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Objective: Familial intracranial aneurysms (FIAs) are found in approximately 6%-20% of patients with intracranial aneurysms
(IAs), suggesting that genetic predisposition likely plays a role in its pathogenesis. The aim of this study was to identify
possible IA-associated variants using whole exome sequencing (WES) in selected Korean families with FIA.

Materials and Methods: Among the 26 families in our institutional database with two or more IA-affected first-degree
relatives, three families that were genetically enriched (multiple, early onset, or common site involvement within the families)
for IA were selected for WES. Filtering strategies, including a family-based approach and knowledge-based prioritization,
were applied to derive possible IA-associated variants from the families. A chromosomal microarray was performed to detect
relatively large chromosomal abnormalities.

Results: Thirteen individuals from the three families were sequenced, of whom seven had IAs. We noted three rare, potentially
deleterious variants (PLOD3 c.1315G>A, NTM c.968C>T, and CHST14 c.58C>T), which are the most promising candidates
among the 11 potential IA-associated variants considering gene-phenotype relationships, gene function, co-segregation, and
variant pathogenicity. Microarray analysis did not reveal any significant copy number variants in the families.

Conclusion: Using WES, we found that rare, potentially deleterious variants in PLOD3, NTM, and CHST14 genes are likely
responsible for the subsets of FIAs in a cohort of Korean families.
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INTRODUCTION studies (GWAS) have identified a large number of candidate

loci associated with FIAs [6-8]. However, the potential
genetic defects in these loci have a relatively small effect
on the risk of developing IA and can only explain a small

The global prevalence of intracranial aneurysms (IAs) is
estimated to be 3.2% [1]. In 6%-20% of patients with IA,

one or more of their family members also have an IA [2].
These cases are defined as familial intracranial aneurysms
(FIAs) and are reported to have a more severe phenotype in
terms of a higher number of aneurysms and a higher risk of
rupture than those without a familial history [3-5].

Several linkage studies and genome-wide association

fraction of heritability [6,7]. Recently, several studies
using next-generation sequencing (NGS) have suggested
rare variants in 10 candidate genes (ADAMTS15, THSD1,
RNF213, ANGPTL6, LOXL2, ARHGEF17, C4orf6, SPDYE4, NFX1,
and EDIL3) with larger effects related to FIA; however,
some of these variants require further validation. Although
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the variants of these genes may explain some aneurysms
in certain ethnic groups, they are rarely replicated across
different studies.

Previous studies have mostly focused on the presence of
an aneurysm and not on its phenotypic presentation, such
as its location, shape, and size. We hypothesized that if a
specific gene was associated with IA, the characteristics
of the aneurysm would be shared among members of
the family. Therefore, to increase the possibility of gene
identification, we reasoned that detailed information on
the aneurysm should be obtained and considered when
recruiting the family. The purpose of this study was to use
NGS to identify potential IA-associated variants in families
that share a specific phenotype.

MATERIALS AND METHODS

Study Population

The Institutional Review Board of Asan Medical Center
approved this prospective study (IRB No. 2018-1106).
Informed written consent for blood sampling and magnetic
resonance angiography screening was obtained from all
study participants.

IA was defined as a saccular dilatation of any size
occurring in the intracranial arteries; FIA was defined as
when at least two first-degree relatives in a family were
diagnosed with IA. A family history of IA was identified
in 28 (4.4%) patients among the 638 patients with IA in
a tertiary hospital’s prospectively collected database from
between January 2011 and August 2018. We then selected
families with FIA for further genetic testing according to
the following inclusion criteria: 1) demonstration of the
pedigree of the disease status in the family, 2) two or more
affected members and one or more non-affected members
are available for genetic testing, 3) available angiographic
data for the participants (both affected and unaffected),
4) genetically enriched samples where the family has a
severe phenotype of IA (multiple, early onset, ruptured)
and common site involvement among families [3-5]; and 5)
consent to participated provided by the patient and family
members.

