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ABSTRACT

Cenozoic tectonic evolution in the Tethyan region
has greatly changed the landforms and environment
of Eurasia, driving the evolution of animals and
greatly affecting the diversity patterns of Eurasian
animals. By combining the latest Tethyan
paleogeographic models and some recently
published Eurasian zoological studies, we
systematically summarize how tectonic evolution in
the Tethyan region has influenced the evolution and
diversity patterns of Eurasian animals. The
convergence of continental plates, closure of Tethys
Sea, and Tethyan sea-level changes have directly
affected the composition and spatial distribution of
Eurasian animal diversity. The topographic and
environmental changes caused by Tethyan tectonics
have determined regional animal diversity in Eurasia
by influencing animal origin, dispersal, preservation,
diversification, and extinction. The ecological
transformations resulted in the emergence of new
habitats and niches, which promoted animal adaptive
evolution, specialization, speciation, and expansion.
We highlight that the Cenozoic tectonic evolution of
the Tethyan region has been responsible for much of
the alteration in Eurasian animal distribution and has
been an essential force in shaping organic evolution.
Furthermore, we generalize a general pattern that
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Tethyan geological events are linked with Eurasian
animal evolution and diversity dynamics.
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INTRODUCTION

Eurasia is the largest landmass on earth and the richest
biologically, hosting 12 of Earth’s 36 recognized biodiversity
hotspots (Figure 1A, green area). However, due to a huge
population increase, rapid economic growth, and industrial
agriculture, Eurasia is considered one of the most biologically
vulnerable regions (Mittermeier et al., 2011). Thus, ecologists
and zoologists are eager to determine the drivers and rules
that underlie Eurasian animal evolution and the current
diversity patterns. The answers are extremely valuable in
predicting future biodiversity changes and the management of
threatened wildlife. In the past decade, zoologists have
studied the evolution and diversity of animals in species-rich
regions of Eurasia, such as the Mediterranean Basin (Borko et
al., 2021), Central Asia (Zhao et al., 2020), Himalaya-Tibetan
Plateau (Chang et al., 2008; Price et al., 2014), and Southeast
Asia (Ballarin & Li, 2018; Bellwood et al., 2017; Li & Li 2018).
These studies have emphasized that evolution and
diversification were driven by regional geotectonic and climatic
events (e.g., orogeny, regression, and aridification). Few
studies have focused on the potential links behind these
driven events from a Tethyan perspective, although all above
regions are distributed in the Tethyan tectonic domain
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Figure 1 The Tethyan tectonic domain and the impacts of Eurasian sea-land changes on animal diversity patterns

(Figure 1A, black dashed line area) on the southern margin of
Eurasia.

The present-day landforms of Eurasia were mainly formed
in the Cenozoic; prior to this, most of the southern margin of
Eurasia was under the sea. Based on the marine animal
fossils distributed in the Alps and Himalayas, the Austrian
geologist Suess (1893) proposed that there was a long-
standing but now vanished sea which once stretched across
part of Eurasia, and he named it “Tethys” after both sister and
consort of Oceanus, the ancient Greek god of the ocean. The
Tethys Sea is the predecessor of the Indian and Atlantic
Oceans and has a long history of regression. Tethyan tectonic
evolution greatly changed the geomorphology and
environment of Eurasia, and the existing Mediterranean Sea,
Black Sea, and Caspian Sea are the vestiges of the Tethys
Sea (Stow, 2010).

The earlier studies of the Tethyan fauna mainly relied on
fossils (Newton, 1988). Recently zoologists have begun to use
genetic data to study the spatiotemporal evolution of the
diversity of extant fauna in the Tethyan region by combining
phylogenetic histories with paleogeography (Hou et al., 2011;
Mamos et al.,, 2016; Zhao et al., 2020). Although current
zoological studies of the Eurasian fauna are not about
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Tethyan tectonic evolution, both paleontological and molecular
biological studies have recognized that the origin, dispersal,
divergence, adaptation, survival, and extinction of Eurasian
animals are closely related to the series of Cenozoic tectonic
events in the Tethyan region.

Here, we review recent studies on the evolution and
diversification of Eurasian animals in combination with the
latest Tethyan paleogeographic reconstructions. We detail
how tectonic evolution in the Tethyan region has influenced
the evolution and diversity patterns of Eurasian animals. This
includes the impact of changing physical connectivity between
habitats on the assembly and spatial distribution of animal
diversity and the impact on the evolution and diversification of
animals by changes in topography, regional climate, and
habitat types in Eurasia. Finally, we discuss the general role of
Tethyan geological events in the evolution and diversity
dynamics of Eurasian animals.

