
Introduction 

Radiation therapy (RT) is used to reduce the risk of relapse after 

surgery, as a means for reduction of tumor volume in palliative 

care, or as the main method of treatment for some tumors. As a 

rule, RT for cancer patients involves local irradiation of the tumor 

node. However, the researchers have been observed cases of “dis-

tant” effects of radiotherapy, in particular regression of hematoge-

nous metastases, with local irradiation of the primary tumor node 

since the beginning of the 20th century. 

The first complete regression of the tumor was noted in 1908 

when the effect of radiation was studied on lymph nodes remote 

from the main focus. Unfortunately, in this study there was no exact 

description of the irradiation procedure, dose, and localization of 

the irradiated lymph nodes, which cannot exclude the influence of 

other factors on the reached effect [1]. In 1938, an “irregular reac-

tion” (adrenal hypertrophy and atrophy of lymphoid organs) was 

observed in unirradiated organs in animal model in vivo, when a tu-

mor was irradiated 20–40 Gy [2]. Fifteen years later, in 1953, Mole 
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[3] suggested introducing the term “abscopal effect” to denote the 

effect of ionizing radiation “at a distance from the irradiated volume 

but within the same organism,” and then expanded to include dis-

tant effects on normal tissues [4]. Currently, it is a hypothesis in the 

treatment of metastatic cancer, when there is a regression of un-

treated areas simultaneously with a decrease in the tumor. This 

means that localized radiation initiated an antitumor response, 

which kills cancer cells remote from the main target. Despite the 

fact that the first recorded clinical cases of tumor regression after 

chemotherapy and RT date back to the beginning of the 20th cen-

tury, the abscopal effect is still quite rare in clinical practice [4].  

It is important to note that cases of tumor regression were also 

observed in cancer patients with various infectious diseases [5]. 

American surgeon Coley [6] was convinced that having a severe in-

fection could cause tumor regression. His experiments showed that 

the inactivated pathogens of Streptococcus pyogenes in the vacci-

nated patient could not cause an infectious disease, but neverthe-

less all the signs of inflammation developed, and the body began to 

fight and the tumor disappeared. Interestingly, in experiments in 
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vitro, bacterial strains did not affect tumor cells in any way. There-

fore it was concluded that the infection did not directly impact on 

the tumor, but activated the patient’s immunity, which led to the 

regression of the tumor node. 

Scientists have argued over the role of the immune system in the 

antitumor response over a long period of time. More than 30 years 

ago, Stone et al. [7] showed that there is a lack of tumor response 

to RT with the deficiency of a normal pool of T cells. It is now well 

known that tumor progression is associated with the development 

of many immunosuppressive mechanisms that allow cancer cells to 

escape immune control. Consider that RT also has an immunosup-

pressive effect and is not able to induce an effective antitumor im-

mune response, which leads to the destruction of the tumor. How-

ever, in some cases, immunosuppression and the development of 

an antitumor immune response as an abscopal effect. In this case, 

stimulation of the patient’s immunity (through immunotherapy) 

and/or overcoming of tumor-induced immunosuppression during 

RT should provide an increase in the latter’s effectiveness and an 

increase in the frequency of the abscopal effect. 

Mechanism of the Abscopal Effect 

It is believed that RT has an immunosuppressive effect, leads to the 

suppression of co-stimulatory surface markers CD80 and CD86 on 

native dendritic cells, thereby inhibiting the activation of T cells [8]. 

However, cell death caused by RT stimulates many immune re-

sponses and changes the tolerant tumor phenotype [9]. During ra-

diation therapy, a special functional type of cell apoptosis can be 

activated—immunogenic cell death (ICD), which is accompanied by 

stimulation of antigen-specific adaptive immunity [10]. ICD leads 

to many antitumor immune responses: the release of tumor anti-

gens by irradiated tumor cells, the cross-presentation of antigens 

originating from the tumor to T cells using antigen-presenting 

cells, and the migration of effector T cells from lymph nodes to dis-

tant tumor [11]. In this regard, the number of studies on the effect 

of RT on various immune responses (activation of antitumor im-

mune responses) and the abscopal effect has increased. In a recent 

review that covered the time period from 1969 to 2014, 46 cases 

of the demonstration of an abscopal effect in patients after RT 

were described [12]. Moreover, the frequency of occurrence of the 

RT-induced abscopal effect is very low [13]. However, the docu-

mented occurrence of this effect in RT provides an incentive for a 

more thorough further study. 

