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INTRODUCTION

Chest radiography is the most frequently used diagnostic 
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Objective: To compare the effects of bone suppression imaging using deep learning (BSp-DL) based on a generative adversarial 
network (GAN) and bone subtraction imaging using a dual energy technique (BSt-DE) on radiologists’ performance for 
pulmonary nodule detection on chest radiographs (CXRs).
Materials and Methods: A total of 111 adults, including 49 patients with 83 pulmonary nodules, who underwent both CXR 
using the dual energy technique and chest CT, were enrolled. Using CT as a reference, two independent radiologists evaluated 
CXR images for the presence or absence of pulmonary nodules in three reading sessions (standard CXR, BSt-DE CXR, and 
BSp-DL CXR). Person-wise and nodule-wise performances were assessed using receiver-operating characteristic (ROC) and 
alternative free-response ROC (AFROC) curve analyses, respectively. Subgroup analyses based on nodule size, location, and 
the presence of overlapping bones were performed.
Results: BSt-DE with an area under the AFROC curve (AUAFROC) of 0.996 and 0.976 for readers 1 and 2, respectively, and 
BSp-DL with AUAFROC of 0.981 and 0.958, respectively, showed better nodule-wise performance than standard CXR (AUAFROC 
of 0.907 and 0.808, respectively; p ≤ 0.005). In the person-wise analysis, BSp-DL with an area under the ROC curve (AUROC) 
of 0.984 and 0.931 for readers 1 and 2, respectively, showed better performance than standard CXR (AUROC of 0.915 and 
0.798, respectively; p ≤ 0.011) and comparable performance to BSt-DE (AUROC of 0.988 and 0.974; p ≥ 0.064). BSt-DE and 
BSp-DL were superior to standard CXR for detecting nodules overlapping with bones (p < 0.017) or in the upper/middle lung 
zone (p < 0.017). BSt-DE was superior (p < 0.017) to BSp-DL in detecting peripheral and sub-centimeter nodules.
Conclusion: BSp-DL (GAN-based bone suppression) showed comparable performance to BSt-DE and can improve radiologists’ 
performance in detecting pulmonary nodules on CXRs. Nevertheless, for better delineation of small and peripheral nodules, 
further technical improvements are required.
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imaging modality in routine clinical practice. It is performed 
not only for patients with thoracic disease but also for 
others during a routine checkup [1]. Findings on chest 
radiographs (CXRs) often guide subsequent evaluations, 
such as laboratory tests, additional imaging studies, 
and tissue sampling. Detection of nodules on CXR is an 
important task for radiologists because many malignant 
and benign conditions can manifest as nodular lesions [2]. 
However, the risk of detecting errors on two-dimensional 
(2D) images, is relatively high because of the low contrast 
resolution and overlapping anatomical structures.

As per previous studies related to missed lung cancer, 
overlapping bony structures are major factors that cause 
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errors in the diagnosis of CXRs [3-6]. To improve the 
visibility of parenchymal lesions on CXRs, bony structures 
need to be eliminated using advanced techniques. The 
dual-energy subtraction (DES) technique can remove bones 
from images using differences in the degree to which body 
tissues attenuate low- and high-energy photons. Despite 
its positive effect on the reader’s performance, the DES 
technique has not been widely used owing to issues such 
as its limited portability, increased radiation exposure, 
and specific hardware requirements [7-12]. Additionally, 
cardiac and respiratory motion artifacts can degrade image 
quality procured using a dual-exposure technique [9]. With 
recent advances in deep learning, software-based bone 
suppression algorithms have been introduced [13,14]. 
Application of a software-based bone suppression technique 
on chest radiography can improve the diagnostic accuracy 
for detecting nodules by radiologists and computer-aided 
diagnosis systems without increasing radiation exposure or 
requiring specialized equipment [15-19]. However, further 
technical advances are required for their practical use in 
patients.

We developed a new bone suppression model based on 
the wavelet transform and generative adversarial networks 
(GANs) [20]. Although the performance of this model was 
evaluated by comparing quality metrics with those of other 
convolutional neural network-based models, its potential for 
clinical application has not yet been assessed. In addition, 
the performance of software-based bone suppression images 
compared to that of bone subtraction images using the dual 
energy technique remains unclear. Therefore, the purpose 
of the present study was to evaluate the effect of bone 
suppression imaging using deep learning (BSp-DL) based 
on GAN compared to bone subtraction imaging using a dual 
energy technique (BSt-DE) on radiologists’ performances for 
pulmonary nodule detection on CXR.