RECONSTRUCTIONS OF TETHYAN TECTONIC
EVOLUTION AND EURASIAN SEA-LAND CHANGES

Since the 1980s, more reliable and detailed tectonic
hypotheses and models have been put forward, and the
tectonic evolution of the Tethyan region has been gradually
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reconstructed (Barrier et al., 2018; Dercourt et al., 2000;
Popov et al., 2004). Recent results indicate that the Tethys
Sea mainly existed from 250 to 65 million years ago (Ma), in
the Mesozoic. During the Jurassic, the breakup of Pangea into
Laurasia to the north and Gondwana to the south resulted in a
gradual opening of the Tethys Sea into a dominant marine
seaway that became the habitat of many organisms (Hou & Li,
2018; Stow, 2010). In the Cretaceous, the northward drift of
the African, Indian, and Australian plates (resulted from the
disintegration of Gondwana and the Indian plate moved faster)
caused the Tethys Sea to gradually narrow (Figure 1D).

In the Cenozoic, crustal shortening resulted in the formation
of the Alpine-Himalayan orogenic belt at the southern margin
of the Asian plate (Rosenbaum & Lister, 2002) (Figure 1A),
causing further regression of the Tethys Sea from the present-
day Tibet and Pamir regions to the Mediterranean Basin
(Carrapa et al.,, 2015; Sun & Jiang, 2013). At the
Eocene/Oligocene boundary, the Tethys Sea was separated
by this orogenic belt. The huge inland shallow sea to the north
of the belt is called the Paratethys Sea, extending from central
Europe to inner Asia (Figure 1B). In the Oligocene, the land
area of central and western Europe increased because of the
regression of the Paratethys Sea. The Paratethys Sea
withdrew from the Turgai Strait causing the formation of
terrestrial corridors between Europe and Asia (Popov et al.,
2004). During the mid-Miocene, the incremental convergence
of the Arabian block with Eurasia caused the closure of the
Tethys Sea (Figure 1C), blocking global equatorial currents
and isolating the Atlantic/Mediterranean Sea and Indo-West
Pacific (Hamon et al., 2013). In the Late Miocene (5.96-5.33
Ma), the closure of the Strait of Gibraltar cut off the marine
gateways between the Atlantic Ocean and the Mediterranean
Sea, and the Tethys Sea almost dried up due to evaporation
(Messinian salinity crisis) (Duggen et al., 2003; Garcia-
Castellanos & Villasefior, 2011). In the Pliocene, due to the
rise of global sea level, the Atlantic Ocean quickly refilled the
Mediterranean Basin (Zanclean flood), forming the present
Mediterranean Sea (Garcia-Castellanos et al., 2009).

THE MAJOR TETHYAN GEOLOGICAL EVENTS AND
THEIR DIRECT IMPACTS

Continental convergence facilitated
terrestrial and freshwater faunas

In the Cenozoic, the northward movement of the African,
Indian, and Australian plates caused a gradual reduction of
the area of the Tethys Sea. This reduction caused the
formation of several temporary land bridges, which provided
opportunities for faunal exchange, directly affecting the
assembly and distribution of Eurasian animal diversity
(Figure 1C, D). The Indian plate began to collide with Asia at
about 55 Ma and remains ongoing (Zhu et al.,, 2017).
Geological data suggest that the Indian plate experienced a
long period of isolation before contact with Asia (Figure 1D),
but fossil data from contemporary faunas indicate that during
India’s northward journey, the Eurasian fauna maintained
exchanges with Gondwanan landmasses (e.g., Africa and
Madagascar) via India, because faunal links could be
maintained by vagile animals that were able to surmount

exchanges of

minor marine barriers (Briggs, 2003). For example,
Natatanuran frogs originated in Africa and then dispersed to
Asia through India in the Late Cretaceous. In the Early
Cenozoic, the Malagasy mantellid frogs originated in Asia and
dispersed to Madagascar via India (Yuan et al., 2019). When
continents approached, connections also occurred with
freshwater fauna. Results of a study including multiple
organisms (including freshwater fishes) indicate that the biotic
exchange between the Indian subcontinent and mainland Asia
has accelerated since the Middle Eocene, pointing to a
continuous dispersal corridor since that time and reaching a
peak during the Middle Miocene (Klaus et al., 2016).

