
Purpose: The purpose of this study was to determine if somatic mutations are associated with clinical 
and pathologic outcomes in patients with borderline resectable pancreatic cancer (BRPC) or locally 
advanced pancreatic cancer (LAPC) who were treated with neoadjuvant chemotherapy and stereotac-
tic body radiotherapy (SBRT). 
Materials and Methods: Patients treated with neoadjuvant chemotherapy and SBRT followed by sur-
gical resection from August 2016 to January 2019 and who underwent next generation sequencing 
of their primary tumor were included in the study. Next-generation sequencing was performed either 
in-house with a Solid Tumor Panel or with FoundationOne CDx. Univariate (UVA) and multivariable 
analyses (MVA) were performed to determine associations between somatic mutations and patholog-
ic and clinical outcomes. 
Results: Thirty-five patients were included in the study. Chemotherapy consisted of modified FOLFIRI-
NOX, gemcitabine and nab-paclitaxel, or gemcitabine and capecitabine. Patients were treated with 
SBRT in 33 Gy in 5 fractions. On UVA and MVA, tumors with KRAS G12V mutation demonstrated bet-
ter pathologic tumor regression grade (TRG) to neoadjuvant therapy when compared to tumors with 
other KRAS mutations (odds ratio = 0.087; 95% confidence interval [CI], 0.009–0.860; p = 0.036). On 
UVA and MVA, mutations in NOTCH1/2 were associated with worse overall survival (hazard ratio [HR] 
= 4.15; 95% CI, 1.57– 10.95; p = 0.004) and progression-free survival (HR = 3.61; 95% CI, 1.41–9.28; 
p = 0.008). On UVA, only mutations in NOTCH1/2 were associated with inferior distant metasta-
sis-free survival (HR = 3.38; 95% CI, 1.25–9.16; p = 0.017). 
Conclusion: In BRPC and LAPC, the KRAS G12V mutation was associated with better TRG following 
chemotherapy and SBRT. Additionally, NOTCH1/2 mutations were associated with worse overall sur-
vival, distant metastasis-free survival, and progression-free survival. 
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Introduction 

Pancreatic cancer is the third most common cause of cancer relat-

ed deaths in the United States and accounts for roughly 47,000 

deaths each year [1]. At time of diagnosis, 10% are resectable, 40% 

are borderline resectable pancreatic cancer (BRPC) or locally ad-

vanced pancreatic cancer (LAPC), and 50% are metastatic. Treat-

ment of pancreatic cancer depends on disease extent and includes 

a combination of chemotherapy, radiation therapy, and surgical re-

section [2]. Unfortunately, even with modern treatment, prognosis 

of BRPC and LAPC is poor with 5-year overall survival (OS) of less 

than 15% [1,3]. 

The management of BRPC and LAPC is complex with the majori-

ty of patients treated with upfront chemotherapy followed by sur-

gery if technically feasible. Radiation therapy can be administered 

with the goal of margin sterilization and local recurrence risk re-

duction in the neoadjuvant setting and local progression-free sur-

vival benefit in the unresectable setting, but its role remains con-

troversial [4-9]. Indeed, several large randomized control studies 

have investigated the use radiation therapy in BRPC and LAPC with 

mixed results, which may in part be related to variable radiosensi-

tivity due to molecularly heterogeneous disease biology [5-9]. Cer-

tainly, tools that could better predict therapeutic response in this 

group of patients would be helpful. 

In recent years, there has been an increased role of molecular test-

ing in pancreatic cancer. The National Comprehensive Cancer Net-

work (NCCN) guidelines now recommend somatic mutation testing 

for all metastatic and locally advanced disease [2]. It is thought that 

the poor prognosis of pancreatic cancer may in part be due to tumor 

heterogeneity at the molecular level, with a wide variety of muta-

tions present [10-14]. Studies have shown that mutational status is 

associated with clinical outcomes and that targeted therapy may 

improve prognosis [15-20]. However, many of these reports included 

heterogeneous patient populations who were treated with various 

local and systemic therapies. Furthermore, these studies do not re-

port on pathologic tumor response. As such, we herein explore the 

impact of somatic mutations on clinical and pathologic outcomes in 

a cohort of BRPC and LAPC patients treated with stereotactic body 

radiotherapy (SBRT) after upfront chemotherapy, reporting on both 

pathologic tumor response to neoadjuvant chemotherapy and radia-

tion as well as on survival outcomes. 

Materials and Methods 

1. Study design 
This is a single institution retrospective review of patients with lo-

calized pancreatic cancer who were treated from August 2016 to 

January 2019 with chemotherapy, SBRT, and surgical resection and 

who underwent next-generation sequencing (NGS) of the primary 

tumor specimen. This study was approved by the Institutional Re-

view Board of Johns Hopkins University School of Medicine (No. 

