells in population. New methods 

have emerged to refine the traditional “bulk” approaches to pave the way for single cell 

omics. In this review, we will discuss three of such approaches: single cell RNA-Sequencing 

(scRNA-seq), Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), 

and Cytometry by Time-Of-Flight (CyTOF).

scRNA-seq evaluates gene signatures at a single cell level, allowing for the discovery of 

intermediate and/or rare sub-populations of cells within a larger population or a tissue. 

The single cell approach can reveal regulatory relationships between genes and track the 

trajectories of distinct cell lineages during development (Fig. 1). Here, Dr. Chia-Lung Wu 

and colleagues review how this sequencing technology and bioinformatic advances helped 

them define the cellular heterogeneity involved in lineage specification during chondrogenic 

differentiation [1].

ATAC-seq complements scRNA-seq as it identifies open and closed chromatin across the 

genome in specific cell types. Despite methodological and computational limitations, ATAC-

seq can be performed at the single cell level and has great potential to find important 

regulatory regions in the genome as well as to characterize the epigenome of skeletal 

cell subtypes within and across species (Fig. 2). Below, Dr. Terrence Capellini’s team 

reviews their work using ATAC-seq to identify genes controlling cartilage development and 

osteoarthritis through evolution [2] and highlight how the use of bulk ATAC-seq methods on 

chondrocytes may inform future single cell ATAC-seq (scATAC-seq) studies.

Mass cytometry, also referred to as CyTOF is a multiparametric and high-dimensional 

analysis at a level of single cell. This technique allows for the detection of isotope-labeled 

antibodies, which can map about 40 to 120 protein epitopes for a single cell (Fig. 3). This 

high-dimensional method for proteomic analyses complements single cell transcriptomic 

and epigenetic techniques. Dr. Nidhi Bhutani and her team used CyTOF to reveal the 

heterogeneity of cellular populations in healthy and osteoarthritic skeletal tissues [3].
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scRNA-Seq Reveals Cell Development Trajectories During Chondrogenic 

Differentiation

Recent advances in NGS, particularly RNA-seq, provide a high-throughput approach to 

investigate diverse and complex biological systems. Transcriptomic studies using “bulk” 

RNA-seq (i.e., average expression of a population of cells) assume that all the cells within 

a given tissue are homogeneous and thus they share similar gene expression profile at the 

given time. This approach cannot identify differences in gene expression among individual 

cells, particularly those that make up a small fraction of the population. The stochastic 

nature of gene expression can lead to heterogeneity in cellular composition in a tissue and 

can play a critical role in driving cell fate decisions during development. New NGS-based 

techniques for scRNA-seq allow for the quantification of transcriptomic profiles at the 

resolution of an individual cell. In the following section, using chondrogenesis of human-

induced pluripotent stem cells (hiPSCs) as an example, we introduce how scRNA-seq can 

be applied to: (1) reveal cellular heterogeneity within a population of cells; (2) delineate 

differentiation trajectories; (3) construct heterogenous cellular signaling models; and (4) 

build gene regulatory networks (GRNs) (Fig. 1a).

Human iPSCs were induced to undergo chondrogenic differentiation using a previously 

established step-wise protocol of lineage specification [4]. Cells were harvested at various 

time points for scRNA-seq. Single cells (n = ~2500) were captured by the Chromium 

Controller (10x Genomics) platform and sequenced using Illumina HiSeq2500. Note that 

there are several other platforms, which have been developed for this purpose. The pros and 

cons of each platform have been reviewed elsewhere [5]. We processed sequencing reads 

by Cell Ranger version 2.0 (10x Genomics software), although numerous other RNA-seq 

mappers such as STARsolo (Spliced Transcripts Alignment to a Reference) can be employed 

for sequence alignment of droplet scRNA-seq data. Briefly, reads were aligned to the 

GRCh38 (version 90) for genome annotation, demultiplexing, barcode filtering, and gene 

quantification. Gene barcode matrices for each sample were generated by counting the 

number of unique molecular identifiers for a given gene in an individual cell.