Likewise, biotic exchange between the Indian subcontinent
and Southeast Asia (including Indochina) is found within
rhacophorid tree frogs (Li et al., 2013), dragon Lizards
(Grismer et al., 2016), and invertebrates, such as fruit flies
(Krosch et al., 2012) and spiders (Li et al., 2020). Some
researchers suggest that, in addition to geology, the tropical,
perhumid climates at that time may have facilitated migration
between India and Southeast Asia (Li et al., 2020). With the
collision of the Turkish and Arabian plates around 20 Ma, the
first land bridge formed between Africa and Eurasia
(Figure 1C), promoting biotic exchange between Asia and
Africa during the Miocene (Krosch et al., 2012; Yuan et al.,
2019). Fossil data have also shown that the mammalian
exchange between Africa, Arabia, and Eurasia began at the
Oligocene/Miocene boundary (Kappelman et al., 2003).

Narrowing and closure of the Tethys Sea disrupted
marine connectivity

Until the end of the Eocene, the Tethys Sea provided a
potential migration route between the Atlantic and the Indo-
West Pacific, and a considerable degree of overlap in fossils
reflects this connectivity (Hou & Li, 2018). The narrowing of
the Tethys Sea reduced gene flow between aquatic animals in
the Atlantic and the Indo-West Pacific (Figure 1B). For
example, many aquatic mollusks began to diverge into Atlantic
and Indo-West Pacific groups in the Middle Eocene
(Malaquias & Reid, 2009; Uribe et al., 2017). The oldest
divergence (ca. 37 Ma) occurs between Arabian and
Mediterranean Eurasian fresh-water Kkillifishes (Aphanius)
corresponding to the separation of the eastern and western
Tethys Sea (Hrbek & Meyer, 2003). Additionally, many coral
reef fishes were separated into Atlantic/Mediterranean and
Indo-West Pacific groups from the Oligocene to the Early
Miocene (Cowman & Bellwood, 2013). Similar cases are also
found in crustaceans (Page et al.,, 2008) and bryozoans
(Nikulina et al., 2007).

During the Miocene (18-12 Ma), the Tethys Sea closed
(Figure 1C) due to the collision of the African-Arabian and
Eurasian plates (Hamon et al., 2013). The closure of the
Tethys Sea erected physical barriers to the exchange of
marine animals near the equator between the Atlantic and the
Indo-West Pacific, promoting vicariant divergence. The
divergence time and distribution patterns of many extant
marine animals clearly reflect the impacts, such as deep-sea
squat lobsters (Rodriguez-Flores et al., 2020), intertidal
talitrids (Liu et al., 2018), seahorses (Li et al., 2021), and other
coral reef fishes (Cowman & Bellwood, 2013). Data from fossil
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deposits, such as the significant decrease in the similarity
between the Mediterranean and Pakistan gastropod faunas
during the Early Miocene, also reflect vicariance (Harzhauser
et al.,, 2007). After the closure of the Tethys Sea, faunal
exchange between the Atlantic and the Indo-West Pacific
tropical fauna could only occur via the Cape of Good Hope
(Hou & Li, 2018).

Sea-level changes in the Tethyan region acted as species
pumps

Sea-level change is regarded as one of the most important
factors affecting animal diversity. Since the Cenozoic, the
global sea level has fluctuated dramatically due to changes in
seawater temperature, sea-floor spreading, and freeze-thaw
cycles of glaciers (Miller et al., 2005). The transgression and
regression in the Tethyan region are closely related to
changes in global sea level and have had a profound impact
on faunal diversity patterns in Southeast Asia (Hanebuth et al.,
2011; Lohman et al., 2011). The early divergence between the
Indo-Burmese and Sundaic fauna coincides with the formation
of inland seaways in the Kra Isthmus during the Early
Cenozoic when sea level rose (Figure 1E). This vicariant
pattern has also been found in native Althepus spiders and
spitting spiders (Li & Li, 2018; Luo & Li, 2018). During periods
of low sea level, a land bridge was formed across the Kra
Isthmus, and the surrounding islands may have been
connected with Indochina through Sundaland. Additionally,
changes in Plio-Pleistocene sea levels acted as a “species
pump”, promoting genetic divergence and speciation of
animals in Southeast Asia, such as in shrews (Esselstyn &
Brown, 2009), cats (Luo et al., 2014), and snakes (Inger &
Voris, 2001).