IRB00270193). The informed consent was waived given that this 

was a retrospective study and no human experimentation/interac-

tion was performed. Patients were included in the study if they met 

the following criteria: (1) biopsy proven diagnosis of pancreatic 

cancer; (2) BRPC and LAPC as defined by NCCN guidelines [2]; (3) 

treatment with neoadjuvant chemotherapy and SBRT followed by 

surgical resection; (4) adequate follow-up defined as >3 clinical 

encounters following treatment; and (5) NGS of tumor specimen. 

Routine follow-up consisted of clinic visits at approximately 

3-month intervals and pancreatic protocol imaging performed at 

3–6 months intervals. As part of follow-up, patients had cancer 

antigen 19-9 (CA19-9) levels drawn. The frequency of imaging and 

blood work were at the discretion of the clinical team.  

2. Treatment details  
Patients were treated with upfront chemotherapy with modified 

FOLFIRINOX (mFFX), gemcitabine and nab-paclitaxel (GnP), or 

gemcitabine and capecitabine. During chemotherapy, patients 

had pancreatic protocol computed tomography (CT) scans every 3 

months to assess treatment response. After completion of che-

motherapy, patients were recommended for SBRT. Historically, at 

our institution, all patients with BRPC/LAPC who have responding 

or stable disease after upfront systemic therapy have been of-

fered SBRT to 33 Gy in 5 fractions. Patients were subsequently 

restaged after SBRT, and a decision was made regarding surgical 

exploration. In general, all technically BRPC patients were ex-

plored if no medical contraindications and no evidence of pro-

gression after SBRT [21]. This has similarly been true for the LAPC 

patients, with the exception of a small minority of LAPC patients 

for whom local extent of disease was too extensive to offer a 

reasonable pathway for complete surgical resection [22]. Of note, 

presence of duodenal invasion on endoscopy has been the prima-

ry contraindication to SBRT, for which conventional chemoradia-

tion has been recommended instead. More recently, we have also 

considered dose-escalated IMRT for the minority of LAPC patients 

that fit into the category above of too locally extensive disease to 

allow a reasonable pathway for complete resection [23], but 

these patients were excluded from this analysis given potential 

impact on clinical outcomes. 

Prior to simulation and SBRT, all patients underwent ultra-

sound-guided endoscopic gold fiducial placement for the purpose 

of daily image guidance. At time of simulation, patients were posi-

tioned supine with arms above head in a Vac-lok (CIVCO Medical 
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Solutions, Coralville, IA, USA) for immobilization. Thin-sliced CT 

scans with intravenous contrast were obtained for radiation treat-

ment planning. Motion management with active breathing control 

(ABC; Elekta, Stockholm, Sweden) was performed in the majority of 

patients. Patients who could not tolerate breath-hold were treated 

under free-breathing conditions, with an internal target volume 

(ITV) generated from the peak inspiratory and expiratory phases 

from a four-dimensional CT scan. The clinical target volume (CTV) 

and organs-at-risk were contoured using Pinnacle treatment plan-

ning system (Philips Radiation Oncology Systems, Fitchburg, WI, 

USA). The CTV included gross disease seen on imaging and areas at 

risk for microscopic disease, namely the full circumference of in-

volved vasculature. The planning target volume was generated by 

adding a 2-mm isotropic expansion to the CTV for breath-hold 

cases and to the ITV for free-breathing cases. Daily image guidance 

with pre-treatment and intrafractional cone-beam CT scans was 

performed to ensure proper setup. Patients were aligned to spine 

and then shifted to align to fiducials. All patients were treated on 

an Elekta Synergy-S unit with HexaPOD evo RT system. 

Approximately 4 weeks after completion of SBRT, patients were 

restaged with imaging, with surgical resection shortly thereafter. 

Adjuvant or maintenance chemotherapy was initiated at the dis-

cretion of the treating medical oncologist. 

3. Molecular testing 
Genomic information was acquired from formalin-fixed paraf-

fin-embedded tissue from surgical specimens. NGS was performed 

either in-house using a Clinical Laboratory Improvement Amend-

ments certified Johns Hopkins Molecular Lab with a Solid Tumor 

Panel (STP) [24] or with FoundationOne CDx. The in-house Solid 

Tumor Panel and FoundationOne CDx included testing for muta-

tions in genes of interest such as KRAS, NOTCH1, NOTCH2, CDK-
N2A, BRCA1, BRCA2, SMAD4, ATM, as well as in over 300 other 

genes [25,26]. Genes were considered mutated if they had substi-

tutions, insertions-deletions, or copy-number alterations. Genes 

that did not harbor these alterations were considered wild-type. 