For quality control and to determine the heterogenous composition of cell populations, 

gene barcode matrices were imputed into the Seurat R package [6]. Low-quality cells, 

defined as cells expressing <200 genes, >7000 genes, and >5% mitochondrial gene content, 

were removed from analysis. Moreover, genes that were detected in less than three cells 

were also omitted. These cutoff criteria are arbitrary and need to be adjusted for each 

study since gene expression levels depend on cell type. Next, to reduce the variance 

introduced by “unwanted” sources, we regressed out variation in gene expression driven 

by cell cycle stages and mitochondrial gene expression in Seurat. After the quality control, 

we converted Seurat objects into Monocle objects and reduced data dimensionality for 

further analysis [7]. Unsupervised clustering of the data was performed, and then visualized 

in a uniform manifold approximation and projection (UMAP) plot [8]. To determine 

the biological functions of the marker genes from a given cluster, we performed Gene 

Ontology (GO) enrichment analysis using a Database for Annotation, Visualization, and 

Integrated Discovery (DAVID) Gene Functional Classification Tool [9]. By comparing 
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unique biological GO terms with the existing RNA-seq datasets and the data assembled 

from the literature, we were able to annotate cell clusters.

We used the Monocle 3 R package to reconstruct differentiation trajectories by computing 

and ordering the sequence of gene expression changes in an unsupervised manner. Quality 

control of scRNA-seq datasets from different timepoints were performed in Seurat version 

2.4 and converted into individual Monocle objects as described in the previous section. 

Monocle objects were then merged into one object. The merged object was also pre-

processed and reduced its dimensionality as previously described. Next, the cells were 

ordered based on the changes in gene expression as a function of time, and then visualized 

the trajectory. Using these analyses, we identified off-target differentiation (i.e., generation 

of neural progenitors and melanocytes) during the course of hiPSC chondrogenesis.

To investigate the ligand–receptor interaction in heterogenous multicellular signaling 

systems, we used a list comprising of 2557 human ligand–receptor pairs curated by the 

Database of Ligand-Receptor Partners, The International Union of Basic and Clinical 

Pharmacology (IUPHAR), and Human Plasma Membrane Receptome [10, 11]. We 

first quantified the percentage of the cells (i.e., neural progenitors, melanocytes, and 

chondrocytes) that expressed a specific WNT ligand and its associated frizzled (FZD) 

receptors from these scRNA-seq datasets. We used WNT3A and its potential receptor FZD1 

as an example since both of these appear to be essential for neurogenic differentiation 

of neural stem cells [12, 13]. To ensure the ligand and receptors are uniquely expressed, 

we required a fold change in expression of >0.25 on a log scale. Circlize R package 

was then used to visualize the directions of the signaling in the cell type based on ligand–

receptor pairing [14]. We noted that WNT3A was not only involved in neurogenesis of 

neural progenitors but also might signal through melanocytes and chondrocytes to affect cell 

phenotype.

To reconstruct GRNs and identify their associated hub genes that regulate cell 

differentiation, we used Weighted Gene Co-expression Network Analysis (WGCNA) [15]. 

First, the dataset of interest (e.g., a given timepoint such as day 28 chondrogenic pellets) 

was created in Seurat and converted into a plain matrix for a given gene (column) in 

an individual cell (row). The dataset was then cleaned by removing cells with too many 

missing values. In this case, a total of 1271 cells derived from day 28 chondrogenic pellets 

passed this filtering step (about 96.2% of the cells that passed the quality control). Next, 

we determined the proper soft-thresholding power (β) that fits the criterion of approximate 

scale-free topology of the network and built an adjacency matrix with β = 8. Hierarchical 

clustering and GRNs were constructed and modules of highly inter-associated genes were 

identified. Gene lists from interesting modules were extracted and submitted (i) to DAVID 

to retrieve GO terms (biological processes and molecular functions) and (ii) to ClueGO, a 

Cytoscape App, for visualization of the non-redundant biological terms for large clusters 

of genes in a functionally grouped network [16, 17]. For instance, we observed that one of 

the modules identified in day 28 chondrogenic pellets was associated with embryonic eye 

development and neurogenesis including forebrain and dopaminergic neuron differentiation. 