In the Quaternary (2.6 Ma—present), glacial cycles caused
fluctuation of the sea level in the Paratethyan region, resulting
in recurrent geographical and genetic isolation and exchange,
which affected the distribution and population genetic structure
of European animals (Hewitt, 2000). For example, during the
glacial retreat, the European freshwater fish (Vimba vimba)
expanded from its refugium at the margins of the Black Sea
towards the Baltic Basin when a large amount of water from
melting glaciers filled the basin (Hanfling et al., 2009). The
Arctic marine crustacean Gammaracanthus colonized the
Caspian Sea through the Turgai Strait and Aral Basin when
sea level rose ca. 1 Ma, and the Caspian population was
isolated by subsequent glaciations (Vainodla et al., 2001).
Quaternary sea-level fluctuations connected the
Mediterranean islands with the mainland intermittently which
maintained a genetic connection between the island and
mainland animals. The distribution of widespread diving
beetles (Agabus brunneus) from the Balearic Islands, Corsica,
and Sardinia is an obvious example of this connectivity
(Hidalgo-Galiana et al., 2014).

IMPACTS OF TOPOGRAPHIC AND ENVIRONMENTAL
CHANGES CAUSED BY TETHYAN TECTONICS

Formation of the Alpine-Himalayan orogenic belt created

diversity hotspots
In the Cenozoic, the collision between plates caused the entire
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southern margin of Eurasia to be uplifted out of the sea,
forming a continuous orogenic belt stretching from Spain to
Southeast Asia—the Alpine-Himalayan belt (Rosenbaum &
Lister, 2002) (Figure 1A, pink area). East of the belt, the
subduction of India beneath Asia generated the Tibetan
Plateau, the highest plateau on Earth (Chatterjee et al., 2013).
The formation of the Alpine-Himalayan belt accelerated the
regression of the Paratethys Sea and resulted in widespread
environmental changes in Eurasia that greatly affected the
diversity patterns of Eurasian animals by influencing their
spatiotemporal evolution. For instance, the Eocene-Oligocene
uplift of the Tibetan Plateau caused an early divergence in
coelotine spiders and imbalanced diversity on both sides of
the plateau. The lineage blocked from the southeast of the
plateau comprises a rich species assemblage, while another
widespread lineage in the north (Figure 1A, black dashed line)
has low species richness caused by a set of early extinction
events (Zhao & Li, 2017). The uplift of the Tibetan Plateau
changed the paleo-drainage systems which modified the
distribution and diversity patterns of freshwater fauna, such as
the Gammarus amphipods (Hou et al., 2007) and badid fishes
(Riber et al.,, 2004). The formation of the Truong Son
Mountain Range and several major rivers caused by the India-
Asia collision and subsequent orogenesis shaped the diversity
patterns of spitting spiders in Southeast Asia (Luo & Li, 2018).
The formation of the Ailao Shan-Red River shear zone during
the Oligocene/Miocene boundary (26-17 Ma) resulted in
genetic divergence and separation of the southern China and
Indochina fauna (Ballarin & Li, 2018; Luo & Li, 2018). During
the Quaternary glacial episodes, expansions and contractions
of ice sheets rendered large areas uninhabitable for most
species. However, the southern area of the Alpine-Himalayan
belt and the low-altitude areas of the mountains provided
glacial refugia that allowed the maintenance of species
diversity (Krehenwinkel et al., 2016; Wang et al., 2013).
Species that survived usually expanded during postglacial
periods, impacting present-day animal distributions. The
effects are particularly pronounced in the European fauna
(Provan & Bennett, 2008).

The Alpine-Himalayan belt and nearby regions are centers
of animal diversification in Eurasia, with extremely high
species diversity. The “sky islands” (land archipelagos,
suitable alpine habitats separated by dry lowlands) and rate
(mountain uplifts cause a high speciation rate) hypotheses are
widely accepted mechanisms that are often used to explain
the abundant endemicity and high species richness in the
Alpine-Himalayan belt (He & Jiang, 2014; Zhao et al., 2020).
Steinbauer et al. (2016) highlighted the relationship between
topography-driven speciation and the globally consistent
pattern of high endemism at high elevations. In the Himalayas,
for instance, due to orogenesis and the intensification of the
modern South Asian monsoon, there was an increase in both
rates of native diversification and neighborhood migration of
amphibians and reptiles during the Early to Middle Miocene
(Xu et al.,, 2020). Similar diversification patterns have also
been found in invertebrates that are distributed in or nearby
the Alpine-Himalayan belt, such as butterflies (Leneveu et al.,
2009) and spiders (Zhao & Li, 2017). Spicer (2017) noticed
that close proximity niche diversity caused by complex
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topography and seasonally varying climates is accompanied
by repeated episodes of genetic isolation in sky islands,
turning mountainous regions in southern Asia into “biodiversity
factories”. Some studies imply that the diversification of
Himalayan birds is closely related to an increase of available
niches and niche filling (Cai et al., 2018; Price et al., 2014).
Although glaciation is often seen as destructive for
biodiversity, in the Quaternary, glaciation drove transverse
alpine allopatric speciation in the Alpine-Himalayan belt
(Wallis et al., 2016).