MATERIALS AND METHODS

This study was approved by our Institutional Review 
Board. The written informed consent was waived because of 
the retrospective study design (IRB No. 2019-08-018).

Patients and Image Selection
Between April 2016 and December 2019, a total of 1858 

consecutive patients underwent chest radiography using the 
dual energy technique. Among them, 194 patients had chest 
CT images taken within 7 days of dual-energy radiographic 

imaging. With chest CT as a reference, two board-
certified radiologists with 24 and 25 years of experience, 
respectively, reviewed CXRs and determined the presence or 
absence of non-calcified nodules. After excluding 83 cases, 
111 patients were finally enrolled for the evaluation. The 
reasons for exclusion were as follows: presence of extensive 
infiltrative lesions (n = 36), severe parenchymal distortion 
(n = 15), lung atelectasis (n = 7), prior lung surgery (n = 
4), large amount of pleural effusion or diffuse pleural 
calcification (n = 13), and nodules apparent on CT but not 
observed on CXRs (n = 8). The image selection process is 
illustrated in Figure 1. After reviewing axial and coronal CT 
scan images, annotations were made in the center of 83 
nodules on CXRs to serve as standard reference to evaluate 
readers’ performance. When a patient underwent multiple 
dual energy chest radiographic imaging, only one study that 
was performed at the nearest time to CT was used for the 
evaluation. The study did not include any image datasets 
used in the bone suppression model development process or 
internal validation.

Image Acquisition
Posteroanterior chest radiography was performed using 

a flat-panel detector digital radiographic imaging system 
(Discovery XR656, GE Healthcare) with dual energy 
capability. The detector had an image size of 41 x 41 cm 
and a pixel dimension of 0.2 x 0.2 mm. For dual-energy 
image acquisition, there were two exposures using 120 and 
60 kVp pulses at intervals of 200 ms. Fixed tube currents 
of 194 mA and 252 mA were used at high and low voltage 
values, respectively. The exposure time was automatically 
controlled according to the patient size. Each acquisition 
resulted in three images: a composite image (equivalent 
standard CXR), a soft tissue selective image (BSt-DE), and 
a bone-selective image. Bone or soft-tissue images were 
produced by weighted subtraction of each absorption 
coefficient. CXR and BSt-DE were anonymized and saved for 
review. 

Image Processing Using Bone Suppression Model
Our bone suppression model used adversarial training 

in the GAN framework to learn the conditional probability 
distribution of the output images according to the input 
images. The Haar wavelet decomposition was adopted as 
an input system. It pre-defined features that the network 
should learn via wavelet transformation of an image into four 
directional feature images (Fig. 2). This allowed the model 



141

Bone Suppression on Chest Radiographs Using GAN

https://doi.org/10.3348/kjr.2021.0146kjronline.org

1858 patients with CXRs taken using dual energy technique

753 patients with chest CT scans (standard dose or low dose)

194 patients taken CXR and chest CT within 7-day interval

49 patients with 83
nodules

62 patients without
nodules

Excluded (n = 83)
  - Diffuse infiltrative lesion (n = 36)
  - Parenchymal distortion (n = 15)
  - Lung atelectasis (n = 7)
  - Prior lung surgery (n = 4)
  - Pleural effusion/calcification (n = 13)
  - �Nodules apparent in CT, but without visibility 

on CXRs (n = 8)

Fig. 1. Flow chart depicting the selection of the study population. CXR = chest radiograph

Fig. 2. The architecture of bone suppression algorithm based on wavelet transform and generative adversarial networks. 
A. The architecture of generator that receives the original image and produces bone suppressed images. This system uses the frequency 
information obtained from Haar wavelet transformation which pre-defines features that the network should learn, allowing the network to 
converge more quickly and efficiently. The generator takes four channels of 512 x 512 source (original) images obtained through Haar 2D wavelet 
decomposition and tries to produce output (bone suppressed) image that can fool the discriminator by avoiding image blurring. The output 
image is finally reconstructed to 1024 x 1024 by Haar 2D wavelet reconstruction. Values below each conv block are image compression ratios with 
the number of channels. B. The architecture of the discriminator. The discriminator distinguishes whether the input is a fake image that comes 
from the generator, or a real one from the training set. In the training process, the two networks compete. The discriminator plays a critical role 
in preventing the generator from producing a blurred image and also considers the distribution of image batches s as the generator does. conv = 
convolution, fc = fully connected, 2D = two-dimensional

A

B
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to exploit high-frequency details of CXR and to converge 
more quickly and efficiently [21]. In the GAN framework, 
the generator attempted to deceive the discriminator by 
creating an image similar to the training set. This bone 
suppression model was trained and validated using a total 
of 348 pairs of composite and soft tissue selective images 
obtained by dual-energy radiography that were available in 
public domain [20]. Technical details of the model, including 
network architecture, quantitative performance metrics, and 
training process, have been described previously [20]. No 
additional training was imparted for this study. A total of 
111 CXRs obtained using the dual energy technique were 
postprocessed. The generated bone-suppressed images (BSp-
DL) were anonymized and stored for evaluation.