We excluded patients who had 1) fusiform, mycotic,
or dissecting aneurysms in the intracranial artery, 2)
aneurysms associated with an arteriovenous malformation,
or 3) aneurysms associated with syndromic disorders (e.g.,
polycystic kidney disease, Ehlers-Danlos syndrome, Marfan

syndrome, fibromuscular dysplasia, and moyamoya disease).
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Physical examination, ultrasonography, and/or computed
tomography angiography were performed to rule out any
known or unknown syndromes associated with IA. Other
first-degree relatives who had not been screened for IA
underwent magnetic resonance angiography.

Whole Exome Sequencing (WES) Analysis

Genomic DNA was extracted from peripheral blood cells
using the Chemagic Magnetic Separation Module I (Chemagic
MSM I) extraction robot with a DNA Blood 200 pL Kit.
SureSelect Human All Exon V5 (Agilent Technologies) was
used for library preparation, and sequencing was performed
on the Illumina NextSeq500 platform (Illumina Inc.), which
generated 2 x 150 bp paired-end reads. The averages of the
30 x and 20 x coverage for the target regions were 89.18%
and 94.34%, respectively. Trimmomatic v.0.36 was used to
trim sequences of sequencing adapters and suffixes of low
quality (i.e., Phred quality score < 10).

Variant Calling and Filtering Strategy

All reads were aligned to the human reference genome
(GRCh37/hg19) using the Burrow-Wheeler Aligner (BWA
version 0.7.12). The Picard tool (version 1.96, http://
picard.sourceforge.net) was used to remove duplicate reads,
and the Genome Analysis ToolKit (GATK version 3.30) was
used for variant calling. The Annotation of Genetic Variants
program (ANNOVAR, http://annovar.openbioinformatics.
org) was used to annotate alterations using information
from the following public databases: the Single Nucleotide
Polymorphism database (dbSNP 147, https://www.ncbi.
nlm.nih.gov/snp/), 1000 Genomes Project (https://
www.internationalgenome.org/), Exome Aggregation
Consortium (ExAC, http://exac.broadinstitute.org/), and
Genome Aggregation Database (gnomAD, https://gnomad.
broadinstitute.org/).

Variants with less than 10 x coverage and an allele
frequency of more than 0.01 in public databases (1000
Genomes Project, Exome Aggregation Consortium, and
gnomAD) were removed. Additionally, variants affecting
protein-altering and splicing (e.g., non-synonymous amino
acid changes, start codon alterations, stop loss changes, in-
frame insertions/deletions, frameshifts, nonsense variants,
and changes affecting consensus splice site sequences)
were included.

In the family-based approach, we selected variants
segregating as occurring only in affected members, and
variants shared with unaffected members. For knowledge-
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based prioritization, the variants were screened among the
450 genes associated with aneurysm or vascular/connective
tissue disorders in the Online Mendelian Inheritance in

Man (OMIM) database (https://www.omim.org/), 16 IA
candidate genes reported in PubMed-indexed studies
(https://pubmed.ncbi.nlm.nih.gov/), and 77 genes from
the GWAS catalog (https://www.ebi.ac.uk/gwas/) for brain
aneurysms.

Variant Interpretation

The pathogenicity of the variants was predicted using
Sorting Intolerant From Tolerant (SIFT) [9], Polyphen?2
[10], Genomic Evolutionary Rate Profiling (GERP) [11],
Combined Annotation Dependent Depletion (CADD)

[12], rare exome variant ensemble learner (REVEL) [13],
Mendelian Clinically Applicable Pathogenicity (M-CAP) [14],
pLI (the probability of being loss-of-function intolerant)
[15], and % haploinsufficient (HI) [16]. Pathogenicity
thresholds were chosen according to the respective authors’
recommendations (SIFT, < 0.05; Polyphen2, > 0.9; GERP, > 2;
CADD, > 20; REVEL, > 0.5; M-CAP, > 0.025; pLI, > 0.9; and
%HI, < 10%).

Based on the standards and guidelines for the
interpretation of sequence variants from the American
College of Medical Genetics and Genomics and the
Association for Molecular Pathology (ACMG/AMP) [17],
the candidate variants were classified into five types:
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pathogenic variant (PV), likely pathogenic variant (LPV),
variant of uncertain significance (VUS), likely benign
variant (LBV), and benign variant (BV). We assigned PP3
(pathogenic supporting) as a variant if at least two out
of three meta-predictors (CADD, REVEL, M-CAP) and SIFT
or Polyphen?2 calculated a pathogenicity score above
their respective thresholds. All clinically significant and
novel variants were confirmed using independent Sanger
sequencing [18].