Regression of the Paratethys Sea caused marine
extinction

During the middle-late Eocene (47-39 Ma), due to the
northward extension of the Pamir Plateau caused by the India-
Asia collision, the Paratethys Sea gradually regressed
westward from the Tarim Basin via the Tajik Basin (Carrapa et
al., 2015; Sun & Jiang, 2013). The Paratethys Sea regressed
from the Turgai Strait beginning in the Early Oligocene (Popov
et al., 2004), opening up a terrestrial migration corridor for
European and Asian animals (Yuan et al., 2016; Zhao et al.,
2020) (Figure 1B). During the Oligocene, the Paratethys Sea
gradually shrank into the relictual Caspian and Black Seas.
With changes in land and sea area, a new ecosystem formed,
ranging from brackish to freshwater (Popov et al., 2004; Sun &
Jiang, 2013). The desalinization opened a waterway between
the Balkans and the Caucasus for freshwater Crustaceans
(Esmaeili-Rineh et al., 2015; Sidorov et al., 2018; Zak3ek et
al., 2007). The marine habitat in the Paratethyan region
completely vanished around 11.6 Ma after the closure of the
Tethys Sea (Harzhauser & Mandic, 2008). The change from
marine to brackish and freshwater ecosystems resulted in the
extinction of some marine fauna in the Paratethyan Basin,
such as corals, foraminiferans, and mollusks (Harzhauser &
Piller, 2007; Studencka & Jasionowski, 2011). The
disappearance of marine habitats led to relict distributions of
some marine animals, the best-known case being the
restriction of thermosbaenacean species to inland
subterranean waters and anchialine caves at Mediterranean
coastlines and other areas covered by the ancient Tethys Sea
(Jaume, 2008).

Aridification in Central Asia caused disjunct distributions
and divergence

With the regression of the Paratethys Sea, a restricted,
evaporitic marine environment appeared, and desert-like
environments were established in the vast interior of Asia
beginning in the Late Eocene (ca. 39 Ma) (Carrapa et al.,
2015). During the Middle Miocene, global cooling and the rain
shadow of the Alpine-Himalayan belt increased aridification in
Central Asia (Manafzadeh et al.,, 2017; Miao et al., 2012).
Currently, Central Asia remains mainly composed of the
desert, gobi, grassland, arid woodland, and other open and
dry habitats, whose origins led to the disjunct distribution of
some animals that can only live in humid habitats in Eurasia,
such as amphibians (Zheng et al., 2009) and some spiders
(Wang et al., 2017). The aridity has promoted the divergence
of some Central Asian animals, such as the Miocene
diversification of the widespread Eurasian racerunner lizards

(Eremias) (Guo et al., 2011). The radiation that occurred
within Asian jerboas, specialized desert dwellers, was
associated with the expansion of open habitat starting in the
Middle Miocene (Zhang et al., 2013). The diversification of
ground-dwelling spiders (Pireneitega) relied on invading
numerous wet valleys created by the uplift of mountains in arid
Central Asia during the Miocene (Zhao et al., 2020). Due to
the arid environment, the impact of Quaternary glaciation on
the organisms in Central Asia is not as significant as that in
other areas of the northern hemisphere (Manafzadeh et al.,
2017).