We next identified transcription factors (TFs) and TF regulators from the genes based on 

the GO terms in molecular functions. Based on the highest weight (i.e., high correlation 
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coefficient) connected to a given TF or TF regulator, we selected the top 100 genes. Finally, 

the GRN based on these TFs and TF regulators underwent cluster analysis using community 

cluster function in clusterMaker2, also a Cytoscape App, and was then visualized using 

Cytoscape [18]. Hub genes for each GRN were identified as genes with high weight 

(summed correlation coefficients), high degree (summed connectivity; i.e., total numbers 

genes connected to this specific gene), and high betweenness centrality measure of the 

network [19]. Thus, NFIA, OTX1, OTX2, PAX6, and CITED2 were identified as hub 

genes of the module involved in off-target neurogenic differentiation in the course of hiPSC 

chondrogenesis in this study [1] (Fig. 1b).

In summary, the scRNA-seq techniques and relevant bioinformatic analysis methods are 

rapidly evolving, however, some relatively well-developed and extensively utilized R 

packages are available to analyze scRNA-seq datasets for the biological interpretation of 

these datasets.

Uncovering the Gene Regulatory Landscape of Cartilage Development to 

Understand Skeletal Disease

In the past decade, functional genomics methods have provided important insights into 

the molecular processes at play, including signaling pathways and transcriptional factors 

that control skeletal development [20, 21]. These methods have also provided additional 

layers of understanding, moving from individual genes to gene regulatory sequences (e.g., 

promoters, enhancers) to help foster deeper insights on how the skeleton is built and what 

causes skeletal disease. In the past 5 years, ATAC-seq [22, 23] has made it possible to 

epigenetically profile cell-type specific chromatin states (i.e., open or accessible versus 

closed or inaccessible) across the genome involved in bone development (e.g., chondrocytes, 

osteoblasts). Accessible regions often reflect those that are involved in gene transcriptional 

regulation, either from a distance (e.g., cis-acting enhancer or repressor elements) or 

more proximally (e.g., gene promoter elements). While this method, along with a more 

recent application of it in the single cell sphere i.e., scATAC-seq (see below), has great 

potential to identify a number of important regulatory regions in the genome as well as to 

characterize the epigenome of skeletal cell subtypes, there remain important methodological 

and computational obstacles that need to be addressed. Some of these issues are described 

here in the context of ATAC-seq studies on chondrocytes acquired in bulk from both mouse 

and human developmental skeletal samples [2]. Additionally, as scATAC-seq provides 

snapshots of cell–cell variability in chromatin organization by gathering data on hundreds 

and thousands of single cells in parallel, and is thus important for understanding cell-type 

specific regulatory regions, it is unfortunate that to date such methodology has not been 

used on chondrocytes. With this point in mind, here we also discuss how the use of bulk 

ATAC-seq methods on chondrocytes may inform future scATAC-seq studies.

Bulk ATAC-seq was used to epigenetically profile (i.e., identify regulatory regions of) 

chondrocytes extracted in vivo from mouse E15.5 and stage-matched human E59 long 

bone elements. At this stage, the “bone-ends” are chondrocyte models of each adult 

bone’s morphology. ATAC-seq was also performed on developing brain tissues and these 
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datasets were used to remove shared open chromatin or accessible regulatory regions that 

were not unique to individual bone-ends (e.g., the distal femur). A method called the 

Irreproducible Discovery Rate (IDR) was then used to find “peaks” or “regulatory regions” 

that were consistently found between biological replicates per tissue per timepoint and 

species. IDR is a unified approach that measures the reproducibility of peaks identified from 

replicate experiments and provides highly stable thresholds based on reproducibility. This 

helps remove biological noise. For example, if starting with <100,000 unfiltered (pre-IDR) 

peaks for large genomes (e.g., human and mouse genomes), an IDR threshold of 0.05 

is appropriate to reduce the sets to fewer number of regulatory regions but those which 

are identified in each replicate [24]. Finally, the regulatory and evolutionary potential of 

called regulatory peak sets from different bone-ends was explored using bioinformatics 

and comparative genomics to detect signals of anatomical evolution and the regulatory 

basis for skeletal disease. The comparative map of regulatory circuitry obtained through 

these analyses will drive an improved understanding of regulatory underpinning of cartilage 

biology and how such relates to skeletal development and disease.

