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Abstract

Whole-genome sequencing (WGS) of Mycobacterium tuberculosis (MTB) isolates can be used to get an accurate diagnosis, to 
guide clinical decision making, to control tuberculosis (TB) and for outbreak investigations. We evaluated the performance of 
long-read (LR) and/or short-read (SR) sequencing for anti-TB drug-resistance prediction using the TBProfiler and Mykrobe 
tools, the fraction of genome recovery, assembly accuracies and the robustness of two typing approaches based on core-
genome SNP (cgSNP) typing and core-genome multi-locus sequence typing (cgMLST). Most of the discrepancies between 
phenotypic drug-susceptibility testing (DST) and drug-resistance prediction were observed for the first-line drugs rifampicin, 
isoniazid, pyrazinamide and ethambutol, mainly with LR sequence data. Resistance prediction to second-line drugs made by 
both TBProfiler and Mykrobe tools with SR- and LR-sequence data were in complete agreement with phenotypic DST except 
for one isolate. The SR assemblies were more accurate than the LR assemblies, having significantly (P<0.05) fewer indels and 
mismatches per 100 kbp. However, the hybrid and LR assemblies had slightly higher genome fractions. For LR assemblies, 
Canu followed by Racon, and Medaka polishing was the most accurate approach. The cgSNP approach, based on either reads 
or assemblies, was more robust than the cgMLST approach, especially for LR sequence data. In conclusion, anti-TB drug-
resistance prediction, particularly with only LR sequence data, remains challenging, especially for first-line drugs. In addition, 
SR assemblies appear more accurate than LR ones, and reproducible phylogeny can be achieved using cgSNP approaches.
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DATA SUMMARY
(1)	 Illumina and ONT sequencing read files for 24 isolates 

have been deposited in the NCBI SRA database, acces-
sible through BioProject number PRJNA720906.

(2)	 The supplementary data deposited in the Figshare 
repository can be accessed at the following link: https://​
doi.​org/​10.​6084/​m9.​figshare.​17075987.​v1.

INTRODUCTION
Tuberculosis (TB), caused by Mycobacterium tuberculosis 
(MTB), is one of the top-ranking causes of death from 
infectious diseases worldwide, with an estimated 10 million 
new cases and 1.5 million deaths in 2018 [1]. Rapid and 
accurate diagnosis is necessary for timely and appropriate 
antimicrobial therapy. This also prevents transmission and 
emergence/spread of multidrug-resistant (MDR)/extensively 
drug-resistant (XDR) tuberculosis [2]. However, conventional 
culture-based drug-susceptibility testing (DST) is relatively 
slow and sometimes challenging, affecting accuracy and 
reproducibility for certain drugs such as pyrazinamide [3]. 
The rapid molecular tests recommended by the WHO only 
cover a limited number of drugs and target a small number 
of resistance mutations, making the susceptibility prediction 
unreliable due to the false-negative test results [4]. Next-
generation sequencing (NGS) technologies have been shown 
to have a high potential to overcome many of the challenges 
associated with conventional DST and the limitations of 
the current molecular tests by providing detailed sequence 
information for specific gene regions or the whole genome 
[2]. Since the complete genome sequencing of the first MTB 
[5], whole-genome sequencing (WGS) has been applied 
to a wide range of clinical situations: diagnosis, treatment, 
outbreak investigation and surveillance to guide clinical deci-
sion making and TB disease control [6, 7]. Moreover, WGS 
has also been anticipated to perform same-day diagnosis and 
surveillance of TB using the rapidly developing long-read 
sequencing technology of Oxford Nanopore Technologies 
(ONT) [8, 9]. Within the framework of the WHO End TB 
Strategy, which aims for a 95 % reduction in deaths and a 90 % 
reduction in incidence by 2035, the use of NGS technologies 
has been proposed to implement a universal DST for all TB 
patients [2]. Currently, most new MDR-TB cases originate 
from transmission events rather than from the emergence of 
resistance due to failed treatment. Therefore, improved diag-
nosis and treatment options with new drug regimens should 
be prioritized to combat the MDR-TB pandemic [10, 11].

Despite decreasing costs to integrate sequencing technolo-
gies into routine workflows, many laboratories still lack the 
computational resources and specialized staff required for 
analysing and managing sequencing data. There are several 
open-source or commercially available bioinformatics 
pipelines automating TB sequencing data manipulation and 
analysis in a single step, such as TBProfiler [12, 13], Mykrobe 
[14, 15] and MTBSeq [16] that facilitate the anti-TB drug-
resistance prediction and MTB lineage classification from 
sequencing reads. The Ridom SeqSphere+, Bionumerics and 

CLC Genomics Workbench software are widely used in geno-
typing and outbreak investigations [17–20]. A standardized 
and validated data analysis approach is of utmost importance 
for laboratories to adopt NGS in TB diagnostics, surveil-
lance and research [2, 16]. Currently available software and 
bioinformatics pipelines for MTB WGS data analysis have 
already been benchmarked in previous studies and evaluated 
for epidemiological typing [21] and for their performances 
in predicting anti-TB drug resistance with an extensive 
data set of MTB genomes, mainly from Illumina short-read 
(SR) sequence data [12, 15, 22–27]. Depending on the drug 
targets, the tools have exhibited variable performances to 
predict anti-TB drug resistance. For instance, for resistance 
prediction to first-line treatment drugs; rifampicin, isoniazid, 
pyrazinamide and ethambutol, TBProfiler showed 95.9, 93.7, 
87.6, 92.1 sensitivity and 98.2, 98.1, 96.7, 91.7 % specificity, 
respectively. This compares to 100, 95, 82, 99 sensitivity, and 
99, 100, 99, 99 % specificity, respectively, for the same drugs 
using the Mykrobe tool [12, 15]. However, there are limited 
numbers of studies using long-read (LR) sequencing data for 
anti-TB drug resistance prediction [9, 28] and for epidemio-
logical typing [9].