Tumor content within extracted samples was >10% for STP and 

>20% for FoundationOne CDx. Mean sequencing depth was 700×  

for STP and 894×  for FoundationOne CDx.  

4. Classification of pathologic response 
At our institution, tumor response to neoadjuvant therapy was 

graded per the American Joint Committee on Cancer/College of 

American Pathologist tumor regression grade (TRG) system [27]. No 

residual tumor or complete response is considered TRG 0, while 

poor response/no response is considered TRG 3. Marked response 

with minimal residual cancer with single cells is considered TRG 1, 

and moderate response with residual cancer outgrown by fibrosis is 

considered TRG 2.  

5. Clinical outcomes 
Clinical outcomes included OS, local progression-free survival 

(LPFS), distant metastasis-free survival (DMFS), and progres-

sion-free survival (PFS). OS was defined as time from surgery to 

death. LPFS and DMFS were defined as time from surgery to lo-

coregional progression or distant progression, respectively. PFS was 

defined as time from surgery to death or any radiographic evidence 

of progression. 

6. Statistics 
Baseline demographic, tumor, and treatment characteristics were re-

corded including age, sex, performance status, tumor size, tumor 

grade, chemotherapy regimen, SBRT dose/fractionation, resection 

status, and mutational status. Univariate Cox analysis was performed 

identify variables associated with clinical outcomes from time of sur-

gery. Variables with p < 0.2 on univariate Cox analysis were entered 

into multivariable Cox analysis and subsequently removed if p-value 

rose to above 0.2. Kaplan-Meier analysis was performed for time to 

event outcomes, and log-rank test was used assess significance be-

tween groups. Univariate logistic regression was performed to deter-

mine associations between variables and TRG. Variables with p < 0.2 

on univariate nominal logistic regression were entered into multino-

mial logistic regression and were subsequently removed if p-value 

rose to above 0.2. All statistical analyses were performed with JMP 

version 14.0 (SAS Institute, Cary, NC, USA). 

Results 

1. Patient and disease characteristics 
From August 2016 to January 2019, 35 patients were treated with 

neoadjuvant chemotherapy and SBRT followed by surgical resection 

and underwent NGS of their tumor specimen. Patient and disease 

characteristics are described in Table 1. Patients underwent NGS of 

Table 1. Patient, treatment, and tumor characteristics (n = 35)

Characteristic Value
Age (yr) 67 (46–80)
Sex
  Male 20 (57)
  Female 15 (43)
KPS
  90–100 30 (86)
  70–80 5 (14)

(Continued to the next page)
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their tumor specimen either in-house with a STP (29/35, 83%) or 

with FoundationOne CDx (6/35, 17%). The median age at diagnosis 

was 67 years (range, 46 to 80 years). Borderline resectable disease 

was seen in 20 patients (57%) and LAPC in 15 patients (43%). Lo-

cation of the tumor was in the pancreatic head in 15 patients 

(44%). Median tumor size was 3.6 cm (range, 1.4 to 6.7 cm). Medi-

an baseline CA19-9 was 148.6 U/mL (range, 16 to 5,545 U/mL). 

2. Treatment characteristics 
Upfront chemotherapy regimens consisted of mFFX (23/35, 66%), 

GnP (5/35 14%), mFFX followed by GnP (5/35 14%), mFFX followed 

by gemcitabine alone (1/35, 3%), and gemcitabine and capecit-

abine (1/35, 3%). Median duration of upfront chemotherapy was 4 

months (range, 2 to 12 months). Following chemotherapy, all pa-

tients were treated with SBRT to 33 Gy in 5 fractions. Median time 

from SBRT to surgical resection was 6.9 weeks (range, 3.1 to 25.3 

weeks). Surgical margins were negative in 32 patients (91%). 

Pathologically involved lymph nodes were found in 17/35 patients 

(49%). Whipple procedure was performed in 20 patients (57%), 

distal pancreatectomy in 14 patients (40%), and total pancreatec-

tomy in one patient (3%). Adjuvant or maintenance chemotherapy 

was initiated in 26 patients (74%) for a median time of 2 months 

(range, 1 to 4 months).  

3. Frequency of mutations  
Fig. 1 displays the frequencies of common mutations and KRAS 

mutation subtypes. Mutations in KRAS were the most common, 

present in 33 of 35 patients (94%). KRAS mutations were most 

frequent at codon 12 (37/41, 90%), with the following subtype fre-

quencies: G12V (14/33, 42%), G12D (13/33, 39%), G12R (3/33, 

9%), Q61H (2/33, 6%), and unknown (1/33, 3%). The next most 

common mutations were in TP53 (21/35, 60%), NOTCH1/2 (8/35, 

23%), and CDKN2A (6/35, 17%). Less common mutations included 

SMAD4 (2/35, 6%), BRCA 1/2 (4/35, 11%), and ATM (2/35, 6%). 