Chromosomal Microarray

To identify submicroscopic deletions or duplications
that are difficult to assess using whole exome sequencing
(WES), copy number analysis was performed using CytoScan
HD (Affymetrix) according to the manufacturer’s protocol.
Regions of homozygosity and copy number variants (CNVs)
shared between affected and unaffected siblings were
eliminated as potential candidate regions. Thresholds for
the detection of candidate pathogenic CNVs in affected
subjects were set to 25 CNV markers for deletions and
50 CNV markers for duplications. CNVs were interpreted
based on the technical standards of a joint consensus
recommendation of the ACMG and the Clinical Genome
Resource (ClinGen) [19].

Family A

Family B

Family C

PLOD3

NTM O

CHST14 dx.34

-2

MRA- MRA-

Fig. 1. Pedigree of the families with genetic and phenotypical findings. Asterisks indicate individuals that were subjected to whole-
exome sequencing. black arrows = probands, black symbols = IA-affected cases, circles = females, diagonal line through a symbol = deceased,
dx. number = age at IA diagnosis, IA = intracranial aneurysm, MRA- = negative result on magnetic resonance angiography, number in symbols =

current age, Squares = males, white arrows = aneurysms on angiography, ? =
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RESULTS

Clinical Phenotypes of Three Families with FIA Used
in This Study

Thirteen individuals from three families were selected for
WES. In all three families, two or more members had IAs at
a common location (Fig. 1). In family A, the proband and
his mother had paraclinoid aneurysms. The characteristics
of this family included early onset (III-1, 2), presence
of multiple aneurysms (average number of aneurysms > 2)
in a common location (II-4, III-1), and relatively few
risk factors (Table 1). The father of the siblings also had
an IA in the middle cerebral artery. Family B had two
affected siblings and two unaffected siblings in the second
generation. The proband (II-4) had two small unruptured
aneurysms in the right internal carotid artery at the origin
of the posterior communicating artery (P-COM) and at the

Table 1. Baseline Characteristics of the Participants

Song et al.

top of the basilar artery, and her older brother (II-2) also
had a small internal carotid artery aneurysm at the origin
of the P-COM artery. Family C had three affected females (I-
1, I1-2, and II-4) whose IAs were commonly located in the
paraclinoid region of the internal carotid artery.

WES Analysis and Variant Filtering

WES was performed in all living affected individuals
and at least one unaffected first-degree relatives of the
probands. Among the > 90000 variants initially discovered
in the WES, an average of approximately 500 variants for
each individual were selected after excluding those with
insufficient coverage, a frequency of 0.01 or more in the
population, and variants that did not affect the protein
(Fig. 2). Through a family-based approach according to
Mendelian inheritance patterns, 40, 38, and 27 variants
(autosomal dominant) and 222, 76, 162 variants (autosomal

Family Age Sex Risk Factors Diagnosis Aneury.sm Location Treatment WES
(Member) (Year) (Age; Year) (Size; mm) (Age; Year)
. DM, HL, .
A (1I-1) 56 M Smoking 90PY DSA (53) Rt. MCA (3.8) Clipping (53) Yes
A (II-2) 61 F None MRA Negative N/A Yes
A (1I-3) 59 M Smoking 30PY MRA Negative N/A No
Lt. linoid
A (I1-4)* 57 F HL DSA (52) PEEIAITEL Coiling (52) Yes
(8.5, 5.1)
A (II-5) 53 F None MRA Negative N/A No
Rt. P-COM (1.7),
A (III-1)* F N MRA N Y
( ) 35 one RA (34) Lt. P-COM (1.8) 0 es
Lt. paraclinoid (6.0),
A (I1I-2)* 30 M Smoking 5PY DSA (29) Rt. paraclinoid (3.2) Coiling (29) Yes
Lt. AchA (2.0)
B (II-1) 64 F None MRA Negative N/A Yes
HTN, DM, HL
B (II-2)* M o TA (51 P-COM (7.7 ili 1 Y
(II-2) 60 smoking 25PY CTA (51) COM (7.7) Coiling (51) es
B (II-3) 54 F DM, HL MRA Negative N/A Yes
Basilar top (3.1), Coiling (44)
B (II-4)* 49 F HTN, DM DSA (44 . Y
(Ir-4) (44) P-COM (2.1) (basilar top) e
Cardi ina), . "
C (I-2)* 82 F ardiac (angina) DSA (76) Paraclinoid (14.3) Coiling (76) No
HTN, HL
Smoking 15PY, .
C(I1-1 60 M MRA Negat N/A Y
(1) cardiac (MI) egative / e
C (I1-2)* 57 F Cardiac (arrhythmia) MRA (57) Paraclinoid (1.0) No Yes
C (I1-3) 54 M None MRA Negative N/A Yes
C (I1-4)* 52 E None DSA (50) Paraclinoid (4.5) No Yes