In this study, we assessed the performance of TBProfiler 
and Mykrobe, whose mutation databases are up to date, 
for the prediction of anti-TB drug resistance for LR (ONT) 
sequencing data compared to SR (Illumina) sequencing data 
from the same sample set. This sample set (n=24) included the 
highest number of different MTB isolates (n=22) long-read 
sequenced for the evaluation of both TBProfiler and Mykrobe 
tools [12–15], and of both core-genome single nucleotide 
polymorphism (cgSNP) typing and core genome multi-locus 
sequence typing (cgMLST). We compared the robustness of 
two typing approaches based on cgSNP typing and cgMLST 

Impact Statement

Tuberculosis, caused by Mycobacterium tuberculosis 
complex, is one of the leading causes of death from 
infectious diseases worldwide. Rapid and accurate diag-
nosis is essential for timely implementation of appro-
priate therapy which also prevents transmission and 
emergence/spread of drug-resistant tuberculosis. The 
rapid development of sequencing technologies, subse-
quent automated bioinformatics analysis of data, and 
efforts on its standardization have already transformed 
TB diagnosis in clinical settings. Our study assessed the 
relevance of recent advances in WGS of MTB, provided by 
both Illumina short-read (SR) and Oxford Nanopore Tech-
nologies (ONT) long-read (LR) sequencing technologies, 
for anti-TB drug-resistance prediction and MTB typing. 
Overall, our study provides a comparison of the currently 
in use bioinformatics tools employed for both SR and 
LR sequencing of MTB, aiming to guide investigators to 
choose the appropriate tools for different clinical diag-
nostic applications.

https://doi.org/10.6084/m9.figshare.17075987.v1
https://doi.org/10.6084/m9.figshare.17075987.v1
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of either reads or assembled contigs for SR- and LR-sequence 
data. We evaluated different SR, LR and hybrid de novo assem-
blers for MTB genome assemblies and the subsequent typing 
approaches in this context. Overall, we give an overview of the 
most used bioinformatics tools employed for both SR and LR 
sequence data for anti-TB drug resistance and phylogenomic 
analysis of MTB to guide investigators to choose the appro-
priate tools depending on their requirements/aims/settings.

METHODS
Samples
A total of 24 samples, consisting of 22 different M. tuberculosis 
(MTB) isolates, collected by the German National Reference 
Center for Mycobacteria (Borstel, Germany) (n=15) and by 
the National Reference Laboratory for Tuberculosis of The 
National Institute for Public Health and the Environment of 
the Netherlands (RIVM, Bilthoven, The Netherlands) (n=9) 
were used in this study. In this sample set, two of the samples 
were duplicates (Table S1 available in the online version of this 
article; QC-8 and QC-10; QC-5 and QC-9), and one sample 
(Table S1; QC-7), a mixture of two isolates, was obtained 
by mixing QC-1 and QC-8 suspended in TE (Tris EDTA) 
buffer to create a mixed sample of equal amounts. All MTB 
isolates were phenotypically tested for drug susceptibility 
(phenotypic DST) and genotyped into lineages/sub-lineages 
(Table S1). The DNA was isolated from MTB isolates grown 
in Löwenstein–Jensen medium using the cetyltrimethylam-
monium bromide (CTAB) method (Table S2) and genotyping 
of the isolates was performed in the corresponding reference 
laboratories by WGS.

Whole-genome sequencing
DNA of the MTB isolates obtained from the reference 
laboratories for WGS was first checked for concentration 
and quality. The purity of the DNA was analysed with the 
Nanodrop spectrophotometer (Thermo Fisher Scientific, 
Waltham, Massachusetts, United States of America), and the 
DNA of the isolates obtained from Borstel was followed by 
two sequential 1 : 1 and 2 : 1 (v:v) ratio of AMPure XP bead 
(Beckman Coulter, Woerden, The Netherlands) purification 
steps. The DNA concentrations of all samples were measured 
with the Qubit dsDNA BR assay (Thermo Fisher Scientific), 
and fragment size analysis was performed using the gDNA 
ScreenTape assay on an Agilent 4150 TapeStation (Agilent, 
Santa Clara, CA, United States of America).

SR-sequencing (Illumina) libraries were prepared with the 
Nextera DNA Flex Library Preparation kit (Illumina, San 
Diego, CA, United States of America) according to the manu-
facturer’s instructions and sequenced on an Illumina NextSeq 
500 platform (Illumina) to generate 151 bp paired-end reads.