Several findings from this study elucidate the general regulatory biology of chondrocytes 

between bone-ends as well as between species. Moreover, they shed light on issues 

important for future scATAC-seq applications (see below). In each species, tens of 

thousands of (IDR-filtered) chromatin-accessible regulatory regions were found that are 

shared between chondrocytes extracted from different anatomical locations (i.e., from the 

developing proximal and distal bone ends of the skeleton). These regions are likely general 

chondrocyte regulatory elements. In addition, hundreds to thousands of bone-end-specific 

chondrocyte regulatory regions (e.g., chromatin-accessible regions unique to distal femur as 

compared to the proximal femur or proximal tibia), ranging from 5 to 15% of each peak 

set, were discovered likely reflecting modularized regulatory control of specific anatomical 

parts. scATAC-seq will be important application to further identify for each bone-end the 

diversity of chondrocyte (and nonchondrocyte) cell types that in part underlie unique as well 

as shared signals, and what role differences in differentiation states between bone-ends drive 

some of the regulatory divergence we observed. Importantly, use of IDR on each species 

tissue replicates caused pre-IDR filtered peak sets to be reduced by 50–80%, resulting in 

much smaller conservative regulatory element sets per tissue, providing some evidence that 

by removing extraneous noise (in part), there exists a real signal of regulatory divergence 

between bone ends. Yet, it must be emphasized that these methods on in vivo extracted 

tissues reveal considerable inter-individual variation, some of which is likely experimental 

noise, but some reflecting individual differences in differentiation, growth, and overall 

development of different bone-ends. These inter-individual differences and the “noise” 

they generate could be important drivers of disease mechanism, especially if genetic risk 

variants fall within them. Given these findings, the use of scATAC-seq on similar in vivo 

extracted tissues may require greater number of biological replicates and greater numbers of 

sequenced cells per replicate to find reproducible regions.

Comparisons of ATAC-seq peaks between developmental stage- and anatomical-site-

matched mouse and human samples also revealed only partial regulatory region overlap 

(~25–45%) between species at orthologous loci or sequences. These findings indicate that 

in many cases, the presence of regulatory elements at a given locus or sequence in the 
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mouse may not reflect the same regulatory use or potential in the orthologous human 

region (and vice versa). Therefore, investigations into the regulatory control of chondrocyte 

biology for the purpose of human disease studies should attempt to demonstrate one-to-one 

functional regulatory orthology when using the mouse as model. This can be accomplished 

by performing ATAC-seq on the homologous tissue of each species (e.g., the distal femur), 

then mapping sequencing reads, calling peaks or regulatory regions, and finally identifying 

regulatory regions that reside on the same orthologous sequence in each species. Moreover, 

if scATAC-seq is to be used to compare and characterize species differences in cellular 

heterogeneity in a given tissue, larger number of biological replicates and cells should 

be sequenced in order to better determine real (species-specific) biological differences 

versus those resulting from sampling issues and ascertainment bias. We also were able 

to perform evolutionary analyses on human/mouse sequences using the bulk ATAC-seq 

data and revealed that regulatory regions unique to distinct bone ends (e.g., the distal 

femur as compared to the proximal femur) display substantial evidence of ancient natural 

selection in humans and modern human sequence constraint (i.e., reductions of human 

genetic variation), reflecting functional demands of joint sites during the evolution of 

human bipedalism [2]. In turn, we also found evidence that this process of natural selection 

and constraint on human knee regulatory elements has shaped knee osteoarthritis disease 

prevalence and heritability (see below and [2]). These insights reflect the power of bulk 

ATAC-seq when used with other computational bioinformatic and comparative genomic 

methodologies.