*IA-affected subjects. AchA = anterior choroidal artery, An = aneurysm, CTA = computed tomography angiography, DM = diabetes
mellitus, DSA = digital subtraction angiography, HL = hyperlipidemia, HTN = hypertension, Lt = left, MCA = middle cerebral artery, MI =
myocardial infarction, MRA = magnetic resonance angiography, N/A = not applicable, P-COM = posterior communicating artery, PY = pack-

year, Rt = right, WES = whole exome sequencing
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26 FIA families

Subject selection

L

Inclusion criteria

- Available pedigree, genetic testing,
angiographic data

- *Genetically enriched for IA

- Informed consent

Family A Family B Family C
Preparing DNA libraries
) 1 - SureSelect V5 Exome Kit (Agilent)
Whole exome sequencing ] .
L. i Whole Exome sequencing
__________________________________________________________________________________ N - lllumina NextSeq
88158 96702 90655

(83938- 92593)

(94734- 97663)

(89724- 93257)

--------------------------------------------------------------------------------------------------------------------------------------

Quality control

- Removal of low coverage (< 10x)
Region, function

- Protein-altering/splice region
Frequency

- Population frequency < 0.01

: : (gnomAD & 1000 Genome & EXAC)
i Filtered variants 525 616 478 |
3 (500-543) (606-628) (380-718) E
T TTTTSSToSTToSToosTooomoootoomooes ' Inheritance models
Family-based h i TAD
-| —
amily as‘e approac i - AD with reduced penetrance
_________________________________________________________________________________ ~ - Autosomal recessive
: Variants shared by i
: affected + unaffected 76 (38%) 222 (40%) 162 (27*%) '
E members (only affected*) : Knowledge-based prioritization
e LR E b b ! - OMIM, GWAS catalog, Pubmed
literatures
Variant interpretation Pathogenicity prediction
25 - SIFT, Polyphen2, GERP, CADD,
------------------------------------------------------------------------------------------------------------------------------------- , REVEL, M-CAP, pLI, and %Hl
; : - ACMG/AMP guidelines
H Potential IA-associated 1
' 1(1* 5(0* 2% !
\ variants (only affected*) = %) 5(2%) :
: ) ) NTM SLC2A10* i
\ I 1A- 1
! P‘;;eenst'(ir:f‘ ::::Cct':;i? PLOD3* NSMCE2 CHST14* :
Pk Y RYR2 C9orfo2 i
: PCNT ADAMTS2 :
: GBA NOTCH1 :

Fig. 2. Flowchart of variant filtering steps and results by family. *Genetically enriched for IA: severe IA phenotype (multiple, early onset,
or ruptured) and common site involvement within families. ACMG = American College of Medical Genetics and Genomics, AD = autosomal dominant,
AMP = Association for Molecular Pathology, CADD = Combined Annotation Dependent Depletion, EXAC = exome aggregation consortium, FIA =
familial intracranial aneurysm, GERP = Genomic Evolutionary Rate Profiling, GWAS = genome-wide association studies, HI = haploinsufficient, IA =
intracranial aneurysm, M-CAP = Mendelian Clinically Applicable Pathogenicity, OMIM = Online Mendelian Inheritance in Man, pLI = the probability
of being loss-of-function intolerant, REVEL = rare exome variant ensemble learner, SIFT = Sorting Intolerant From Tolerant

dominant reduced penetrance) were selected in each
family, respectively. There were no variants that showed
segregation of autosomal recessive patterns among the
three families. Finally, 11 pathogenic or damaging variants
potentially associated with IA were derived through
pathogenicity prediction algorithms and knowledge-based
prioritization from previous genetic studies.