Messinian salinity crisis and Zanclean flood caused
homogeneity in European marine fauna

The Messinian salinity crisis (5.96-5.33 Ma) occurred due to
the combination of lowered global sea level and the collision
between the European and African plates that caused the
uplift of the Gibraltar Strait (Figure 1A). These events reduced
inflow from the Atlantic Ocean to the Mediterranean Sea, and
there was more evaporation than precipitation, creating a
large amount of salt and simultaneously lowering the level of
the Mediterranean Sea (Duggen et al, 2003; Garcia-
Castellanos & Villasefior, 2011). The crisis extirpated most of
the Mediterranean fauna (Harzhauser et al., 2007). The end of
the salinity crisis came by means of the Zanclean flood (ca.
5.33 Ma), when Atlantic waters quickly refilled the
Mediterranean, driven by tectonic subsidence at the Gibraltar
sill, flow incision, and global sea level rise (Garcia-Castellanos
et al., 2009). The reopening of the Gibraltar Strait allowed
marine species to recolonize the Mediterranean from the
Atlantic Ocean, which resulted in little genetic variation
between Mediterranean and Atlantic populations of many
marine species (Patarnello et al., 2007), and there are fewer
marine endemics in the Mediterranean than prior to the crisis
(Meynard et al., 2012).

After the crisis, diversity and endemism decreased in the
European marine fauna but increased in the freshwater fauna
(Reyjol et al., 2007). During the crisis, the dry Mediterranean
Basin connected the previously isolated islands with the
mainland, promoting the dispersal of freshwater animals to
Mediterranean islands. When the marine environment was
restored in the Mediterranean, the freshwater animals were
separated and experienced rapid speciation due to isolation
by seawater, as seen in such animals as freshwater crabs
(Potamon) (Jesse et al., 2011), planarians (Dugesia) (Sola et
al., 2013) and freshwater subterranean Niphargus amphipods
(Deli¢ et al., 2020).

IMPACTS OF EMERGENCE OF NEW HABITATS AND
NICHES

Appearance of new freshwater habitats (adaptation,
radiation, and endemism)

The Tethyan sea-land changes led to the emergence of new
freshwater habitats, promoting the adaptive evolution and
rapid diversification of aquatic animals in the Tethyan region.
In many cases, the transition only occurred once and led to
subsequent rapid diversification in the new habitats. For
example, the widely distributed Eurasian freshwater
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crustaceans Gammarus cluster together phylogenetically and
underwent rapid diversification and expansion during the Late
Eocene to the Middle Miocene (Figure 1A, light blue dashed
line). Such a pattern suggests that diversification in the new
freshwater ecosystems followed a single freshwater
colonization event associated with Tethyan and Paratethyan
changes (Hou et al., 2011). Pufferfishes may have occupied
freshwater habitats in Southeast Asia during the Eocene,
which is consistent with the India-Asia collision promoting the
cohesive zone shift from shallow marine waters to freshwater
habitats (Yamanoue et al., 2011). In other cases, such as that
of Mediterranean gobioid fishes (Huyse et al., 2004), the
transition between marine and freshwater habitats occurred
multiple times.

Although the transition from marine to brackish and
freshwater ecosystems resulted in the extinction of marine
animals in the Paratethyan region, the progressively
desalinized habitats drove the formation of rich and highly
endemic brackish and freshwater mollusk faunas during the
Miocene (Lukeneder et al., 2011; Neubauer et al., 2015). The
extant Ponto-Caspian crustaceans (Hou & Sket, 2016) are
considered to have originated in the same period. During the
Messinian salinity crisis, the origin of the hyposaline sea-sized
lake Lago-Mare (Roveri et al., 2014), promoted the adaptation
of some marine species to freshwater environment. Following
reflooding of the Mediterranean Basin, these freshwater
species were isolated from their euryhaline relatives. This
probably gave rise to the freshwater endemism seen currently
in the Mediterranean region, such as in gobioid fishes (Huyse
et al., 2004) and snails (Wilke, 2003).

Emergence of a new archipelago (expansion, speciation,
and diversification)

The Indo-Australian Archipelago comprises more than 20 000
islands straddling the equator in Southeast Asia and
peninsular Thailand, with extraordinary species richness and
endemism (Mittermeier et al., 2011). Over the past 50 million
years, the geography of this region has changed considerably.
During the Miocene, the Australia-Southeast Asia collision led
to the emergence of more land and intermittently emergent
islands, as well as the increase in the area of shallow seas
throughout Southeast Asia (Lohman et al., 2011). The creation
of an extensive tropical shallow sea promoted the proliferation
of reef-building corals, the rapid expansion of coral-feeding
fishes (Bellwood et al., 2017), and rapid speciation in other
marine animals in the Miocene, such as gastropods (Frey &
Vermeij, 2008) and ostracods (Yamaguchi et al., 2012).
Meanwhile, a significant decrease in diversity occurred in the
Mediterranean marine fauna after the closure of the Tethys
Sea. Thus, the Indo-West Pacific has gradually become the
center of global marine biodiversity since the Early Miocene
(Harzhauser et al., 2007; Leprieur et al., 2016; Renema et al.,
2008). The increase in the number of islands and the
fluctuation of sea level resulted in recurring dispersal and
vicariance of terrestrial animals in Southeast Asia, promoting
rapid diversification (Li & Li, 2018; Lohman et al., 2011).