LR-sequencing (ONT) libraries were prepared with the 
Ligation-Sequencing kit SQK-LSK109 complemented 
with the Native Barcoding Expansion kit EXP-NBD104, 
and the PCR Barcoding kit SQK-PBK004 (ONT, Oxford, 
United Kingdom), depending on the concentration of the 

input DNA. The ONT library preparation kits were supple-
mented with the following reagents from New England 
Biolabs (Ipswich, Massachusetts, United States of America); 
NEBNext End repair/ dA-tailing Module (E7546), NEB 
Blunt/TA Ligase Master Mix (M0367), LongAmp Taq 2X 
Master Mix (M0287), NEBNext FFPE Repair Mix (M6630), 
NEBNext Quick Ligation Module (E6056) and Agencourt 
AMPure XP beads (Beckman Coulter, Woerden, The 
Netherlands). The libraries were prepared according to the 
manufacturer’s instructions with the following modifica-
tions: dA-tailing and end repair using E7546 (NEB) with 
two-step incubation times at 20 °C and 65 °C 20 min each for 
the SQK-LSK109 kit and 10 min each for the SQK-PBK004 
kit. All of the incubation steps with AMPure XP beads 
were increased to 10 min throughout the protocols in both 
library preparation kits. DNA libraries (four to five samples 
in each library pool) were sequenced with FLO-MIN106, 
R9.4 flow cells on two different instruments: GridION X5 
or MinION (ONT). The sequencing procedure was set 
to run for 48 h with the real-time fast base calling mode 
enabled with Guppy v3.0.3 or v3.2.6 for MinION, while the 
GridION data was base-called using Guppy v3.0.3.

Data analysis
The processing of the reads obtained by both SR and LR 
sequencing is illustrated in Fig. 1.

Pre-processing of the sequencing data
SR-sequencing raw reads were trimmed before de novo 
assembly using Trimmomatic v0.39 (http://www.​usadellab.​
org/​cms/​index.​php?​page=​trimmomatic) [29] (Table S3). 
The quality of the raw reads before and after trimming was 
checked with FastQC v0.11.9 (https://www.​bioinformatics.​
babraham.​ac.​uk/​projects/​fastqc/). The raw reads were fed 
into the anti-TB drug-resistance prediction tools whose 
automated pipelines include pre-processing/trimming of 
the raw data (Table S3).

LR-sequencing raw reads were first demultiplexed into 
individual barcodes using qcat v1.1.0 https://​github.​com/​
nanoporetech/​qcat), which also trimmed the barcode and 
adapter sequences (parameters: Table S3). The quality of 
the demultiplexed data was checked using NanoPlot v1.28.2 
(https://​github.​com/​wdecoster/​NanoPlot) [30]. The mean 
read length was 2197 bp and 1002 bp for samples whose 
libraries were prepared with the SQK-LSK109 Ligation-
Sequencing kit and the SQK-PBK004 PCR Barcoding 
kit, respectively. The average sequencing depth was 262× 
(maximum 1321× and minimum 27×, Table S4). The 
demultiplexed reads were used for anti-TB drug-resistance 
prediction and de novo assembly.

Detection of anti-TB drug-resistance mutations
The Mykrobe v0.8.0 (https://​github.​com/​Mykrobe-​tools/​
mykrobe) [14, 15] and the TBProfiler v2.8.6 (https://​github.​
com/​jodyphelan/​TBProfiler) [12, 13] tools were evaluated 
for the detection of mutations conferring anti-TB drug 
resistance. Both tools, consisting of an automated pipeline 

http://www.usadellab.org/cms/index.php?page=trimmomatic
http://www.usadellab.org/cms/index.php?page=trimmomatic
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/nanoporetech/qcat
https://github.com/nanoporetech/qcat
https://github.com/wdecoster/NanoPlot
https://github.com/Mykrobe-tools/mykrobe
https://github.com/Mykrobe-tools/mykrobe
https://github.com/jodyphelan/TBProfiler
https://github.com/jodyphelan/TBProfiler
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for detecting SNPs associated with resistance, were run on 
the command-line interface using the default parameters 
(Table S3). The resistance prediction made by TBProfiler is 
based on mapping, where reads are aligned to the H37Rv 
reference using bowtie2, BWA or minimap2 (for ONT 
reads) and then variants are called using bcftools [12, 13]. 
Mykrobe does kmer-based resistance prediction using a list 
of variant sites presented as a set of sequence probes of 
length 2 k-1 [14, 15].

De novo assembly of the MTB genomes
Trimmed SRs were assembled using four different de novo 
assembly tools: ABySS v2.2.4 (https://​github.​com/​bcgsc/​
abyss) [31], Shovill v1.0.9 [default: SPAdes] (https://​github.​
com/​tseemann/​shovill), SPAdes v3.14.0 (https://​github.​com/​
ablab/​spades) [32], and Velvetoptimiser v2.2.6–1 (https://​
github.​com/​tseemann/​VelvetOptimiser) for Velvet assembler 
[33] with default parameters (Table S3). The SPAdes tool was 
also used for hybrid assembly with both SRs and LRs [34].