At present, the following data on the mechanisms of the absco-

pal effect are available. When exposed to tumor cells in RT, the dy-

ing tumor cells have a huge number of changes and begin to ac-

tively express damage-associated molecular patterns (DAMP), cal-

reticulin, adenosine triphosphate, high mobility group box 1 

(HMGB1) protein, type I interferons, nucleic acids derived from 

cancer cells, annexin A1, etc. [14], releasing a large number of tu-

mor antigens (Fig. 1). Antigen-presenting cells, such as dendritic 

cells and phagocytic cells, interact with the emerging tumor anti-

gens and then migrate to the lymph nodes. The presentation of an-

tigens occurs through the major histocompatibility complex (MHC), 

through the T cell receptor (TCR) [15]. However, antigenic complex 

interactions only through the TCR are not enough to activate T 

cells. Other co-stimulating signals are needed, such as CD80, CD86, 

and CD28 [16]. If activation by several T cell signals occurred (there 

was no inhibition on the part of the tumor), then many types of T 

cells and, especially, CD8+ T cells, which play the main role in the 

Fig. 1. The mechanism of radiotherapy-induced abscopal effect combined with immunotherapy. PD-1, programmed cell death 1; PD-L1, pro-
grammed cell death 1 ligand 1; MHC, the major histocompatibility complex; CTLA4, cytotoxic T-lymphocyte associated protein 4.
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antitumor immune response, are activated and begin to reproduce. 

As a result, activated effector T cells exit the lymph nodes, and in-

teractions with TCR affect the primary tumor and unirradiated dis-

tant metastasis [16]. Presumably, such a mechanism can be used to 

explain the abscopal effect in distant metastases with local tumor 

irradiation. Preclinical studies also show a clear role for the im-

mune system in the manifestation of the abscopal effect. Demaria 

et al. [17] found that T cells mediate distant tumor inhibition 

caused by RT. Work on a mouse model of breast cancer showed a 

decrease in pulmonary metastases and improved survival only in 

mice treated with RT in combination with cytotoxic T-lymphocyte 

associated protein 4 (CTLA4) blockade. 

Along with programmed cell death 1 ligand 1 (PD-L1) and pro-

grammed cell death 1 (PD-1), there is another inhibitory mecha-

nism. Cytotoxic antigen, which associated with T lymphocytes 

(CTLA4), can compete with CD80/86 and inhibit T cell activation 

[18]. After that, PD1, which are expressed on the surface of T cells, 

bind to PD-L1 and block immune responses. As a result, T cells do 

not affect on the tumor and there is no objective response to treat-

ment. Thus, tumor-associated immunosuppressive mechanisms 

play a key role in blocking the abscopal effect of radiation therapy. 

In 2018, James Ellison (USA) and Tasuku Honjo (Japan) received 

the Nobel Prize for their revolutionary discovery in understanding 

the mechanism of cancer immunotherapy and the development of 

tumor immunotherapy. Both scientists in independent studies stud-

ied the same phenomenon, and found two different immune 

checkpoints (control points)—mechanisms for inhibiting T cell ac-

tivity and suppressing the overall immune response [19]. T cells in-

teract with dendritic cells and form a complex system of many 

proteins connecting to each other on membranes, or the immune 

synapse. Some of these protein molecules are co-stimulants and 

can contribute to enhanced activation of lymphocytes. The discov-

ery of Ellison and Honjo concerned molecules of inhibitors of the T 

cell response—CTLA-4 and PD-1. Drugs-inhibitors of immune 

Table 1. Clinical cases of abscopal effect after RT with immunotherapy according to the search criteria

Study Year Age (yr)/Sex Primary tumor RT dose (Gy) Immunotherapy Site of abscopal effect Time 
(mo)

Wersall et al. [21] 2006 64/F Kidney NA Interferon, interleukin-2 Lung 13
Stamell et al. [22] 2012 67/M Melanoma 24 ×  3 Ipilimumab LN NA
Postow et al. [23] 2012 33/F Melanoma 28.5 Ipilimumab Lung 4
Hiniker et al. [24] 2012 57/M Melanoma 54 ×  3 Ipilimumab Liver, LN 6

