Skip to main content
. 2021 Dec;13(12):6976–6993. doi: 10.21037/jtd-21-765

Table 2. Area under the curve values in validation datasets for postoperative morbidity prediction.

Surgery Datasets Phasea Model typeb (clinical score) AUCc
Training Test Category Subtype
Miscellaneous1
   Cevenini et al. (55) CABG 545 545 Pre-, intra-, postoperative Advanced LR 0.781
BL 0.778
BQ 0.785
HS 0.768
DS 0.779
k-NN 0.772
ANN1 0.776
ANN2 0.778
   Chong et al. (56) CABG N/A Preoperative Conventional LR (QMMI score) 0.752
423 140 Preoperative Advanced LR 0.807
ANN 0.886
   Peng, Peng (14) Mix N/A Preoperative Conventional LR (Parsonnet) 0.727
637 315 Pre-, and postoperative Advanced LR 0.789
ANN 0.852
Secluded morbidities
   Zhong et al. (18) Mix 5,475 1,369 Septic shock
   Pre-, intra-, postoperative Advanced LR 0.93
RF 0.81
XGBoost 0.96
ANN 0.88
Thrombocytopenia
   Pre-, intra-, postoperative Advanced LR 0.87
RF 0.89
XGBoost 0.89
ANN 0.83
Liver dysfunction
   Pre-, intra-, postoperative Advanced LR 0.82
RF 0.89
XGBoost 0.89
ANN 0.70
   Mufti et al. (57) Mix 4,476 1,117 Agitated delirium
   Pre-, intra-, postoperative Advanced LR 0.814
RF 0.813
NB 0.799
BN 0.774
SVM 0.811
DT 0.772
ANN 0.804
Acute kidney injury
   Lei et al. (58) Aortic arch 627 270 Pre-, intra-, postoperative Advanced LR 0.65
RF 0.71
SVM 0.64
LGM 0.80
   Tseng et al. (59) Mix 470 201 Pre-, and intraoperative Advanced LR 0.806
RF 0.839
DT 0.781
XGboost 0.837
SVM 0.825
RF+XGBoost 0.843
   Lee et al. (60) Mix 1,005 1,005 Pre-, intra-, postoperative Advanced LR 0.70
RF 0.68
DT 0.71
XGBoost 0.78
SVM 0.69
NN classifier 0.64
Deep learning 0.55
   Penny-Dimri et al. (61) Mix N/A Preoperative Conventional LR (Cleveland Clinic) 0.71
LR (Risk score) 0.74
LR (Risk score) 0.75
77,322 19,331 Preoperative Advanced LR 0.76
GBM 0.76
k-NN 0.66
ANN 0.76
Pre-, and intraoperative Advanced LR 0.77
GBM 0.78
k-NN 0.67
ANN 0.77

a, perioperative phase: pre-, intra, postoperative used variables in prediction models; b, distinction between conventional and advanced models is explained in the methods section; c, definitions of both the AUC and C-index is given in the methods section. 1, Mix of cardiovascular, respiratory, neurological, renal, infectious, and hemorrhagic complications. ANN (1, 2, etc.), artificial neural network (one-layer, two-layer, etc.). AUC, area under the receiving operating characteristics curve for the validation sets; BL, Bayes linear; BN, Bayesian network; BQ, Bayes quadratic; CABG, coronary artery bypass graft surgery; DS, direct score; DT, decision trees; GBM, gradient-boosted machine; HS, Higgins score; k-NN, k-nearest neighbor; LGM, light gradient machine; LR, logistic regression; Mix, various cardiac surgery patients with/without heart transplantation; NN, neural network; NB, Naïve Bayes; RF, random forest; SVM, support-vector machines; XGBoost, extreme gradient boosting.