4. Clinical outcomes 
The median follow-up time from SBRT was 20.4 months (range, 3.5 

to 45.4 months). At time of last follow-up, nine of 35 patients 

(26%) were alive. Median OS from surgery was 24.5 months, with 

1-, 2-, and 3-year OS rates of 76.6%, 52.7%, and 10.1%, respec-

tively. The median LPFS, DMFS, and PFS from surgery were 20.2 

(range, 2.8 to 44.0 months), 12.2 months (range, 0.5 to 38.1 

months), 11.3 months (range, 0.5 to 38.1 months), respectively. The 

majority of patients (26/35, 74%) had distant disease at time of 

last follow-up. Local failure was observed in 19 patients (54%), in-

cluding isolated local failure in two patients (6%). Of the 17 pa-

tients who developed local and distant failure, pattern of first fail-

Characteristic Value
Histology
  Adenocarcinoma 33 (94)
  Acinar cell 1 (3)
  Undifferentiated carcinoma 1 (3)
Location of primary tumor
  Head 15 (44)
  Other 19 (56)
Tumor size (cm) 3.6 (1.4–6.7)
Disease extent
  Borderline resectable 20 (57)
  Locally advanced 15 (43)
Baseline CA19-9 (U/mL) 148.6 (16–5,545)
Neoadjuvant chemotherapy
  mFFX 23 (66)
  GnP 5 (14)
  mFFX and GnP 5 (14)
  mFFX and gemcitabine 1 (3)
  Gemcitabine and capecitabine 1 (3)
Total dose (Gy) 33
Number of fractions 5
Adjuvant or maintenance chemotherapy
  Yes 26 (74)
  No 9 (26)
Mutational status
  KRAS wild type 2 (6)
  KRAS mutant 33 (94)
    G12V 14 (42)
    G12D 13 (39)
    G12R 3 (9)
    Q61H 2 (6)
    Unknown 1 (3)
  TP53
    Wild type 14 (40)
    Mutant 21 (60)
  NOTCH1/2
    Wild type 27 (77)
    Mutant 8 (23)
  CDK2NA
    Wild type 29 (83)
    Mutant 6 (17)
  BRCA 1/2
    Wild type 31 (89)
    Mutant 4 (11)
  SMAD4
    Wild type 33 (94)
    Mutant 2 (6)
  ATM
    Wild type 33 (94)
    Mutant 2 (6)

Values are presented as median (range) or number (%).
KPS, Karnofsky Performance Score; CA19-9, cancer antigen 19-9; mFFX, 
modified FOLFIRINOX; GnP, gemcitabine and nab-paclitaxel.

Table 1. Continued
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ure included distant in 5/17 patients (29.4%), local in 5/17 patients 

(29.4%), and synchronous local and distant in 7/17 patients 

(41.2%). Radiographic response following neoadjuvant chemother-

apy and SBRT was determined by CT imaging just prior to surgery. 

Eleven patients (31%) had partial response, while 24 patients (69%) 

had stable disease. There were no cases of radiographic disease 

progression. 

On univariate (UVA) and multivariable (MVA) analyses, only muta-

tions in NOTCH1/2, were associated with OS (hazard ratio [HR] = 

4.15; 95% confidence interval [CI], 1.57–10.95; p = 0.004) (Table 2). 

Patients with NOTCH1/2 mutations had a median OS of 13.9 

months versus 27.6 months in NOTCH1/2 wild-type patients (log-

rank, p =  0.003) (Fig. 2A). On UVA, only mutations in NOTCH1/2 

were associated with DMFS (HR =  3.38; 95% CI, 1.25–9.16; p =  

0.017) (Table 3). No other variables were associated with DMFS. 

Patients with NOTCH1/2 mutations had a median DMFS of 7.1 

months versus 15.9 months in NOTCH1/2 wild-type patients (log-

rank, p =  0.011) (Fig. 2B). Similarly, on UVA and MVA, only muta-

tions in NOTCH1/2 were associated with PFS (HR =  3.61; 95% CI, 

1.41–9.28; p =  0.008) (Table 4). Patients with NOTCH1/2 2 muta-

tions had a median PFS of 7.1 months versus 12.6 months in 

NOTCH1/2 wild-type patients (log-rank, p =  0.003) (Fig. 2C). No 

Fig. 1. (A) Box chart showing frequency of common mutations and (B) pie chart showing frequency of KRAS mutation subtypes.