Fig. 1. The workflow used for processing sequence data. (a) Tools in yellow are for detecting anti-TB drug-resistance mutations; tools in 
blue represent assemblers, and dashed lines indicate the hybrid assembly; (b) the tools in red are for typing and blue lines indicate the 
assembly-based typing.

https://github.com/bcgsc/abyss
https://github.com/bcgsc/abyss
https://github.com/tseemann/shovill
https://github.com/tseemann/shovill
https://github.com/ablab/spades
https://github.com/ablab/spades
https://github.com/tseemann/VelvetOptimiser
https://github.com/tseemann/VelvetOptimiser
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Fig. 2. Evaluation of anti-TB drug-resistance profiles predicted by TBProfiler and Mykrobe tools from both short-read (SR) and long-
read (LR) sequence data compared to the corresponding reference laboratory phenotypic DST results. Drugs tested for antibiotic 
resistance are as follows: R, rifampicin; H, isoniazid; E, ethambutol; Z, pyrazinamide; S, streptomycin; FQ, fluoroquinolones (specified 
as moxifloxacin, ofloxacin, ciprofloxacin in the Mykrobe tool); Am, amikacin; Cm, capreomycin; Km, kanamycin; Eto, ethionamide; PAS, 
p-aminosalicylic acid. The discrepancies in resistance prediction for each drug were highlighted with dashed lines.
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De-multiplexed and adapter trimmed LRs were de novo assem-
bled using Unicycler v0.4.8 (https://​github.​com/​rrwick/​Unicycler) 
[35], Canu v1.9 (https://​github.​com/​marbl/​canu) [36] and Flye 
v2.7.1 (https://​github.​com/​fenderglass/​Flye) [37, 38]. For Unicy-
cler assembly (LR and hybrid), samples with >100x read coverage 
were first randomly subsampled to 100x coverage using Filtlong 
v0.4.8 (https://​github.​com/​rrwick/​Filtlong) to reduce the compu-
tational burden of assembly. The contigs generated with Flye and 
Canu were polished with one round of Racon v1.4.13 (https://​
github.​com/​lbcb-​sci/​racon), followed by one round of Medaka 
v0.12.1 (https://​github.​com/​nanoporetech/​medaka) (Table S3).

Evaluation of de novo assembly tools
Eleven different de novo genome assemblies (four SR; five 
LR; two hybrid) for each of the 24 samples were evaluated 
using quast v5.0.2 (http://​quast.​sourceforge.​net/​quast.​html) 
[39]. Three quality measures were assessed: completeness of 
the genome or genome fraction (%), number of mismatches 
per 100 kbp, and number of insertions/deletions (indels) per 
100 kbp using the MTB strain H37Rv as reference (GenBank 
accession number NC_00962.3). The tables/figures and the 
statistical analysis were generated using GraphPad Prism 
v9 (GraphPad Software, San Diego, CA, USA). A P-value 
of ≤0.05 was considered significant.

MTB typing
The different assemblies were further evaluated for MTB 
typing using a gene-by-gene allele calling approach on 
Ridom SeqSphere +v7.1.0 software (Ridom GmbH, Münster, 
Germany). All of the genome assemblies (SR, LR and hybrid) 
for each of the samples were blastn aligned to an MTB 
cgMLST scheme (version 2.1) encompassing 2891 core genes 
[18]. The following quality thresholds were defined for a valid 
allele calling: (i) if the sequence length did not match the refer-
ence sequence length plus or minus three triplets, or if there 
were any ambiguous base supported by less than 60 % of the 
reads or if there were frameshifts, the target was reported as 
failed; (ii) if a genome assembly had more than 10 % cgMLST 
genes that did not match the quality criteria for allele calling, 
the genome was excluded. However, since most of the LR 
assemblies would have been excluded according to this last 
criterion, we kept all the genome assemblies, including those 
not exceeding the 90 % quality threshold. Besides, pairwise 
missing values were classified into their own category. The 
comparison tables of 11 different genome assemblies for the 
24 samples were created, and cluster analysis was performed. 
The assemblies were compared based on the average number 
of good targets for allele calling, the average number of failed 
targets, and the average number of not found targets.

For the cgSNP typing, only the best SR and LR assemblies 
were chosen for comparison purposes. The best assembly 
was selected based on the highest average number of good 
targets for allele calling in the cgMLST analysis and based 
on the lowest average number of mismatches and indels per 
100 kbp. Accordingly, Shovill and Canu+Racon+Medaka 
assemblies were fed to Snippy v4.6.0 (https://​github.​com/​
tseemann/​snippy) for variant calling using the MTB strain 

H37Rv as reference (using the default parameters: a minimum 
mapping quality of 60; nucleotide quality with an error prob-
ability of ~5 %; a minimum of ten reads covering a site to 
be called; a minimum variant call quality of 100; genotypes 
1/1). By default, Snippy ignores insertions/deletions vari-
ants. A whole-genome multi-FASTA alignment generated 
with Snippy was further processed by masking the repetitive 
regions of the MTB genome to exclude SNPs, which cause 
false positives, in those regions. Then, a maximum-likelihood 
(ML) phylogenetic tree was built using FastTree v2.1.11 with 
the GTR+CAT model (http://www.​microbesonline.​org/​fast-
tree/) (Table S3).

Additionally, we used a read-mapping approach for the 
cgMLST and cgSNP typing. For the cgMLST analysis, LRs 
and SRs were mapped to the H37Rv genome using minimap2 
v2.17 (https://​github.​com/​lh3/​minimap2) [40]. Then the vari-
ants were called, and the consensus sequences were extracted 
using samtools v1.11 (https://​github.​com/​samtools/​samtools) 
and bcftools v1.11 (https://​github.​com/​samtools/​bcftools) 
[41] (Table S3). The consensus sequences were processed on 
Ridom SeqSphere +v7.1.0 software for gene-by-gene allele 
calling, and neighbour joining (NJ) trees were drawn. For the 
cgSNP analysis, trimmed SR and LR were processed using 
Snippy v4.6.0, as explained above.