Potential IA-Associated Genes

All variants were heterozygous and missense variants,
except for the nonsense mutation in the C90rf92 gene
(Table 2). GBA and (90rf92 genes have been reported as

kjronline.org
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susceptible genes associated with brain aneurysm in the
GWAS catalog, and the remaining genes were reported to
be associated with aneurysm or vascular/connective tissue
disorders in the OMIM. The genes found in recent NGS
studies were not identified in this study [8,20-27].

Of the 11 genes, PLOD3, NTM, GBA, CHST14, SLC2A10, and

C90rf92 genes have been reported to be related to IA or
intracranial hemorrhage [28-31]. When assuming complete
penetrance of the autosomal dominant variants, one variant

of the PLOD3 gene in family A, no variants in family B, and
two variants of the SLC2A10 and CHST14 genes in family C
remained. Table 3 summarizes the function of all candidate
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genes and their related diseases.

Chromosomal Microarray

Several chromosomal losses or gains were found in
each family, but most of the CNVs were benign or likely
benign. One copy number gain of unknown significance
was detected in family A, which did not segregate with the
phenotype. In addition, no genes were potentially related
to IA in the corresponding regions.

DISCUSSION

In this study, WES was performed in three selected FIA
families to identify genetic variants associated with IAs.
A total of 13 participants were sequenced, of whom 7 had
IAs. Among the 11 potential IA-associated variants, we
noted three rare, potentially deleterious variants (PLOD3
€.1315G>A, NTM c.968C>T, and CHST14 c.58C>T) after
considering gene-phenotype relationships, gene function,
co-segregation, and variant pathogenicity.

The PLOD3 gene encodes lysyl hydroxylase 3 (LH3),
which is involved in post-translational modification of
collagens, including type IV collagen [32,33]. As such,
pathogenic variation of this gene can lead to complex
connective tissue disorders resembling Stickler syndrome,

Ehlers-Danlos syndrome, and epidermolysis bullosa [34-36].

Although vascular complications are rare manifestations
of these syndromes, some cases of aneurysms or arterial
dissection have been reported [34,35]. In addition,
embryonic lethality with intracranial hemorrhage has been
reported in LH3-knockout mice [33]. Although the PLOD3
mutation found in family A was a heterozygous variant,

it could be a potential IA-associated variant considering
the severe variability of the phenotype of PLOD3-related
diseases [34].

Neurotrimin (NTM) belongs to the IgLON family of
glycosylphosphatidylinisotol (GPI)-anchored cell adhesion
molecules and has been implicated in the promotion of
neurite outgrowth and adhesion [37]. Luukkonen et al.
[29] reported that the NTM gene is associated with IA and
thoracic aortic aneurysm and suggested that truncations in
the NTM gene caused IA and thoracic aortic aneurysm in a
family. The 11g25 chromosomal region has been suggested
as a susceptibility locus for both IA and aortic aneurysms
in several independent linkage studies [38,39]. Although
the individual (II-1 in family B) unaffected by IA had a rare
PV of the NTM gene, it is still considered a potential IA-
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associated variant when considering the reduced penetrance
or late onset of the aneurysm phenotype.

The CHST14 gene encodes carbohydrate sulfotransferase
14/dermatan 4-0-sulfotransferase 1 (CHST14/D4ST1), which
is required for the maturation of dermatan sulfate that is
involved in collagen formation [40]. Along with variants
in DSE, biallelic PVs in CHST14 are one of the causes of
musculoskeletal Ehlers-Danlos syndrome [41]. Moreover,
intracranial hemorrhage was reported in 9% of patients with
mcEDS-CHST14 [31].