Table 2. Univariate and multivariable analyses of overall survival

Variable
Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value
Sex (male vs. female) 1.19 (0.54–2.65) 0.66
Age (≥65 vs. <65 yr) 0.84 (0.38–1.89) 0.68
KPS (90–100 vs. 70–80) 2.09 (0.68–6.42) 0.20
Disease extent (BRPC vs. LAPC) 0.75 (0.33–1.68) 0.48
Tumor location (head vs. other) 1.16 (0.53–2.55) 0.72
Tumor size (>3.6 vs. <3.6 cm) 0.74 (0.34–1.60) 0.44
Baseline CA19-9 (>148 vs. <148 U/mL) 1.17 (0.35–3.88) 0.80
Chemotherapy duration (>4 vs. <4 mo) 1.32 (0.60–2.93) 0.55
PNI (absent vs. present) 1.01 (0.42–2.42) 0.99
LVI (absent vs. present) 0.54 (0.23–1.25) 0.15 0.56 (0.24–1.30) 0.17
Adjuvant/maintenance chemotherapy (yes vs. no) 0.57 (0.24–1.38) 0.22
KRAS (mutant vs. wild type) 1.40 (0.19–10.57) 0.74
TP53 (mutant vs. wild type) 0.88 (0.40–1.93) 0.76
NOTCH1/2 (mutant vs. wild type) 3.93 (1.52–10.20) 0.005* 4.15 (1.57–10.95) 0.004*
CDKN2A (mutant vs. wild type) 0.51 (0.15–1.69) 0.27

KPS, Karnofsky Performance Score; BRPC, borderline resectable pancreatic cancer; LAPC, locally advanced pancreatic cancer; CA19-9, cancer antigen 
19-9; PNI, perineural invasion; LVI, lymphovascular invasion; HR, hazard ratio; CI, confidence interval.
*p < 0.05.
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Fig. 2.  Kaplan-Meier curves of (A) overall survival, (B) distant metastasis-free survival, and (C) progression-free survival based on NOTCH1/2 
mutation status.

Table 3. Univariate and multivariable analyses of distant metastasis-free survival

Variable
Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value
Sex (male vs. female) 1.05 (0.48–2.33) 0.90
Age (≥65 vs. <65 yr) 0.76 (0.60–2.93) 0.49
KPS (90–100 vs. 70–80) 1.24 (0.56–2.73) 0.59
Disease extent (BRPC vs. LAPC) 1.11 (0.33–3.75) 0.87
Tumor location (head vs. other) 0.92 (0.42–2.02) 0.84
Tumor size (>3.6 vs. <3.6 cm) 0.97 (0.45–2.09) 0.93
Baseline CA19-9 (>148 vs. <148 U/mL) 1.11 (0.30–4.15) 0.88
Chemotherapy duration (>4 vs. <4 mo) 0.92 (0.42–2.03) 0.92
PNI (absent vs. present) 1.12 (0.47–2.67) 0.80
LVI (absent vs. present) 0.71 (0.31–1.60) 0.41
Adjuvant/maintenance chemotherapy (yes vs. no) 0.93 (0.37–2.36) 0.88
KRAS (mutant vs. wild type) 1.22 (0.16–9.09) 0.85
TP53 (mutant vs. wild type) 1.58 (0.70–3.59) 0.27
NOTCH1/2 (mutant vs. wild type) 3.38 (1.25–9.16) 0.017*
CDKN2A (mutant vs. wild type) 0.55 (0.19–1.63) 0.28

KPS, Karnofsky Performance Score; BRPC, borderline resectable pancreatic cancer; LAPC, locally advanced pancreatic cancer; CA19-9, cancer antigen 
19-9; PNI, perineural invasion; LVI, lymphovascular invasion; HR, hazard ratio; CI, confidence interval.
*p < 0.05.
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variables were associated with LPFS (Supplementary Table S1). 

Tumor regression following chemotherapy and SBRT was evalu-

ated with respect to various variables, including mutational status 

(Table 5). One patient did not have TRG information available for 

review. Tumor regression grade 0 was seen in 1/34 patients (3%), 

TRG 1 in 7/34 patients (21%), TRG 2 in 20/34 patients (59%), and 

TRG 3 in 6/34 patients (18%). On univariate and multinomial logis-

tic regression, only KRAS G12V mutational status was associated 

with TRG. Tumors with KRAS G12V mutation were more likely to 

demonstrate a marked to complete response (TRG 0–1) to chemo-

therapy and SBRT when compared to all other KRAS mutations 

(odds ratio =  0.087; 95% CI, 0.009–0.860; p =  0.036) (Table 5). 