The ML-trees of the cgSNP analysis and the NJ-trees of the 
cgMLST obtained from either reads or assembled contigs 
for both SR and LR sequence data were compared using R 
packages: ape v5.4–1, dendextend v1.14.0, corrplot v0.84, and 
phylogram v2.1.0 [42–45]. The concordance between trees as 
means of distance matrices was evaluated on dendrogram plots 
and visualized using tanglegrams (dendextend v1.14.0). The 
symmetric difference known as the Robinson–Foulds distance 
between the dendrograms was computed (Table S12) using the 
dist.dendlist function (dendextend v1.14.0). Then, a correlation 
matrix was created by calculating the cophenetic correlation 
coefficient, a measure that tells how well the pairwise distances 
on a dendrogram match the original distances used to construct 
it [46], using the cor.dendlist function (dendextend v1.14.0) for 
all trees and visualized using corrplot v0.84. The values range 
from 1, perfect positive correlation, to −1, negative perfect 
correlation with near 0 values meaning that the two trees are 
not statistically similar [43]. The correlation of the distances 
between samples in one matrix to the other was also computed 
with the Mantel test using the python qiime package called ‘​
compare_​distance_​matrices.​py’ v1.9.1 (Tables S3 and S13).

RESULTS
Anti-TB drug-resistance prediction for LR 
compared to SR sequence data
The comparative analysis of the two most recently updated 
anti-TB drug-resistance prediction tools, TBProfiler and 
Mykrobe, for the 24 samples, including their phenotypic 
drug-susceptibility profiles, is presented in Fig. 2. We looked 
at the SNP calls made using LR or SR sequence data and their 
concordance to phenotypic DST (Fig. 2, Table 1).

https://github.com/rrwick/Unicycler
https://github.com/marbl/canu
https://github.com/fenderglass/Flye
https://github.com/rrwick/Filtlong
https://github.com/lbcb-sci/racon
https://github.com/lbcb-sci/racon
https://github.com/nanoporetech/medaka
http://quast.sourceforge.net/quast.html
https://github.com/tseemann/snippy
https://github.com/tseemann/snippy
http://www.microbesonline.org/fasttree/
http://www.microbesonline.org/fasttree/
https://github.com/lh3/minimap2
https://github.com/samtools/samtools
https://github.com/samtools/bcftools
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Fig. 3. Quality assessment of the assemblers: (a) the genome fraction; (b) the average number of indels per 100 000 aligned bases; (c) 
the average number of mismatches per 100 000 aligned bases according to the assembly contigs mapping to the reference MTB strain 
H37Rv. The sample exhibiting a higher number of mismatches after correction of the Canu assembly is indicated with a dashed circle 
(QC-7).
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Most of the discrepancies between phenotypic DST and 
drug-resistance prediction were observed for first-line 
drugs, and mainly when using LRs (Fig. 2, Table 1a). The 
resistance prediction made using SRs was 100 % concordant 
with the phenotypic DST for isoniazid using both tools 
(Fig. 2) and 96 and 100% concordant for rifampicin using 
TBProfiler and Mykrobe tools, respectively. The resistance 
prediction made using LRs was 92 % (22/24) and 100 % 
(21/21) concordant for rifampicin and 100 % (24/24) and 
88 % (15/17) concordant for isoniazid with the phenotypic 
DST using TBProfiler and Mykrobe, respectively. TBProfiler 
did not detect the rifampicin resistance mutations in two 
samples (QC-7,8). On the other hand, Mykrobe identified 
minor allele calls for rifampicin resistance in three (QC-
4,5,9) phenotypically susceptible isolates (Fig. 2). Mykrobe 
classified the presence of minor alleles (having frequencies 
around 8–10 % with coverages around 30–50× [15]) confer-
ring drug resistance in a separate category referring to minor 
allele-driven resistance (Table 1), while TBProfiler classified 
the mutations as ‘R’ regardless of the allele frequency. A good 
example are strains 8129–04 and 9689–04, where Mykrobe 
predicted the pyrazinamide pattern as ‘r’ while TBProfiler as 
‘R’ (although the frequency of the allele is minor, see Table 
S5). Furthermore, ethambutol resistance was predicted 
in four (8121–04, 8129–04, 8644–04, 9689–04) by both 
tools using SR and LR, although they were phenotypically 
susceptible (Fig. 2). Three ethambutol susceptible strains 
(696–05, 4549–04, 8651–04) by DST had predicted resistant 
mutations (embB_p.Asp328Gly and embB_p.His1002Arg) 
by TBProfiler that are not present in the Mykrobe database. 
The minor allele-driven resistance calls were mainly made 
on LR sequence data using Myrkobe with a rate as high as 
29 %(7/24) and 54 %(13/24) for isoniazid and pyrazinamide, 

respectively (Table  1a; other) and were excluded from 
evaluation of concordance/disagreement to phenotypic 
DST. TBProfiler also reported variants not associated with 
known drug resistance (data not shown). Nevertheless, the 
minor allele calls for rifampicin resistance in sample QC-7 
predicted by Mykrobe agreed with the test result of the 
reference laboratory, where the DNA of rifampicin resist-
ance isolate QC-1 and rifampicin susceptible isolate QC-8 
were mixed almost in equal amounts to obtain sample QC-7 
(Table S1). The drug-resistance prediction was discordant 
for rifampicin resistance in duplicates QC-8 and QC-10 and 
for isoniazid resistance in duplicates QC-5 and QC-9 using 
TBProfiler and Mykrobe on LR data, respectively.