Both general chondrocyte as well as bone-end-specific chondrocyte regulatory region sets 

also displayed important overlaps with bone-end-specific anatomy and disease risk. We 

found that chondrocyte ATAC-seq sets, which on average were 500 nucleotide in size, 

exhibited enrichments for cartilage diseases, most notably osteoarthritis. Moreover, knee-

specific ATAC-seq regulatory regions showed stronger enrichments for knee osteoarthritis 

Genome-wide Association Study (GWAS) genetic variants, along with regulatory regions 

being located near genes with disease annotations of osteoarthritis and joint-related 

pathologies (see Richard et al., 2020) [2]. In the context of understanding disease-pathogenic 

mechanism, genetic variants located within knee regulatory regions were also likely to 

alter important transcription factor binding sites (e.g., KLF5, FOXP1/2, PITX1/2) involved 

in both chondrocyte biology as well as osteoarthritis. To carry out these analyses, 

computational transcription factor binding site analyses were performed on bulk ATAC-

seq regulatory region sets for specific bone ends to identify enriched binding sites for 

chondrocytes and transcription factors that might promote anatomical site specificity or 

disease activity. The results of these studies, as reported in detail in Richard et al., 2020 [2], 

indicate that at the regulatory sequence level, as well as at the level of the proteins that bind 

to them, there are signals of osteoarthritis risk. In other words, the genetic circuitry involved 

in forming a knee also appears to have been disrupted to cause osteoarthritis later in life.

Importantly, these studies also inform on the potential use of scATAC-seq for addressing 

these specific questions. For example, since there are overall fewer copies of DNA present 

in selected single cells for scATAC-seq, and there is inherent per-cell data sparsity, in 

which only 1–10% of expected chromatin accessible regions are argued to be detectable by 

scATAC-seq compared to say 10–45% of expressed genes detected in single cells from 
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scRNA-seq data [25, 26], we anticipate that these issues would drastically reduce the 

number of detected regulatory regions, called transcription factor binding motifs within 

peaks, and most importantly variants/motif intersections (i.e., given the lower numbers of 

called regions, important peak/variant intersections would be missed), thereby impacting 

transcription factor binding site detection for sets of motif-altering variants. Thus, the 

discrete, sparse, and noisy data obtained from scATAC-seq poses significant data analysis 

challenges in terms of understanding single-cell heterogeneity and regulation. Moreover, 

there is also the notion that the computational tools developed for bulk ATAC-seq will 

not be able to effectively analyze data obtained from scATAC-seq, and as a result, there 

is an increasing need for the development of new data analysis tools for single cell 

regulome analysis. Recently, several single-cell regulome analysis methods have been 

developed including chromVar, SCRAT, BROCKMAN, Dr.seq2, cicero, scasat, Destin, 

scABC, PRISM, cisTopic, and SCATE [27–37]. SCATE consistently outperformed all 

the other methods in terms of providing more accurate identification of cis-regulatory 

element activities and transcription factor binding sites using inherently sparser data from 

scATAC-seq [37]. However, all these mapping technologies can only get a snapshot of a 

cell regulatory activity at one time point, and they cannot accurately describe the continuous 

steady state regulatory activity in a cell. Future efforts will need to develop tools to study 

regulatory activities along continuous pseudotemporal trajectories at a single-cell resolution 

and also develop new methods that utilize improved regulatory activity estimation from 

scATAC-seq data to more accurately reconstruct gene regulatory networks. This will also 

be important in order to examine how genetic regulatory variants impact disease risk on the 

cell-type specific level.

In conclusion, insights gained from the ATAC-seq studies performed on chondrocytes 

acquired in bulk from developing mouse and human bone-ends will serve as a valuable 

resource for future scATAC-seq benchmark studies and could guide development of 

computational tools aimed at solving the remaining challenges associated with analysis of 

scATAC-seq datasets.

Single Cell CyTOF Analyses to Map Cellular Heterogeneity in Healthy and 

Diseased Skeletal Tissues

Mass cytometry was initially applied to immune cells in the blood that have a well-

characterized cellular identity, lineage, and function [38]. CyTOF, is a mass-spectrometry-

based method for single-cell detection of isotope-labeled antibodies [39, 40]. The use of rare 

metal isotopes instead of fluorophores greatly expands the number of antibodies that can 

be utilized thereby making it possible to map as many as 40 to 120 protein epitopes for a 

single cell [40]. This high-dimensional method is therefore extremely useful for proteomic 

analyses, and compliments single cell transcriptomic and epigenetic techniques. CyTOF can 