Table 4. Univariate and multivariable analyses of progression-free survival

Variable
Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value
Sex (male vs. female) 1.43 (0.66–3.14) 0.37
Age (≥65 vs. <65 yr) 0.89 (0.42–1.90) 0.77
KPS (90–100 vs. 70–80) 0.89 (0.27–2.96) 0.85
Disease extent (BRPC vs. LAPC) 0.85 (0.40–1.81) 0.68
Tumor location (head vs. other) 1.41 (0.66–3.01) 0.38
Tumor size (>3.6 vs. <3.6 cm) 1.14 (0.53–2.44) 0.74
Baseline CA19-9 (>148 vs. <148 U/mL) 1.65 (0.48–5.66) 0.42
Chemotherapy duration (>4 vs. <4 mo) 1.36 (0.64–2.89) 0.43
PNI (absent vs. present) 0.84 (0.37–1.92) 0.69
LVI (absent vs. present) 0.61 (0.28–1.32) 0.21
Adjuvant/maintenance chemotherapy (yes vs. no) 0.64 (0.27–1.52) 0.31
KRAS (mutant vs. wild type) 1.69 (0.23–12.50) 0.61
TP53 (mutant vs. wild type) 1.21 (0.56–2.60) 0.62
NOTCH1/2 (mutant vs. wild type) 3.73 (1.45–9.61) 0.006* 3.61 (1.41–9.28) 0.008*
CDKN2A (mutant vs. wild type) 0.40 (1.14–1.18) 0.10 0.40 (0.14–1.17) 0.094

KPS, Karnofsky Performance Score; BRPC, borderline resectable pancreatic cancer; LAPC, locally advanced pancreatic cancer; CA19-9, cancer antigen 
19-9; PNI, perineural invasion; LVI, lymphovascular invasion; HR, hazard ratio; CI, confidence interval.
*p < 0.05.

Table 5. Univariate and multivariable analyses of tumor regression grade 0-1 vs. 2-3

Variable
Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value
Sex (male vs. female) 0.33 (0.056–1.97) 0.23
Age (≥65 vs. <65 yr) 1.08 (0.22–5.33) 0.92
KPS (90–100 vs. 70–80) 0.39 (0.053–2.90) 0.36
Disease extent (BRPC vs. LAPC) 5.67 (0.94–34.03) 0.058
Tumor location (head vs. other) 0.98 (0.18–5.28) 0.98
Tumor size (>3.6 vs. <3.6 cm) 0.70 (0.14–3.56) 0.67
Baseline CA19-9 (>148 vs. <148 U/mL) 0.29(0.023–3.52) 0.33
Chemotherapy duration (>4 vs. <4 mo) 1.04 (0.20–5.34) 0.96
PNI (absent vs. present) 0.37 (0.072–1.89) 0.96
LVI (absent vs. present) 5.00 (0.53–47.29) 0.16
KRAS (mutant vs. wild type) – 0.99
KRAS subtype (G12V vs. all other mutations) 0.16 (0.026–0.96) 0.045* 0.087 (0.009–0.86) 0.036*
TP53 (mutant vs. wild type) 0.96 (0.19–4.92) 0.96
NOTCH1/2 (mutant vs. wild type) 0.40 (0.070–2.24) 0.30
CDKN2A (mutant vs. wild type) 0.22 (0.034–1.41) 0.11 0.10 (0.008–1.23) 0.072

KPS, Karnofsky Performance Score; BRPC, borderline resectable pancreatic cancer; LAPC, locally advanced pancreatic cancer; CA19-9, cancer antigen 
19-9; PNI, perineural invasion; LVI, lymphovascular invasion; HR, hazard ratio; CI, confidence interval.
*p < 0.05.

https://doi.org/10.3857/roj.2021.00815310

Abhinav V. Reddy et al.



Among patients with the KRAS G12V mutation, 6/14 patient (43%) 

achieved a marked to complete tumor response (TRG 0–1) com-

pared to just 2/19 patients (11%) with KRAS non-G12V mutations 

(Pearson chi-square, p =  0.031) (Table 6). Only one patient in the 

entire cohort demonstrated a complete response (TRG 0) to che-

motherapy and SBRT, and this patient’s tumor harbored the KRAS 
G12V mutation. Of the 14 patients with KRAS G12V mutations, 

TRG 0 was achieved in one patient (7%), TRG 1 in five patients 

(36%), and TRG 2 in eight patients (57%). No tumors with KRAS 

G12V mutation demonstrated no/poor response (TRG 3). Table 6 

shows TRG for KRAS G12V and non-G12V subtypes.  