57/M Melanoma 54 Ipilimumab Liver 4
Golden et al. [25] 2013 64/M Lung 30 Ipilimumab Lung, liver, bones NA
Kodama et al. [26] 2014 74/M Lung 58 ×  29 Bcg-vaccine Lung 6
Grimaldi et al. [27] 2014 NA Melanoma 30 ×  10 Ipilimumab Liver 1

NA Melanoma 30 ×  10 Ipilimumab Pelvic 1
NA Melanoma 50 ×  25 Ipilimumab Liver, derma 4
NA Melanoma 20 ×  5 Ipilimumab Intestines, derma, lung, LN 1
NA Melanoma 30 ×  10 Ipilimumab Liver, ovary 1
NA Melanoma 30 ×  10 Ipilimumab Lung, derma, LN 3
NA Melanoma 30 ×  10 Ipilimumab Derma, sternum, LN 1
NA Melanoma 30 ×  10 Ipilimumab Lung 1
NA Melanoma 24 Ipilimumab Derma 1
NA Melanoma 20 Ipilimumab Liver 2
NA Melanoma 24 Ipilimumab Lung 1

Michot et al. [28] 2016 33/M Lymphoma 30 Pembrolizumab LN 2
Cong et al. [29] 2017 64/F Lung 37.5 Dendritic cells, cytokine killers Lung 10
Shi et al. [30] 2017 67/F Pancreatic 45 Granulocyte-macrophage colony  

stimulating factor
Liver 1

LaPlant et al. [31] 2017 24/F Kidney 27 Ipilimumab Lung, LN 7
Sato et al. [32] 2017 54/M Stomach 48 Т-cells, dendritic cells Abdomen 2
Britschgi et al. [33] 2018 47/M Lung 18 Nivolumab LN 3
Tsui et al. [34] 2018 65/F Melanoma 24 Nivolumab Lung NA
Zhao et al. [35] 2018 65/M Esophagus 42 Pembrolizumab LN 2
Rodriguez-Ruiz et al. [36] 2018 68/M Prostate 24 Dendritic cells, hiltonol Lung 3

RT, radiation therapy; LN, lymph node; NA, not applicable.
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checkpoints have made it possible to achieve certain successes in 

the immunotherapy of cancer patients. The checkpoint inhibitors 

CTLA1, PD1, and PDL is rapidly becoming a promising therapeutic 

area in RT, due to which it is proposed to increase antitumor im-

munity and increase the frequency of the abscopal effect [18]. The 

combination of radiation and immune therapy can potentially help 

overcome tumor-induced immunosuppression, which causes a lack 

of activating effect of RT on tumor-specific T cells. RT, damaging 

the DNA of tumor cells, leads to apoptosis, aging and cellular auto-

phagy, induces immunogenic death of tumor cells. This is 

cross-priming of tumor-specific T cells, the generation of various 

inflammatory signals that contribute to the activation of dendritic 

cells [20]. Immunotherapy removes the block from the activation 

of tumor-specific T cells and leads to a significant antitumor effect 

and an abscopal effect (Fig. 1). 

Clinical Cases 

The abscopal effect was shown in many malignant neoplasms, such 

as renal cell carcinoma, melanoma, lymphoma, hepatocellular car-

cinoma and other types, but this is still a rare and poorly studied 

phenomenon [12]. 

As a result of the literature analysis, 35 clinical studies were 

found in the range from 1973 to 2019 (46 years), which describe 

51 cases of the abscopal effect at various locations [21-54] (Tables 

1, 2). It was found that in 33% (17/51 patients) of cases, the ab-

scopal effect was recorded in melanoma. Also often the primary lo-

cation of the tumor was the kidney (18%, 9/51 cases) and the lung 

(14%, 7/51 cases). The most common localizations of metastases in 

which the abscopal effect was recorded were the lung (41%), 

lymph nodes (31%), and the liver (15.7%). It is also worth noting 

that in only 13 out of 51 cases, multiple regression of tumor me-

tastases was observed. 

Nowadays, the literature data are very different regarding de-

pending on the presence or absence of combined treatment (radia-

tion + immunotherapy), so all studies were divided into two groups. 

The first group included cases with a combination of radiation and 

immunotherapy (27/51 studies) (Table 1). The second group con-

sisted of patients only with RT (24/51 cases) (Table 2). 