Among the other candidates, GBA and (90rf92 genes were
suggested to be IA-susceptible genes in a recent GWAS
study of the Korean population [28]. Biallelic PVs of the
GBA gene cause Gaucher disease, and a heterozygous variant
is a well-known risk factor for PD [42,43]. In a previous
study, the rs75822236 in GBA gene showed the strongest
association with the risk of IA formation (odds ratio =
161.46) with sufficient statistical power (1.1 x 10™), whereas
the SNP in the (90rf92 gene was underpowered because of
the small sample size [28].

Another candidate gene in family C, SLC2A10, encodes
the facilitative glucose transporter glucose transporter 10
(GLUT10). Homozygous or compound heterozygous PVs
of this gene cause arterial tortuosity syndrome, which
is characterized by tortuosity, elongation, stenosis, and
aneurysm formation in major arteries [44]. In contrast,
heterozygous carriers of this gene variant are asymptomatic
and do not show any notable vascular anomalies [45]. The
heterozygous carriers (II-2 and II-4 in family C) in our
study also did not show any arterial abnormalities that
indicated arterial tortuosity syndrome.

In our study, we selected families that would be most
genetically enriched for IAs considering the phenotypes,
which include common locations of the IA among family
members, multiple IAs, early onset, and fewer risk factors.
In particular, our study is distinct from other studies in
terms of the selection criteria that the affected members in
each family should share the same aneurysm location. We
assume that the intuition of the physicians who diagnosed
and treated the patients played an important role in
identifying their genetic predisposition.

Many genetic studies have been performed on FIA, and
several genetic variations have been identified through
linkage studies, GWAS, and NGS; however, these can explain
only a small proportion of the total IAs in certain ethnic
groups [7]. The current literature suggests that marked
genetic heterogeneity may exist in distinct populations, and
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only two genetic studies, a linkage study and a GWAS, have
been performed on the Korean population to date [28,46].
Our study is the first FIA study using NGS in Korea and may
serve as a basis for establishing a genetic database for
Korean patients with aneurysms. If sufficient data on FIA is
accumulated through genetic studies, simple genetic testing
using an NGS panel could offer great clinical benefits in
terms of risk stratification, treatment decisions, and the
screening of unaffected family members.

Multiple factors are intricately involved in aneurysm
development [3-5]. Gene-environment interaction and
phenocopy hinder genetic studies on this matter, especially
in patients with multiple risk factors such as hypertension,
smoking, old age, and female sex. Therefore, it is difficult
to determine whether the genetic variations in our study
were entirely responsible for FIAs. Further validation using
replication studies and expression or functional analyses are
required to support our results.

The limitations of this study are as follows. First, this
study suggested several candidate genes, but these have
not been fully validated. Further validation studies, such
as replication studies for sporadic IA groups or functional
analysis of the corresponding genes are needed. Second,
the basic assumption of this study was that there would be
some rare variants with strong effects that could explain
the IAs of each family. However, the IAs in the families
may be caused by environmental factors or common genetic
variants, rather than rare variants, even though we have
selected the most genetically enriched families with FIA in
our database. Third, there were no candidate variants that
were only found in the affected members of family B, and
we thus had to find the most probable candidate (NTM)
by assuming reduced penetrance. In addition, although
the variants in PLOD3 and CHST14 genes were segregated
in families A and C, the number of affected members may
not be sufficient to exclude the possibility of false-positive
results. Lastly, some participants only underwent magnetic
resonance angiography, which may have produced false-
negative or false-positive findings, especially for tiny
aneurysms. Despite these limitations, our study presented
the use of a methodology for finding rare PVs using WES
for IAs, a relatively common multifactorial disease. Further
familial studies with more severe phenotypes and more
affected members would be able to identify additional
candidate genes with higher confidence.

In conclusion, we studied three families that were
genetically enriched for IA and performed WES to identify

kjronline.org https://doi.org/10.3348/kjr.2021.0467
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possible IA-associated variants. We found that the rare,
potentially deleterious variants in PLOD3, NTM, and CHST14
are likely responsible for a subset of FIAs. Our findings may
contribute to the understanding of IA pathogenesis, the
establishment of an FIA genetic database in Korea, and
further validation of IA candidate genes.
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