Discussion and Conclusion 

To our knowledge, this is the first study to report on the impact of 

somatic mutations in a cohort of BRPC and LAPC patients treated 

with SBRT after upfront chemotherapy. We show that mutational 

status is an important predictor of clinical and pathologic out-

comes. Specifically, the KRAS G12V mutation was associated with 

more favorable TRG following chemotherapy and SBRT when com-

pared to other KRAS mutations. Additionally, mutations in 

NOTCH1/2 were associated with inferior OS, DMFS, and PFS. 

Localized pancreatic cancer has a high rate of distant failure af-

ter surgical resection, highlighting the need for more effective sys-

temic therapy [28]. However, local failure is not insignificant with 

approximately 30% of patients developing isolated local failure 

without distant disease after resection [28,29]. In fact, up to 30% 

of LAPC patients die from locally destructive disease [30]. There-

fore, more effective local therapy such as radiation is needed. 

However, the use of radiation therapy in BRPC and LAPC remains 

contentious [5-9]. A phase II/III study from Korea demonstrated 

that neoadjuvant chemoradiation was associated with improved 

R0 resection rate and 2-year OS when compared to upfront surgery 

in BRPC [5]. The PREOPANC trial showed similar findings, with 

higher rates of R0 resection with neoadjuvant chemoradiation 

compared to upfront surgery [6]. However, the more recent ALLI-

ANCE 021501 trial demonstrated contradictory findings, with lower 

R0 rates and worse 18-month OS in BRPC treated with neoadju-

vant chemoradiation versus neoadjuvant chemotherapy alone [7]. 

Mixed findings are also seen in LAPC, with the LAP07 trial showing 

no OS benefit but an improvement in local control with consolida-

tive chemoradiation compared to consolidative chemotherapy 

alone [8]. These varied findings may in part be due to the hetero-

geneous molecular biology of pancreatic cancer [10-14]. 

Somatic mutations in pancreatic cancer are more prevalent and 

diverse than previously realized [10-14]. Over 95% of pancreatic 

cancer have genetic alterations including translocations, frame-

shifts, deletions, insertions, and substitutions [11]. In fact, the 

NCCN guidelines now recommend somatic gene profiling for all 

patients with LAPC or metastatic disease who are candidates for 

systemic therapy [2]. Of most interest are actionable mutations in-

cluding BRAF, BRCA 1/2, HER2, KRAS, and PALB2, which can dic-

tate response to systemic therapy. In other cancer types, specific 

mutations can also predict radiosensitivity [31]. Certainly, it would 

be of value to identify mutations associated with radiosensitivity in 

BRPC and LAPC. 

Although it is impossible to differentiate the relative contribu-

tion of chemotherapy versus SBRT to pathologic response, TRG may 

nonetheless serve as a marker of sensitivity to both chemotherapy 

and radiation. Our data suggest that BRPC and LAPC with the KRAS 

G12V mutation are more likely to achieve a marked to complete 

response (TRG 0–1) to chemotherapy and SBRT when compared to 

tumors with other KRAS mutations. This is consistent with data 

from early stage non-small-cell lung carcinoma (NSCLC) treated 

with surgery alone and from advanced stage NSCLC treated with 

platinum-based chemotherapy, with G12V tumors performing bet-

ter in both studies [32,33]. However, our finding is contradictory to 

a report on rectal cancer patients treated with preoperative 

chemoradiation, with G12V associated with lower rates of tumor 

regression, although not statistically significant [34]. This discrep-

ancy may be attributed to differences in radiation dose fraction-

ation, systemic therapy, and tumor biology. If the variation in TRG 

response based on KRAS mutational subtype is driven by variation 

in radiosensitivity, our findings may have implications on selection 

of radiation dose based on KRAS mutation subtype. Recent data 

has highlighted the importance of radiation dose in LAPC, with bi-

ologically effective doses >70 Gy leading to improved OS [35]. It 

may follow therefore that patients who are less likely to achieve 

adequate pathologic response, such as those with KRAS non-G12V 

mutations in our study, may be ideal candidates for radiation dose 

escalation strategies to improve outcomes. Conversely, patients 

who are more likely to achieve a good pathologic response may be 

able to be spared from the potential side effects of increased radi-

ation dose. Certainly, further studies are warranted in determining 

Table 6. Tumor regression grade based on KRAS G12V mutational 
status

Parameter G12V (n =  14) Non-G12V (n =  19) p-value
TRG 0 1 (7) 0 (0)
TRG 1 5 (36) 2 (10)
TRG 2 8 (57) 11 (58)
TRG 3 0 (0) 6 (32)
TRG 0–1 6/14 (43) 2/19 (11) 0.031*

Values are presented as number (%).
* p < 0.05, Pearson chi-square test.
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the impact of KRAS mutational subtype on local response to SBRT 

and chemotherapy in localized pancreatic cancer.  