Resistance prediction to second-line anti-TB drugs was more 
consistent, with resistance prediction to streptomycin, fluoro-
quinolones, amikacin, capreomycin and kanamycin made by 
both tools in complete agreement with the phenotypic DST 
except for one isolate missed by TBProfiler for streptomycin 
resistance (Fig. 2, Table 1b) and two isolates with predicted 
kanamycin resistance by TBProfiler, but missed by Mykrobe 
(Fig. 2). These differences are explained by database differ-
ences: the mutation associated with streptomycin resistance 
identified by Mykrobe (gid_p.D85A, Table S5) is not present 
in the TBProfiler database, while the two mutations associ-
ated with kanamycin resistance identified by TBProfiler 
(eis_−12C>T and eis_−37G>T, Table S5) are not present in 
the Mykrobe database.

Both tools provided lineage information of the isolates, and the 
sub-lineages and spoligotypes were further provided by TBPro-
filer. The average CPU time of the analysis using TBProfiler and 
Mykrobe was similar for SR data, whereas Mykrobe was five times 
faster than TBProfiler for LR data (Table S6).

Fig. 4. The average number of ‘Good’ (targets that passed the quality criteria), ‘Failed’ (if the target match does not meet at least one 
of the requirements for the quality thresholds defined for a valid allele calling), and ‘Not Found’ (if the target match does not reach 
the quality thresholds or the target is not present at all) targets for allele calling for cgMLST analysis of 24 samples using different 
assemblers on Ridom SeqSphere+.
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Quality assessment of SR, LR, and hybrid 
assemblers for de novo assembly of MTB genomes
Eleven assemblies were generated for each sample: four 
with SR using ABySS, Shovill, SPAdes and Velvet (through 
VelvetOptimizer); five with LR using Canu, Flye, Unicycler 
and two additional polished versions of the Canu and Flye 
assemblies corrected with one round of Racon followed by 
one round of Medaka; and two hybrid assemblies with both 
SR and LR sequence data using Unicycler and SPAdes. All 
assemblies were evaluated compared to the genome of the 
reference MTB strain H37Rv using the quality-assessment 
tool quast (Table S7). The differences in the performance of 
the assembly tools were further evaluated by performing a 
Kruskal–Wallis test followed by a Dunn’s multiple compari-
sons test (α=0.05) (Tables S8–S10).

The SR assemblies covered, on average, 97–98 % of the 
genome (Fig. 3a) and did not significantly differ from each 
other (P>0.05). The Canu assemblies were the most accu-
rate in terms of average genome fraction (98.8%), while 
the assembly correction with Racon and Medaka did not 
improve the genome fraction. Nevertheless, the genome 
fraction provided by the polished Canu assemblies differed 
significantly from the SR assemblies (Table S8). Surprisingly, 
four and two assemblies had less than 70 % genome frac-
tions when using Flye (including the polished version) and 
Unicycler for LR, respectively (Fig. 3a). The low QC of these 
samples probably caused this. In terms of genome fraction, 
the hybrid assemblies were not significantly different from the 
LR assemblies (Table S8).

The number of indels per 100 kbp was lowest in the SR assemblies, 
while it varied in the LR assemblies, for which the Canu assem-
blies contained the highest average number of indels per 100 kbp 

(Fig. 3b). For the Canu and Flye assemblies, the average number 
of indels per 100 kbp decreased significantly after polishing with 
Racon, followed by Medaka (Fig. 3b, Table S9).

The SR assemblies, in general, had the lowest number of 
mismatches per 100 kbp, which was lowest with Velvet. The 
average number of mismatches per 100 kbp significantly decreased 
in the Flye assemblies after polishing, whereas the change was 
trivial in the Canu assemblies (Table S10) except for sample QC-7 
(Table S7). In this sample, the polishing of the Canu assembly 
increased the number of mismatches per 100 kbp (Fig. 3c), since 
this sample consisted of a mixture of two MTB isolates. This 
sample was included in further analysis to mimic what would 
happen in ordinary circumstances if no information about the 
sample would have been provided.

The hybrid assemblies did not differ significantly from each 
other, but SPAdes assemblies, in general, were slightly better than 
Unicycler assemblies concerning the number of mismatches and 
indels per 100 kbp (Fig. 3, Table S9). In contrast, the number of 
contigs was lower with Unicycler (Table S7). In terms of analysis 
time, Velvet and SPAdes as SR assemblers, Canu as LR assembler, 
and Unicycler as hybrid assembler were the slowest in assembling 
genomes (Tables S6).

MTB typing
Evaluation of de novo assembly tools for MTB typing
All the MTB genome assemblies (SR, LR and hybrid) were 
evaluated using a gene-by-gene allele calling approach with 
a cgMLST scheme composed of 2891 gene targets (Table 
S11). The average number of gene targets valid for allele 
calling differed significantly (P≤0.05) between the SR and 
LR assemblies (Table S11). In LR assemblies, there were a 
significant number of targets that either ‘Failed’, i.e. the target 

Fig. 5. The average number of contigs generated by different assemblers and the average proportion of targets passing the quality 
criteria (good targets) for allele calling on Ridom SeqSphere+ (a). The association between the average proportion of failed targets due 
to frameshifts for allele calling and the average number of indels per 100 kbp generated with different LR assemblers (b).
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did not meet at least one of the requirements for the quality 
thresholds defined for allele calling, or was ‘Not Found’, i.e. 
either the target did not match one of the quality thresholds, 
or the target was not present at all (Fig. 4). The allele calling 
with hybrid assemblies was comparable to the one with SR 
assemblies. There were, however, slight differences in the 
alleles called (Table S11).