also provide a snapshot of post-translational regulation and active signaling events at a single 

cell level. Since the protein panel to be interrogated is preselected for CyTOF studies, this 

approach is limited as compared to the unbiased genome-wide interrogation that is made 

possible by single cell transcriptomics. It is however possible to study a large number of 

cells with CyTOF (a few millions) in a cost-effective manner as compared to the higher 
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costs associated with scRNA-seq that prohibit studying more than a few thousand cells at 

best. CyTOF studies therefore have an advantage in terms of identifying and validating rare 

cell populations. The availability of the multiple and complimentary single cell techniques 

for gene expression and proteomic analyses now makes it possible to really identify the 

single cell landscape of skeletal tissues and to study the diverse cell populations that drive 

development, regeneration, and disease.

Recent studies have now begun to expand the repertoire to other tissues including a few 

skeletal tissues [41–43]. In recent studies, healthy and osteoarthritic cartilage samples were 

profiled using mass cytometry to establish a single-cell atlas for cartilage [3]. In contrast 

to readily accessible blood cells, the method for isolating chondrocytes from the cartilage 

tissue is often tricky due to the abundance of extracellular matrix (ECM) surrounding the 

chondrocytes. After testing multiple protease digestion strategies, we utilized a collagenase-

based protocol for optimal isolation and later staining of chondrocytes. After a detailed study 

of the literature and some preliminary analyses, a panel of 33-markers were labeled with 

rare-earth metal isotopes and optimized for profiling chondrocytes. This panel included cell 

surface receptors, adhesion molecules, signaling mediators and cell cycle and transcription 

factors that are known to be important for cartilage homeostasis.

Although cartilage is a relatively simple tissue, with only one cell type, chondrocytes, 

being embedded in its secreted ECM, it has a zonal organization that differentiates cellular 

identity. Multiple studies have interrogated the presence of stem and progenitor like cells in 

adult cartilage but the precise identity and characteristics of these cells remain controversial 

as opposed to the unequivocal data in support of muscle or neural stem cells, for example 

[44]. Using putative markers for cartilage progenitor cells (CPC) in Sox9 and CD44 positive 

cells, including CD105/CD90/Notch/Stro/CD151, distinct subpopulations were identified 

[3]. These data suggest the existence of multiple CPC subsets. It will be interesting in future 

studies, however, to isolate and study the precise function of each of these subsets especially 

their contribution to cartilage regeneration and repair.

Single cell CyTOF analyses further revealed the presence of various “rare” cell populations 

that constituted only a small percentage (2–5%) of the total chondrocytes [3]. These 

populations were however persistent in all the patients profiled and were reminiscent of 

other small populations like senescent cells that are found in aged cartilage. Previous 

studies have demonstrated that senescent cells secrete a specific senescence-associated 

secretory phenotype that can increase tissue aging and damage. Removal of the senescent 

cells led to cartilage protection in a mouse model of post-traumatic osteoarthritis, showing 

the significance of rare disease-associated cell populations [45]. The mass cytometry data 

revealed two novel inflammation modulating subpopulations in osteoarthritic cartilage—an 

inflammation amplifying (Inf-A) chondrocyte population and an inflammation dampening 

(Inf-D) population [3]. Inhibition of the Inf-D population led to an overall decrease in 

the inflammatory secretome of osteoarthritic chondrocytes. However, a pharmacological 

strategy targeting both Inf-A and Inf-D cells showed a significantly higher decrease in 

inflammation in osteoarthritic chondrocytes, highlighting the relevance as well as the cross-

talk between small cellular sub-populations in osteoarthritis. Histologically, a few atrophic 

cells can be identified in OA cartilage along with some expanded clusters that likely result 
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from proliferation although it is difficult to ascertain the timescale of formation of these 

clusters. For the CyTOF studies, we explicitly sorted live cells, hence putatively atrophic 

cells would have been excluded. Insignificant numbers of Ki67+ cells were observed, hence 

actively proliferating cells were negligible in OA chondrocytes.