Notch proteins are a group of highly conserved transmembrane 

receptors responsible cellular proliferation, differentiation, and 

apoptosis [36-38]. Aberrant Notch signaling leads to a wide range 

of disorders including cancer [39]. Rossi et al. [40] showed that 

NOTCH1 mutations are an independent predictor of worse OS in 

chronic lymphocytic leukemia (median OS, 3.5 vs. 13.9 months; p 

<  0.05). Similar results were reported by Zhu et al. [41] in adult 

T-cell acute lymphoblastic patients with NOTCH1 mutations (3-year 

OS, 31.8% vs. 71.7%; p <  0.05). Notch expression has been impli-

cated in pancreatic adenocarcinoma, with increased expression 

leading to poor survival [42]. This is consistent with studies show-

ing that Notch signaling is required for the progression of pancre-

atic intraepithelial neoplasia to pancreatic adenocarcinoma and 

that alterations in this pathway can lead to malignancy [40,43]. 

Notch signaling has also been associated with radio-resistance and 

radiation-induced epithelial-mesenchymal transition, a process 

crucial in tumorigenesis [44-46]. Here, we demonstrate that BRPC 

and LAPC with NOTCH1/2 mutations have worse OS and DMFS 

when compared to NOTCH1/2 wild-type tumors. These findings 

suggest that patients with NOTCH1/2 mutations may derive greater 

benefit from optimization of systemic therapy, as opposed to local 

therapy such as radiation and surgery, given their high risk of de-

veloping distant progression. In fact, several phase I/II studies have 

investigated the use of γ-secretase inhibitors, novel molecules that 

inhibit Notch signaling, in both metastatic and locally advanced 

pancreatic cancer [47,48]. Additional studies are needed to further 

define the mechanism of NOTCH1/2 signaling and how such infor-

mation can be incorporated into clinical decision-making 

Lastly, although not the focus of our study, it is interesting note 

that 54% of patients developed locoregional failure (LF). Even more 

interesting was that this rate of LF occurred despite with a 91% R0 

resection. Our findings are consistent with a phase II trial by Kharo-

fa et al. [50], who investigated the use of neoadjuvant chemother-

apy and SBRT in resectable and BRPC. Locoregional failure occurred 

in 50% of patients despite R0 resection in 92%. In their study, 

treatment volumes included gross disease and adjacent vasculature 

but not elective nodal regions. All LFs occurred out-of-field, which 

is relevant given recent data highlighting the importance of elec-

tive nodal irradiation [51]. Similarly, we did not perform elective 

nodal irradiation in our patients, which likely contributed to higher 

LF rates. Indeed, target volume delineation remains highly variable 

for patients with pancreatic cancer, and more data regarding pat-

terns of local failure are needed to determine optimal field design 

[51]. Certainly, optimal dose is equally uncertain, given recent data 

supporting the value of dose-escalation [23]. 

There are several limitations of this study including its retrospec-

tive design and small sample size of 35 patients. This certainly im-

pacts the strength of the findings and precluded us from identify-

ing other potential associations between mutational status and 

outcomes. For example, although NOTCH1/2 status was associated 

with clinical outcomes, it was not predictive of pathologic re-

sponse. Furthermore, prior studies show that KRAS mutations are 

associated with poor clinical outcomes, but we were unable to de-

tect this relationship as only two patients were KRAS wild-type in 

our cohort [52,53]. Although we demonstrate that the KRAS G12V 

mutation predicted for better TRG, there was no association with 

local control, which may be a better marker of radiation efficacy. 

We are also unable to comment on whether pathologic response 

was due to the effect of SBRT, chemotherapy or a combination of 

both. Additionally, the detection of specific mutations may have 

been limited by heterogeneity of tumor content in the extracted 

samples. Finally, we selected for BRPC/LAPC patients who were 

able to undergo resection, which certainly may present selection 

biases. Ultimately, prospective validation within and across stage 

groupings should be pursued. Therefore, these findings should be 

interpreted with caution and should be validated in a larger cohort 

of patients. Nonetheless, the results provide valuable information 

regarding the effect of somatic mutations in pancreatic cancer and 

is consistent with findings from other studies. 

This is the first series to report on the impact of somatic muta-

tions in cohort of BRPC and LAPC treated with SBRT after upfront 

chemotherapy. We show that the KRAS G12V mutation is associat-

ed with better TRG after preoperative chemotherapy and SBRT and 

that mutations in NOTCH1/2 are independently associated with in-

ferior OS, DMFS, and PFS. These findings suggest that the muta-

tional landscape of pancreatic cancer is important in stratifying 

patients, and as a result, may help clinicians in choosing targeted 

therapy. 
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