Evaluation of Image Quality 
Two radiologists (with 6 and 8 years of experience, 

respectively) independently assessed the image quality of 
BSp-DL and BSt-DE in two reading sessions. In each session, 
the images were randomly re-ordered. With reference to 
a previous study [22], the evaluation criteria included 
visibility of pulmonary vessels in the lung field, retrocardiac 
and diaphragm area, visibility of the central airway, and 
degree of bone suppression. The evaluation criteria and 
their scales are listed in Supplementary Table 1.

 
Nodule Detection

Before an observer study, a preliminary study was 
conducted with images taken using an anthropomorphic 
chest phantom with synthetic nodules for readers’ training 
(Supplementary Fig. 1). Two board-certified radiologists 
(with 5 and 7 years of experience, respectively) who were 
blinded to the diagnosis independently evaluated 333 
image sets for detecting pulmonary nodules in three reading 
sessions at two-week intervals. 

In the first session, standard CXRs were displayed 
on a 12-megapixel wide monitor (Coronis Uniti, Barco 
Healthcare) for evaluation. In the second and third sessions, 
standard CXR and corresponding BSt-DE or BSp-DL were 
displayed side by side on the same monitor. In each reading 
session, the images were randomly re-ordered. Readers were 
asked to mark nodules if any, and record a score of 1–4 (very 
low to very high confidence). A score of 0 was assigned to 
unmarked lesions and normal images without false positive 
marks. Calcified nodules and masses > 30 mm were ignored. 
When there were multiple nodules in one lung zone, up to 
three nodules in order of their sizes (from the largest to the 

smallest) were evaluated.
Lesion localizations determined by readers were 

considered correct if they were marked within 10 mm of the 
reference standard. The location of a nodule was determined 
according to both the longitudinal and transverse divisions 
of the lung fields on CXRs. The vertical distance of each 
lung from the apex to the costophrenic angle was divided 
into three equal parts: right upper (RU), right middle 
(RM), right lower (RL), left upper (LU), left middle (LM), 
and left lower (LL) zones. Horizontally, the outer half of 
the lung parenchyma from the chest wall was defined as 
the peripheral zone, and the remaining inner portion was 
designated as the central zone. Nodules were considered 
to overlap with bony structures when 50% or more of the 
nodular area overlapped with the ribs and/or clavicles.

Statistical Analysis 
Alternative free-response receiver operating characteristic 

(AFROC) curve analysis was performed to compare nodule-
wise localization performances of CXR, BSt-DE with CXR, 
and BSp-DL with CXR, while ROC analyses were employed 
to compare person-wise diagnostic performances. In the 
person-wise analysis, the highest diagnostic confidence 
score for each image set was used for calculation [23].

In addition, sensitivity, specificity for person-wise 
detection, and sensitivity for nodule-wise detection were 
evaluated by assigning scores of 2–4 as positive. Subgroup 
analyses for nodule-wise detection according to the size, 
location, and presence or absence of overlapping bones 
were also undertaken. The McNemar test was used to 
compare the sensitivity and specificity.

Inter-reader agreements on person-wise and nodule-wise 
diagnoses were determined based on the weighted kappa 
coefficient, which was interpreted as follows: a kappa value 
of < 0.20, poor; 0.21–0.40, fair; 0.41–0.60, moderate; 
0.61–0.80, substantial; and < 0.81, almost perfect.

Following Bonferroni correction for multiple comparisons, 
a p value of < 0.017 was considered statistically significant. 
AFROC analysis was performed using RJafroc (Artificial 
Intelligence Systems and Observer Performance; R package 
version 2.0.1, R Foundation of Statistical Imaging). Other 
statistical analyses were undertaken using commercially 
available software (MedCalc, version 19.5, MedCalc Software). 