Formation of a high plateau environment (specialization,
origin, and dispersal)
The Alpine-Himalayan belt is not only a center of species
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diversification in Eurasia but also the birthplace of high plateau
fauna. Some animals, such as schizothoracines, Triplophysa,
Tibetan antelopes, and yaks, are highly morphologically
adapted to survive in cold temperatures, low oxygen, high
radiation, and aridity in the unique high altitude habitat of the
Tibetan Plateau (Chang et al., 2008; Wang et al., 2015). Both
fossil and molecular data have revealed these animals'
evolutionary history on the plateau (Deng et al., 2020). In
addition, some of the animals that adapted to the harsh
plateau environment dispersed out of Tibet when right
conditions were being met. A good example of the “Out of
Tibet” hypothesis occurs in the Tibetan woolly rhinoceros
(Deng et al., 2011), which showed that cold-tolerant species in
Pliocene high Tibet were pre-adapted to conditions that were
to become widespread during the subsequent Pleistocene Ice
Age, and thus Tibet was likely a cradle for the diversification of
Ice Age megafauna. The linkage of an extinct Pliocene
Tibetan fox with the extant arctic fox is a subset of the Out of
Tibet hypothesis (Wang et al., 2014). Some similar patterns of
Tibetan origin and expansion have also been found in other
animals, like Himalayan pikas (Wang et al., 2020) and white-
bellied rats (Ge et al., 2021).

Development of subterranean habitats
isolation, and diversification)

The retreat of the Paratethys Sea and the Tibetan uplift
strongly influenced atmospheric circulation in Eurasia.
Beginning in the Miocene, the eastern margin of Asia became
humid and the dry areas shifted to the vast Asian interior from
the east in response to the intensified continentality and
strengthened the Asian monsoon system (Bosboom et al.,
2011; Miao et al., 2012). In the Miocene, the synchronous rain
and heat brought by the subtropical warm monsoon, and the
massive uplift caused by the India-Asia collision, led to the
restarting of karstification in southeastern Asia (Cui et al,
1996; Xiong, 1996). The new cave systems of the South
China Karsts (Figure 1A, grey area) provided unique habitats
for a multitude of animals, including cave-dwelling spiders (Li
et al., 2019; Wang et al., 2017; Zhang & Li, 2014), amphipods
(Hou et al., 2013; Zheng et al., 2018), fishes (Zhang et al,,
2019), and many other vertebrates and invertebrates (Ran &
Yang, 2015). These new habitats promoted their adaptation
(e.g., troglomorphic evolution) and diversification, and drove
the formation of permanent subterranean fauna in middle
latitudes. Pleistocene glaciations are generally invoked to
explain the origin and current distribution of cave-dwelling
invertebrates of the South China Karsts, as in Nesticella
spiders (Zhang & Li, 2013). However, a recent study on
Nesticella with more extensive sampling (including both
hypogean and epigean species) showed that the mid-Miocene
climatic shift (global cooling) was the major evolutionary force
that caused a habitat shift from surface to subterranean
(Ballarin & Li, 2018). The karsts of Southeast Asia are
considered arks of biodiversity (Clements et al., 2006) and
often contain high levels of endemism (Yao et al., 2016).

In Europe, the Dinaric karst region of the Balkan Peninsula
(Figure 1A, grey area), the region from which karst derives its
name, also hosts a considerable subterranean faunal diversity
(Sket, 2018). The geological history (and speleogenesis) of/in