The proportion of gene targets that passed the quality criteria 
for allele calling was as low as 41 % in LR assemblies, particu-
larly with Canu, which was increased to 76 % after correction 
with Racon and Medaka (Fig. 5a). We did not observe an 
association between the average number of contigs generated 
by different assemblers and the percentage of good targets for 
allele calling in the assemblies (Fig. 5a). However, 22–58 % of 

the targets failed for allele calling due to frameshifts related to 
the higher number of indels per 100 kbp in the LR assemblies 
(Fig. 5b).

Evaluation of MTB cgMLST and cgSNP typing
For phylogenomic comparison, we considered two assemblers: 
Shovill for SR and Canu with Racon and Medaka polishing for 
LR, as they outperformed the other tools in terms of genome 
completeness, the lowest number of mismatches and indels 
per 100 kbp, and the highest number of gene targets valid for 
allele calling in cgMLST analysis.

The comparison of cgMLST and cgSNP based phylogenies 
of the 24 samples, generated by reference-based mapping or 

Fig. 6. Comparison of the NJ trees of the isolates obtained with SeqSphere +cgMSLT analysis (left) and the ML trees obtained with 
cgSNP analysis (right) using reference-based mapping of SRs or SR assemblies (assembler: Shovill). The branches of both trees and 
connecting lines are coloured based on the common subtrees.

Fig. 7. Comparison of the NJ trees of the isolates obtained with SeqSphere +cgMSLT analysis (left) and the ML trees of the isolates 
obtained with cgSNP analysis (right) using reference-based mapping of LRs or LR assemblies (assembler: Canu corrected with Racon 
and Medaka). The branches of both trees and connecting lines are coloured based on the common subtrees.
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assembly, can be seen in Figs. 6–7. The clustering of the isolates 
between assembly- and read mapping-based approaches was 
more consistent in the cgSNP trees than in the cgMLST trees 
for both SR and LR data. The read mapping-based approach, 
mainly for cgMLST analysis using LRs, resulted in erroneous 
clustering. The clustering of the isolates was more concordant 
with the lineages (Table S1) in the assembly-based approach 
than the read-based approach, despite the high genetic 
distances (Fig. 7). The Robinson–Foulds distances referring to 
the symmetric differences between trees revealed the highest 
difference between cgMLST trees of LR and the highest simi-
larity between cgSNP trees of SR data (Table S12). Consid-
ering a minimum distance expected between the duplicate 
samples (Table S1: QC-5 and QC-9; QC-8 and QC-10), the 
cgSNP analysis by read mapping performed better among the 
typing approaches using SRs. However, the cgSNP analysis of 
the assemblies was the most precise approach for LRs consid-
ering the reference clustering information (Fig. 7, Table S1).

The similarity between the cgMLST and the cgSNP trees 
through clustering referring to the distances among isolates 
was given by the cophenetic correlation in Fig. 8. Accordingly, 
there was a perfect positive correlation in clustering between 

the trees of SRs, followed by the cgSNP trees of LRs and LR 
assemblies. The cgMLST trees of LRs and LR assemblies were 
significantly different from the other trees with a correlation 
measure of around −0.8 and 0.4, respectively (Fig. 8). The 
distance matrices of cgMLST and cgSNP typing of SRs and 
SR assemblies were significantly correlated (Mantel r statis-
tics>0.97, P=0.001). The best correlation for LR data was 
observed between cgSNP typing of LR assemblies and typing 
of SRs (Mantel r statistics=0.97–0.99, P=0.001) (Tables S13 
and Table S14).

DISCUSSION
Recent advances in NGS technologies have expanded the 
application of WGS as a diagnostic tool guiding TB treat-
ment. This approach has already been implemented in the 
United Kingdom and the Netherlands through genotypic 
drug susceptibility testing to first-line drugs [47]. However, 
translation of the genetic information into drug-susceptibility 
phenotype requires sophisticated and robust bioinformatics 
pipelines [27] standardized and validated not only for Illu-
mina-SR sequencing but also for ONT-LR considering its 

Fig. 8. Correlation matrix of the trees visualized using corrplot v.084. The cophenetic correlation was calculated to create a correlation 
matrix (correlation coefficient: cophenetic) using the cor.dendlist function of dendextend v1.14.0 [SR_assembly: assembly of Shovill, 
LR_assembly: assembly of Canu (corrected with Racon and Medaka)]. Positive correlations are displayed on a blue scale, while negative 
correlations are displayed on a red scale. White means the trees are not statistically similar.
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cost-effectiveness [9], portability in resource-limited settings, 
and ability to provide same-day diagnostics [8, 9, 12].