RESULTS 

Among the 111 subjects, there were 66 males and 45 



143

Bone Suppression on Chest Radiographs Using GAN

https://doi.org/10.3348/kjr.2021.0146kjronline.org

females. The mean age was 54.7 years (range, 18–94 years). 
According to standard reference, 49 patients had 83 lung 
nodules with a mean diameter of 13.24 ± 6.80 mm (range, 
5–30 mm). However, 62 patients had no lung nodules. The 
location of nodules in the lung zone was RU for 20, RM for 
15, RL for 18, LU for 10, LM for 7, and LL for 13. While 31 
nodules were located in the central area, 52 were in the 
peripheral area. Fifty-five nodules overlapped with bones, 
whereas 28 nodules did not. Patient demographics are 
shown in Table 1.

Image Quality
The total image quality score by two independent readers 

did not differ between BSt-DE and BSp-DL (Table 2). While 
the visibility of pulmonary vessels in the lung field was 
superior (p < 0.001) in BSt-DE as compared to BSp-DL, 
the visibility of pulmonary vessels in the retrocardiac and 

diaphragm areas was superior (p < 0.001) in BSp-DL than 
in BSt-DE (Fig. 3). The visibility of the central airway and 
degree of bone suppression were not significantly different 
between the two image datasets.

Nodule Detection 
The use of BSt-DE {reader 1: area under the AFROC curve 

(AUAFROC) = 0.996 (95% confidence interval [CI]: 0.989, 
1.000), p < 0.001; reader 2: AUAFROC = 0.976 (95% CI: 0.954, 
0.997), p < 0.001} or BSp-DL (reader 1: AUAFROC = 0.981 
[95% CI: 0.964, 0.997], p = 0.005; reader 2: AUAFROC = 
0.958 [95% CI: 0.926, 0.990], p < 0.001) showed better 
nodule-by-nodule diagnostic performance than the use of 
CXR alone (reader 1: AUAFROC = 0.907 [95% CI: 0.858, 
0.955]; reader 2: AUAFROC = 0.808 [95% CI: 0.733, 0.883]) 
(Table 3, Fig. 4). There were no differences in AUAFROCs 
between BSt-DE and BSp-DL. In the person-wise analysis, 
the diagnostic performance was significantly improved 
when BSt-DE was used (reader 1: area under the ROC curve 
[AUC] = 0.988 [95% CI: 0.946, 0.999], p = 0.011); reader 
2: AUC = 0.974 [95% CI: 0.925, 0.995], p < 0.001) or when 
BSp-DL was used (reader 1: AUC = 0.984 [95% CI: 0.940, 
0.998], p = 0.005; reader 2: AUC = 0.931 [95% CI: 0.867, 
0.971], p < 0.001) than when CXR was used alone (reader 1: 
AUC = 0.915 [95% CI: 0.846, 0.959]; reader 2: AUC = 0.798 
[95% CI: 0.711, 0.868]) (Table 4). There was no significant 
difference in diagnostic performance between the use of 
BSt-DE and BSp-DL. 

In subgroup analysis according to nodule size, 
radiologists’ detection sensitivity for nodules > 1 cm was 
significantly (p < 0.017) improved when either BSt-DE or 
BSp-DL was used compared to when CXR alone was used 
for both readers. There was no significant difference in 

Table 1. Characteristics of Study of Patients and Nodules

Male:female 66:45
Mean age, years (range) 54.7 (18–94)
Patient with vs. without nodules 49:62
Location of nodules (n = 83)

RU, RM, RL, LU, LM, LL 20, 15, 18, 10, 7, 13
Central vs. peripheral 31:52
Overlapping vs. 
  non-overlapping with bones

55:28

Size of nodules, mean ± standard 
  deviation (range) 

13.2 ± 6.8 (5–30) 

5–10 mm 30
10–20 mm 39
20–30 mm 14

Data are number of patients or nodules, unless specified otherwise. 
LL = left lower, LM = left middle, LU = left upper, RL = right lower, 
RM = right middle, RU = right upper

Table 2. Image Quality Scores of BSt-DE and BSp-DL by Two Independent Readers
Criteria Reader BSt-DE BSp-DL P

Visibility of pulmonary vessels in the lung fields
1 9.93 ± 0.96 8.49 ± 0.71 < 0.001
2 10.22 ± 0.96 9.07 ± 1.03 < 0.001

Visibility of pulmonary vessels in the retrocardiac/
  diaphragmatic area 

1 3.90 ± 0.86 5.02 ± 0.69 < 0.001
2 3.95 ± 0.81 4.93 ± 0.58 < 0.001

Visibility of central airway 
2 2.85 ± 0.36 2.73 ± 0.45 0.096
2 2.90 ± 0.30 2.80 ± 0.40 0.102