(adaptation,
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the Dinaric karst are the results of lithology, tectonic
structures, regional climate, and geomorphic evolution that are
closely associated with the history of Tethyan tectonics
(Zupan Hajna, 2019). Agquatic animals account for a
considerable proportion of European subterranean fauna.
Studies show that the Dinaric cave-dwelling shrimp
(Troglocaris) diversified about 5 Ma, corresponding to
karstification in the Mediterranean that was initiated by active
groundwater movement during the Late Miocene (ZakSek et
al.,, 2007). This pattern of diversification time also occurs in
other crustaceans, such as Niphargus amphipods (Trontelj et
al., 2012). In Niphargus, the emerging subterranean
unoccupied habitats triggered adaptive radiation. Typically, the
ecomorphological structure of subterranean animals is
convergent due to similar selection pressures in extreme
environments. However, the different microhabitats within
caves caused morphological diversification (Borko et al., 2021;
Trontelj et al., 2012). In addition, some anchialine groups,
such as anchialine cave shrimps (Atyidae) (Jurado-Rivera et
al,, 2017) and Thermosbaenacea (Jaume, 2008) seem to
have originated directly from the sea, although their non-
cavernicolous marine relatives are either extinct or inhabit the
deep sea. Their extremely disjunct global distribution was
driven by Tethyan changes and precisely matches the area
covered by the ancient Tethys Sea or its coastlines.

CONCLUSIONS AND FUTURE PROSPECTS

By systematically reviewing recent representative studies of
animal distribution, diversity, and evolution in Eurasia, we
reveal the potential links between the formation of the current
diversity patterns of Eurasian animals and the geological
history in the Tethyan region. Though the ways in which
geological events change the evolutionary trajectory of
animals are myriad (Supplementary Table S1), we find a
general pattern: the habitat changes caused by geological
events can be roughly divided into physical change (e.g.,
landbridges and waterway) and qualitative change (e.g.,
desalinization and aridification). Both types of habitat changes
are related to animal evolution and diversification dynamics,
but in different aspects (Figure 2). Frequently, both habitat

Typell
Change the physical connection
between habitats

Adaptable

Adaptive evolution / Origin
Specialization / Convergence
Expansion / Isolation
Endemism / Speciation
Radiation / Habitat shift

Typel ll
Change the topographies, regional

changes occurred simultaneously or in close succession,
perpetually driving the speciation, dispersal, extinction and
adaptation of animals which are the basic processes of
evolution and major drivers behind geological events
responsible for the generation of biodiversity patterns.

A commonality found in different animals indicates that
areas with active tectonics tend to have more species.
Whether in the Alpine-Himalayan orogenic belt or the Indo-
West Pacific, all kinds of animals show high species diversity.
In many cases, however, the impact of the same geological
event on terrestrial, freshwater, and marine animals are
different. For example, the convergence of plates has opened
corridors for the exchange of terrestrial animals, but it has led
to the isolation and divergence of marine animals.
Furthermore, a geological event through time produced a
series of different circumstances prompting opposing
processes sometimes in the same fauna, such as dispersal
and vicariance in exchanging periods; extinctions followed by
rapid speciation. These impacts of geological events sum over
time and results are reflected in nowadays biodiversity
patterns of species and phylogenetic richness as well as
clades.

A scientific challenge is how to properly reconstruct the
impacts of past geological events on organisms.
Reconstructions are often limited by the availability of extant
and fossil taxa and the extinction of close relatives. This is
particularly serious in subterranean relict lineages, which often
lack data from relatives (extinction and/or show low levels of
fossilization). The lack of ancient basally branching lineages is
also a common problem in biogeographic reconstructions. In
addition, geographical changes usually deal with longer
(multimillion) time scales. The recurring basic evolutionary
processes of organisms (e.g., dispersal following vicariance,
extinction following speciation) over a smaller (multimillennial
or even multidecadal) time scale can obscure the impacts of
ancient geological events. Thus, based on extant DNA
sequences and meager fossil taxa, can we fully estimate the
impact of geological events on organisms' evolution?

As the geological history of the Tethys Sea becomes
clearer, it provides an excellent biogeographic background for
the study of animal diversity; however, current research in the

Disconnection
Divergence / Vicariance
Isolation / Speciation
Diversification
Endemism

Disjunct distribution

Connection
Exchange / Reunion
Dispersal / Expansion
Migration / Colonization

Freservation

climates and habitat types

Figure 2 A general pattern that Tethyan geological events impact Eurasian animal evolution and diversity dynamics
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Tethyan region is of a more regional scale. This will improve
with the application of large-scale sampling in animal diversity
and zoogeography research. Our review has shown the
potential for more large-scale biodiversity and biogeography
research under the theme of Tethyan tectonic changes. It is
expected that this paper can bring some inspiration and clues
to the future study of animal diversity and zoogeography and
contribute to the future protection of animal diversity in
Eurasia.
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