In 17 of 27 cases (63%) in patients of the first group, immuno-

Table 2. Clinical cases of abscopal effect after RT according to the search criteria

Study Year Age (yr)/Sex Primary tumor RT dose (Gy) Site of abscopal effect Time (mo)
Ehlers and Fridman [37] 1973 35/F Thyroid 40 Mediastinum NA
Kingsley [38] 1975 28/M Melanoma 14.4 ×  12 LN 2
Antoniades et al. [39] 1977 40/M Lymphoma 30 ×  20 LN 1

44/M Lymphoma 30 ×  20 LN 1
Fairlamb [40] 1981 53/M Kidney 21 ×  3 Lung 12

73/F Kidney 40 ×  15 Lung 12
Rees and Ross [41] 1983 56/M Lung 35 ×  10 Derma 1

49/M Esophagus 20 ×  20 Lung 6
MacManus [42] 1994 58/M Kidney 20 ×  10 Lung, LN 6
Sham [43] 1995 77/M Leukemia 32.4 Bones 1
Ohba et al. [44] 1998 76/M Liver 36 Bones, hepatocytes 10
Nam et al. [45] 2005 65/M Liver 30 Bones, hepatocytes 10
Golden et al. [25] 2006 83/F Kidney 8 Lung 24

69/M Kidney 15 Lung 3
55/F Kidney 8 Lung 5

Takaya et al. [46] 2007 69/F Cervix 50.8 ×  27 LN NA
24 ×  4

Nakanishi et al. [47] 2008 79/M Liver 48 Liver NA
Lakshmanagowda et al. [48] 2009 65/F Leukemia 24×12 LN 1
Cotter et al. [49] 2011 70/M Merkel's carcinoma 12×2 Derma 1
Okuma et al. [50] 2011 63/M Liver 60 ×  27 Lung 1
Tubin et al. [51] 2012 72/M Thyroid 30 ×  3 LN 1
Ishiyama et al. [52] 2012 61/M Kidney 18.4 ×  8 Lung, bones 1
Siva et al. [53] 2013 78/F Lung 26 Bones, adrenal glands 12
Kuroda et al. [54] 2019 76/F Lung 60 Lung 3

RT, radiation therapy; LN, lymph node; NA, not applicable.
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therapy was carried out with a CTLA4 inhibitor drug, which leads 

to an increase in the T cell antitumor response, ipilimumab. The av-

erage time after which the abscopal effect was recorded is 3.3 

months (from 1 to 13 months).  

In patients of the second group, the abscopal effect was ob-

served on average after 5.4 months (from 1 to 24 months) (Table 2). 

In 29% (7/24 cases) of patients of the second group there was kid-

ney cancer as primary localization, most often the abscopal effect 

was detected with distant metastases in the lung and lymph nodes 

(41% and 32%, respectively). 

After a comparative analysis of the group of patients with the 

presence of RT alone and the group with combined treatment, the 

number of cases at the beginning of the 20th century significantly 

increased with the advent of immunotherapy. Twenty-seven cases 

were recruited in 13 years, while only with RT 24 cases were re-

cruited in 46 years. Also, the time of manifestation of the abscopal 

effect with regression of distant metastases was reduced from 5.4 

to 3.3 months. The differences here are statistically insignificant (p 

=  0.141, by Student’s criterion), but this can be attributed to the 

small number of samples and the heterogeneity of the drugs used 

for immunotherapy. Control point inhibitors and CTLA4 give a more 

frequent abscopal effect (on average after 2.5 months), then other 

immunotherapy methods. 

Discussion and Conclusion 

Despite the long history of the study, the abscopal effect is still a 

rare and poorly studied phenomenon. However, with the advent of 

new approaches to immunotherapy, which allows overcoming the 

tumor associated immunosuppression in combination with RT, the 

frequency of registration of cases of abscopal effect began to in-

crease significantly. The same conclusion was reached by a number 

of authors that after the start of using agents on CTLA-4 or the 

PD-1/PD-L1 axis, the number of registered patients with an absco-

pal effect increased [55,56]. The study of the molecular mecha-

nisms of the RT-induced antitumor immune response is becoming 

a relevant topic. There is an opportunity to identify predictive 

markers that allow you to consciously use the combined treatment 

with the induction of an abscopal effect more consciously. Also 

identify new targets for drug exposure in order to induce an absco-

pal effect. 
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