Bone suppression
1 2.56 ± 0.55 2.63 ± 0.54 0.180
2 2.17 ± 0.50 2.17 ± 0.44 1.000

Total score
1 19.24 ± 1.46 18.88 ± 1.33 0.077
2 19.24 ± 1.61 18.95 ± 1.40 0.105

Data are mean ± standard deviation. A p value < 0.017 was considered statistically significant (Bonferroni correction for multiple 
comparisons). BSp-DL = bone suppression imaging using deep learning, BSt-DE = bone subtraction imaging using a dual energy 
technique
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sensitivity for detecting nodules > 1 cm between the use 
of BSt-DE and the use of BSp-DL. Meanwhile, radiologists 
detected more sub-centimeter nodules with the use of BSt-
DE than with the use of BSp-DL. The difference in detection 
sensitivity between the use of BSt-DL and the use of BSp-
BL for sub-centimeter nodules was significant (p = 0.002) 

for reader 1 (Table 3). There was no significant difference in 
detecting sub-centimeter nodules between the use of BSp-
DL and the use of CXR alone for both readers. 

In subgroup analysis according to nodule location, 
radiologists’ detection sensitivity for nodules in the upper/
mid lung zone was improved (p < 0.017) with the use of 

Fig. 3. A 27-year-old female who presented with cough.
A. A nodule in the right pericardiac area (arrow) is obscured by rib shadow on the CXR. B, C. BSp-DL (B) and BSt-DE (C) reveal the nodule (arrows) 
clearly. In the evaluation of image quality, readers scored visibility of pulmonary vessels in the lung fields higher in BSt-DE while visibility of 
pulmonary vessels in cardiac and diaphragmatic areas was higher in BSp-DL (circles). D. A coronal image of chest CT in lung window setting 
showing a 16 mm nodule (arrow) in the right lower lobe. BSp-DL = bone suppression imaging using deep learning, BSt-DE = bone subtraction 
imaging using dual energy technique, CXR = chest radiograph

A B C D

Table 3. Nodule-Wise Analysis of Radiologists’ Performance and Sensitivity for Detecting Lung Nodules
Reader CXRa BSt-DEb BSp-DLc Pa-b Pa-c Pb-c

AUAFROC*
1

0.907 
[0.858, 0.955]

0.996 
[0.989, 1.000]

0.981 
[0.964, 0.997]

< 0.001 0.005 0.095

2
0.808 

[0.733, 0.883]
0.976 

[0.954, 0.997]
0.958 

[0.926, 0.990]
< 0.001 < 0.001 0.350

Sensitivity

For all nodules† (n = 83)
1 60.2 (50/83) 89.2 (74/83) 78.3 (65/83) < 0.001 0.001 0.022
2 53.0 (44/83) 83.1 (69/83) 71.1 (59/83) < 0.001 0.001 0.031

< 1 cm† (n = 30)
1 36.7 (11/30) 80.0 (24/30) 46.7 (14/30) < 0.001 0.375 0.002
2 26.7 (8/30) 66.7 (20/30) 36.7 (11/30) 0.002 0.453 0.022

≥ 1 cm† (n = 53)
1 73.6 (39/53) 94.3 (50/53) 96.2 (51/53) 0.003 0.002 1.000
2 67.9 (36/53) 92.5 (49/53) 90.6 (48/53) 0.001 < 0.001 1.000

Central† (n = 31)
1 67.7 (21/31) 87.1 (27/31) 87.1 (27/31) 0.070 0.070 1.000
2 58.1 (18/31) 74.2 (23/31) 77.4 (24/31) 0.180 0.070 1.000

Peripheral† (n = 52)
1 55.8 (29/52) 90.4 (47/52) 73.1 (38/52) < 0.001 0.012 0.012
2 50.0 (26/52) 88.5 (46/52) 63.7 (35/52) < 0.001 0.012 0.001

Upper/middle† (n = 52)
1 55.8 (29/52) 90.4 (47/52) 75.0 (39/52) < 0.001 0.006 0.021
2 48.1 (25/52) 82.7 (43/52) 69.2 (36/52) < 0.001 0.003 0.065

Lower† (n = 31)
1 57.7 (21/31) 87.1 (27/31) 83.9 (26/31) 0.070 0.125 1.000
2 61.3 (19/31) 83.9 (26/31) 74.2 (23/31) 0.039 0.219 0.453

Overlap with bones† (n = 55)
1 56.4 (31/55) 92.7 (51/55) 80.0 (44/55) < 0.001 0.001 0.039
2 47.3 (26/55) 85.5 (47/55) 70.9 (39/55) < 0.001 0.001 0.039