Finally, the single cell proteomic data allowed for the stratification of osteoarthritis patients 

into three groups based on the relative proportions of inflammatory to regenerative cells 

[3]: increased in osteoarthritis; unchanged between osteoarthritis and normal; decreased in 

osteoarthritis. The different proportions of chondrocyte subtypes likely reflect the variable 

degree of degeneration associated with each osteoarthritis patient as well as their immune 

and metabolic profiles. Understanding cartilage (and other joint tissues in the future) at a 

single cell level can therefore provide a higher resolution and novel insights into the onset 

and progression of osteoarthritis pathology.

In summary, single cell proteomic studies have a great potential to provide a deeper 

understanding of healthy and diseased skeletal tissues as well as identify the patient-to-

patient differences that may be critical in determining precision medicine approaches for 

effective therapies.

Conclusions

Single cell “omics” technologies allow researchers to identify rare and transient cell 

populations in normal and diseased tissues. These single cell technologies are being 

increasingly embraced by the musculoskeletal community. Successful completion of these 

projects requires teams of basic scientists, clinicians, and bioinformaticians because tools 

are advancing rapidly. While becoming an expert on all new tools is challenging, it 

is of paramount significance that bench scientists and clinicians or surgeons in the 

musculoskeletal community understand how single cell technologies can be used to answer 

research questions and identify new treatment targets or avenues.

This review article summarizes the work of three teams who used different yet 

complementary aspects of single cell “omics” to understand cartilage development and the 

osteoarthritic tissues. Wu et al. showed that scRNA-seq analysis can unravel the cellular 

heterogeneity and trajectories of lineage specification of hiPSC to chondrocytes [1]. They 

also identified ligand–receptor pairs that modulate chondrocyte lineage commitment. The 

Capellini team described how ATAC-seq and RNA-seq data can be combined to understand 

evolution of gene signatures during cartilage development and disease [2]. Finally, the 

work of the Bhutani team reviewed how high-content single-cell analysis (CyTOF, mass 

cytometry) can reveal rare cell populations in osteoarthritic cartilage [3]. These three studies 

highlight the emerging role of single cell “omics” technologies in musculoskeletal research 

but are just a few examples of what has been done. Other single transcriptomic studies have 

been published [46–48] and we anticipate many more in the future.

The generation of these large single cell “omics” datasets has revealed many new insights 

into musculoskeletal biology and disease pathogenesis, but translation into advanced 

diagnostic tools and treatments has yet to be realized. The size and complexity of the 
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datasets and bioinformatics processes pose many challenges that must be overcome to reach 

this goal. One challenge is the integration of all omics data into a user-friendly interface that 

is easy to access and available to the entire research community. With this goal in mind, 

a working group from the International Federation of Musculoskeletal Research Societies 

(IFMRS) has teamed with the Broad Institute to generate a Musculoskeletal Knowledge 

Portal (mskkp.org) [49]. The majority of the data on the MSKKP are genetic association 

studies at this time, but work is ongoing to integrate transcriptomic, epigenomic, and 

proteomic data to the genetic studies on a single multi-omics platform. A second challenge 

of having many large datasets is reconciling the results from different studies, and unlimited 

combinations of experimental designs and analysis tools. Machine learning and artificial 

intelligence tools will be needed to decipher the similarities and difference of rare and 

transient or intermediate cell states over time, and to identify disease-causing genes that 

could be targets of intervention.

In conclusion, rapid advances in single cell sequencing and proteomic analyses are 

revealing new and exciting information on musculoskeletal cell development and disease 

pathogenesis. This review summarizes some of the first high impact work in cartilage 

development and osteoarthritis. The future will be exciting as the data sets are reconciled 

and new therapeutic targets are identified for musculoskeletal conditions that cause disability 

across the globe.
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Fig. 1. 
a. Representative applications that can be accomplished by scRNA-seq and bioinformatic 

analyses. b. A neurogenesis gene regulatory network identified by WGCNA in d28 

chondrogenic pellets
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Fig. 2. 
scATAC-seq identifies open chromatin and comparative epigenomics can identify 

evolutionarily-conserved regions contributing to disease, including osteoarthritis
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Fig. 3. 
Single cell CyTOF identifies cells in tissues based on protein expression and facilitates 

patient OA type identification based on proteome heterogeneity
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