No overlap with bones† (n = 28)
1 67.9 (19/28) 82.1 (23/28) 75.0 (21/28) 0.219 0.625 0.625
2 64.3 (18/28) 78.6 (22/28) 71.4 (20/28) 0.219 0.625 0.687

*Numbers in parentheses show 95% confidence intervals of AUAFROC values, †Numbers indicate percentages with raw data in parentheses. 
p values refer to differences in sensitivities among the use of CXRa alone, the use of BSt-DEb, and BSp-DLc. A p value < 0.017 was 
considered statistically significant (Bonferroni correction for multiple comparisons). AUAFROC = area under the alternative free-response 
receiver-operating characteristic curve, BSp-DL = bone suppression imaging using deep learning, BSt-DE = bone subtraction imaging 
using a dual energy technique, CXR = chest radiograph
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BSt-DE or BSp-DL compared to that with the use of CXR 
alone for both readers (Fig. 5). However, there were no 
significant differences in the sensitivity for detecting 
nodules located in the lower lung zone among the three 
groups. For peripheral nodules (n = 52), the use of BSt-
DE or BSp-DL showed significantly higher (p < 0.017) 
sensitivity than the use of CXR alone for both readers. In 
addition, the use of BSt-DE showed significantly (both 
p < 0.017) higher sensitivity than the use of BSp-DL for 
both readers. For central nodules (n = 31), there was no 
difference in detection sensitivity among the three groups. 

Radiologists’ detection sensitivity for nodules overlapping 
with bones (n = 55) was significantly (p < 0.017) improved 
with the use of BSt-DE or BSp-DL than with the use of CXR 
alone for both readers. However, there were no significant 
differences in the detection sensitivity between the use of 
BSt-DE and BSp-DL. Additionally, there were no differences 
in detection sensitivity among the three groups for nodules 
without overlapping bones (n = 28).

Inter-observer agreements on nodule-wise diagnosis were 

1.00

0.75

0.50

0.25

0.00

Le
si

on
 lo

ca
liz

at
io

n 
fr

ac
ti

on

0.00             0.25             0.50             0.75             1.00

Modality

Reader
R1
R2

CXR alone
With BSp-DL
With BSt-DE

False positive fraction

Fig. 4. The AFROC curves showing nodule-wise localization 
performance of radiologists. Area under the AFROC curve is 
improved significantly (p < 0.017) using BSp-DL or using BSt-DE than 
that using CXR alone. AFROC = alternative free-response receiver 
operating characteristic, BSp-DL= bone suppression imaging using 
deep learning, BSt-DE = bone subtraction imaging using dual energy 
technique, CXR = chest radiograph, R1 = reader 1, R2 = reader 2

Fig. 5. An 85-year-old male who underwent CXR as a part of routine follow-up after gastrectomy for stomach cancer.
A. A tiny nodule overlapping with anterior arc of right 3rd rib (arrow) is suspicious in the right upper lobe on CXR. B, C. BSp-DL (B) and BSt-DE (C) 
confirm persistence of the nodule (arrows) after eliminating ribs. D. A coronal image of chest CT in lung window setting showing the presence of 
a 7 mm nodule (arrow) in the right upper lobe. BSp-DL= bone suppression imaging using deep learning, BSt-DE = bone subtraction imaging using 
dual energy technique, CXR = chest radiograph

A B C D

Table 4. Person-Wise Diagnostic Performance of Nodule Detection in 111 Patients by Two Independent Readers
Reader CXRa BSt-DEb BSp-DLc Pa-b Pa-c Pb-c

AUROC*
1 0.915 [0.846, 0.959] 0.988 [0.946, 0.999] 0.984 [0.940, 0.998]    0.011    0.005 0.772
2 0.798 [0.711, 0.868] 0.974 [0.925, 0.995] 0.931 [0.867, 0.971] < 0.001 < 0.001 0.064

Sensitivity† 1 71.4 (35/49) 95.9 (47/49) 91.8 (45/49) < 0.001    0.002 0.625
2 65.3 (32/49) 89.8 (44/49) 83.7(41/49)    0.002    0.012 0.453

Specificity† 1 93.5 (58/62) 98.4 (61/62) 98.4 (61/62)    0.250    0.250 1.000
2 87.1 (54/62) 91.9 (57/62) 93.5 (58/62)    0.375    0.344 1.000

*Numbers in parentheses show 95% confidence intervals of AUROC values, †Numbers are shown as percentages with the raw data in 
parentheses. p values indicate differences in the diagnostic performance between the use of CXRa alone, the use of BSt-DEb, and BSp-
DLc. A p value < 0.017 was considered statistically significant (Bonferroni correction for multiple comparisons). AUROC = area under the 
receiver operating characteristic, BSp-DL = bone suppression imaging using deep learning, BSt-DE = bone subtraction imaging using a 
dual energy technique, CXR = chest radiograph
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found to be moderate for CXR (weighted kappa coefficient: 
0.600) and substantial for both BSt-DE with CXR (weighted 
kappa coefficient: 0.707) and BSp-DL with CXR (weighted 
kappa coefficient: 0.697). Inter-observer agreements 
on person-wise diagnosis were substantial for both CXR 
(weighted kappa coefficient: 0.669) and BSp-DL with CXR 
(weighted kappa coefficient: 0.766) and almost perfect for 
BSt-DE with CXR (weighted kappa coefficient: 0.817).

False-Positive and False-Negative Findings
Causes of false-positive and false-negative findings 

were analyzed based on a retrospective review of chest CT 
and radiographic images in consensus by the two readers. 
While there were 23 (reader 1, n = 9 and reader 2, n = 
14) false-negative nodules with the use of BSt-DE, there 
were 42 (reader 1, n = 18 and reader 2, n = 24) false-
negative nodules when BSp-DL was used. We found that 
the majority of false-negative cases were small (≤ 10 mm) 
nodules, both with the use of BSt-DE (16/23, 69.6%) and 

the use of BSp-DL (35/42, 83.3%) (Fig. 6). Other false-
negative nodules were due to misinterpretation of nodules 
as vascular structures or retrocardiac/infra-diaphragmatic 
locations of the nodules. There were 19 (reader 1, n = 8 
and reader 2, n = 11) false positives detected using BSt-DE, 
and 13 (reader 1, n = 5 and reader 2, n = 8) false positives 
detected with the use of BSp-DL. False-positive nodules 
with the use of BSt-DE were due to vascular markings (n = 
8), focal pleural thickening or parenchymal scar (n = 6), 
incompletely suppressed bones or costochondral junction 
(n = 4), or artifacts (n = 1) (Fig. 7). False-positive nodules 
with the use of BSp-DL were due to vascular markings (n = 6), 
parenchymal scars (n = 5), incompletely suppressed bones  
(n = 1), and nipple (n = 1).

DISCUSSION 

Software-based bone suppression has been attempted 
through the delineation and segmentation of ribs and 

Fig. 6. A 61-year-old male who presented with cough and sputum. 
A. Readers missed a subpleural nodule in the left lower lobe near the costophrenic angle on chest radiograph. B. BSp-DL cannot define the 
nodule clearly. C. BSt-DE delineates the nodule (arrow) in the left lower lobe. D. A coronal image of chest CT in lung window setting showing 
the presence of a 9 mm nodule (arrow) in the left lower lobe. BSp-DL= bone suppression imaging using deep learning, BSt-DE = bone subtraction 
imaging using dual energy technique

A B C D

Fig. 7. A 77-year-old male with prostate cancer.
A. CXR shows a nodule opacity in the right lower lung zone due to an old fracture of the right 5th rib. B. BSp-DL showing no parenchymal lesion 
except the same opacity seen in CXR. C. BSt-DE showing additional nodular opacity in the left upper lobe (arrow). D. A coronal image of chest CT 
in lung window setting showing no parenchymal nodule in left upper lobe, but hypertrophied costochondral junction of the left 1st rib (arrow). 
BSp-DL= bone suppression imaging using deep learning, BSt-DE = bone subtraction imaging using dual energy technique, CXR = chest radiograph

A B C D
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clavicles on CXRs [18,24]. With recent advances in deep 
learning, neural-network-based bone suppression algorithms 
have been developed [13,25-28]. These algorithms 
have been programmed to eliminate bony structures by 
considering them as noise while preserving soft tissues 
[24]. However, several issues, such as uneven suppression, 
image blurring, and unnecessary suppression of soft tissue 
structures, remain to be solved for practical use [19,27,28]. 
In the present study, we used a bone suppression model 
based on the GAN framework to maintain the similarity 
between the target and generation domains [20]. The GAN 
can optimize image generators by adding discriminators 
as assisting components during training sessions [29]. To 
prevent image blurring, our model was designed to learn 
the frequency details of original images more effectively 
through the Harr 2D wavelet decomposition of the input 
data. The model outperformed other state-of-the-art 
methods in terms of quality metrics, such as peak signal-to-
noise ratio and structural similarity index [20].

Previous studies have confirmed the positive effects 
of software-based bone suppression on lung nodule 
detection compared to the use of CXR alone [15-19,28,30]. 
Nonetheless, only a few studies have compared the 
performance of software-based suppression and DES 
techniques [21,22]. Szucs-Farkas et al. [31] showed that 
software-based bone suppression imaging can provide 
similar detection rates for pulmonary nodules with the DES 
technique. However, the improvement in detection did not 
reach statistical significance compared to CXR detection. 
Li et al. [32] have shown improved accuracy for detecting 
small lung cancers by radiologists when software-based 
bone suppression and DES images were additionally used 
with CXR. However, the accuracy of software-based bone 
suppression imaging is inferior to that of the DES technique. 
A recent study by Hong et al. [22] showed that commercial 
bone suppression software can produce improved bone-
eliminated chest radiographic images compared to the DES 
technique in terms of structural similarity index and visual 
quality. However, the authors did not assess diagnostic 
performance in their study.

In the present study, the use of BSp-DL with CXR 
showed better diagnostic performance than CXR alone. 
Its performance was comparable to that of BSt-DE in 
both nodule-wise and person-wise analyses. The use of 
BSp-DL or BSt-DE increased the detectability of nodules 
overlapping with bones on CXR. The use of BSp-DL and BSt-
DE improved the detectability of nodules in the upper/mid 

lung zone. However, there were no significant differences 
in the detection of lesions in the lower lung zone. Since 
the ribs and clavicles overlap in the upper lung zone, 
bone elimination techniques could be more helpful in 
detecting lesions in the upper lung than in the lower lung 
zone [33]. While there was no significant difference in the 
detection of nodules in the central lung zone or nodules 
> 10 mm, between the two techniques, BSp-DL was inferior 
to BSt-DE in detecting the sub-centimeter and peripheral 
nodules. Due to the variability and complexity of overlying 
cardiovascular structures, detection of central lesions might 
be less affected by the use of bone elimination techniques 
[3]. The inferior detectability of small and peripheral 
nodules with BSp-DL to BSt-DE might reflect the inherent 
weakness of bone suppression algorithms that use a de-
noising approach. Ribs are more closely overlapped in the 
peripheral area on CXR, forming a lateral arc. Although our 
program outperformed existing state-of-the-art methods in 
preserving the frequency details of original images, small 
peripheral nodules could fade out while de-noising the 
overlying bones.

When image quality was compared, the score for 
visualization of pulmonary vessels in lung fields was 
higher in BSt-DE than in BSp-DL. However, the score for 
visualization of vessels in the cardiac and diaphragmatic 
areas was higher in BSp-DL than in BSt-DE. Similar to 
small peripheral nodules, pulmonary vessel area might have 
been suppressed in BSp-DL, particularly in peripheral lung 
fields where small caliber vessels are overlaid by assembled 
bony structures. The reason for the inferior visualization of 
vessels in the cardiac and diaphragmatic areas in BSt-DE is 
unclear. This may be partly attributed to misregistration of 
vessels in these areas caused by the inevitable motion of 
the heart and diaphragm [32]. 

False-negative lesions were more frequent with the 
use of BSp-DL, while false positive lesions were more re-
current with BSt-DE. False negative findings were mostly 
due to small lesion sizes in both techniques, as shown in 
a previous study [9]. False-positive lesions were thought 
to be caused by increased prominence of normal structures 
such as vessels, unsuppressed bone/costal cartilage, 
and parenchymal scars with diminishing bones in both 
techniques [17,34].

The limitations of this study include the small number 
of cases in each subgroup, which could have affected 
the results. Although a recent study [33] using a pre-
commercial bone suppression algorithm has shown results 
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similar to ours in nodule detectability relevance to anatomic 
location, further studies with larger numbers of cases are 
needed for validation. Second, we did not determine the 
optimal radiation dose for DES imaging through a phantom 
study. Instead, we used protocols suggested by the 
manufacturer. This might have affected the image quality 
as well as detectability of nodule with BSt-DE. Finally, our 
bone suppression model was an in-house program which 
has not been widely tested. Because our model being a new 
attempt, performance tests comparing with other types of 
deep learning methods are also needed to determine its 
weakness and strengths for clinical applications.

In conclusion, BSp-DL (a bone suppression imaging based 
on the GAN framework) can improve radiologists’ detection 
of nodules on CXRs. It showed comparable performance to 
that of the DES technique. Nevertheless, further technical 
improvements are needed for better delineation of small 
and peripherally located nodules on CXRs.
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