In this context, we first evaluated the Mykrobe and TBProfiler 
tools predicting anti-TB drug-resistance on a set of different 
isolates (n=22) sequenced with both short- and long-read 
technologies, which has not been performed before. Both 
tools had comparable performances. The drug-resistance 
prediction with SRs was more concordant with the pheno-
typic DST than the LRs. Regardless of the tool, the disagree-
ments between phenotypic DST and resistance prediction 
were mainly observed for pyrazinamide and ethambutol. 
It is challenging to further evaluate the discrepancies for 
pyrazinamide as the WHO-recommended methodology for 
pyrazinamide phenotypic DST lacks reproducibility and is 
associated with a high rate of false-positive results attributed 
to the high inoculum concentration [2, 3]. The critical propor-
tion at which the resistance is detected for anti-TB drugs is 
0.01, whereas it is 0.1 for pyrazinamide. This higher propor-
tion makes phenotypic DST less sensitive to low-frequency 
populations, which was considered while developing the 
Mykrobe tool that classifies minor-allele driven resistance 
separately [15]. The minor allele-driven resistance calls were 
mostly made on error-prone LRs with a rate as high as 54 % 
(13/24) for pyrazinamide (Table 1b; other). Besides the chal-
lenges of phenotypic susceptibility testing mentioned above, 
one should also consider the sequencing artefacts behind 
this high false-positive rate observed for predictions made 
on LRs as it was also observed previously [9]. A balance 
between sensitivity and specificity should be considered and 
for the time being a combination of both tools could be used 
for drug-susceptibility prediction. A recent study revealed 
another aspect of low accuracy of pyrazinamide resistance 
prediction using online tools (including TBProfiler) [48]. 
Manual inspection of the variant calling lists obtained by 
different tools showed that many drug-resistance-associated 
variants were missing in the default reports due to the auto-
matic interpretation of drug resistance upon predefined 
mutation catalogues and was not due to the inability of the 
software algorithms to detect genetic variants [48]. Moreover, 
studies showed that the presence of individual or multiple 
mutations in the ethambutol resistance target embB gene and 
the embCAB operon could increase the ethambutol MIC, 
leading to different levels of ethambutol resistance [49, 50]. In 
our analysis, the high-frequency mutations detected by both 
TBProfiler and Mykrobe in ethambutol-susceptible isolates 
were likely to cause minor increases in MIC, but not enough 
to develop a complete resistance phenotype. Both TBProfiler 
and Mykrobe provide a plain text analysis summary report, 
which can be understandable for clinicians to guide the treat-
ment regimen. It is essential to generate an easily interpretable 
report in clinical settings where the bioinformatics expertise 
is usually missing. However, users should also be aware of the 
cons of an automated interpretation to avoid misinterpreta-
tions because of the reasons mentioned above. A final point 
to consider when implementing WGS data analysis tools 
in clinical microbiology is the time for analysis. Mykrobe 
presented the best performance with an average of 4 and 

5 min of CPU time compared to an average of 7 and 21 min 
of CPU time per sample with TBProfiler to analyse SR and 
LR sequence data, respectively (Table S6).

In the following quality assessment of the assemblies, the 
SR assemblers ABySS, Shovill, SPAdes and Velvet presented 
overall comparable performances. Considering the assembly 
time (CPU time) spent by each tool (Table S6), ABySS and 
Shovill were frontrunners. Shovill has the advantage over 
Abyss of performing an assembly correction step using 
Pilon (https://​github.​com/​tseemann/​shovill). For the LRs, 
Canu assemblies followed by Racon and Medaka correction 
worked as the best approach for de novo assembly of the MTB 
genomes with higher genome fractions and a lower number 
of indels and mismatches per 100 kbp. Nevertheless, Canu 
was much slower (approx. 5 times) than Flye and Unicycler 
assemblers. However, it is important to highlight that none 
of the approaches was able to separate the two MTB genomes 
present in sample QC-7. The performance of different LR 
assemblers on diverse bacterial genomes with different GC 
content, including XDR-TB, was evaluated in previous studies 
[51, 52]. In addition to our current evaluation, a further 
analysis could be performed to explore the ability of LR 
assemblers to resolve and to annotate the repetitive genomic 
regions [52], which are one of the characteristics of MTB 
genomes.

Hybrid assemblies are often considered superior to either SR 
assemblies and LR assemblies in terms of genome completeness 
and accuracy [53]. That is what we observed in our analysis. 
Interestingly, however, minor differences in the alleles called 
by Ridom SeqSphere +were identified in the hybrid assemblies 
when compared to the SR assemblies. A more in-depth analysis 
showed that the hybrid assemblies had mismatches compared 
to the short-read assemblies that could not be attributed to low 
coverage since there was good sequencing depth of both SR and 
LRs on those genome positions. These were caused by an erro-
neous single nucleotide variant calling by the assemblers. For 
this reason, we performed a k-mer optimization on both hybrid 
assemblers (SPAdes and Unicycler), but it still did not improve 
the single nucleotide variant calling. This phenomenon has been 
observed before on a benchmarking study comparing hybrid 
assemblers [53]. There is currently no solution to this observa-
tion and it should be taken into account when (i) updating avail-
able hybrid assemblers or when developing new ones (ii) using 
different types of assemblies (i.e. short and hybrid assemblies) 
for comparing resulting phylogenies, as it will introduce errors 
that could lead to a misinterpretation of the results.

cgMLST and cgSNP typing using reads and assemblies (SR: 
Shovill; LR: Canu corrected with Racon and Medaka) were 
evaluated. Even though cgSNP typing produced comparable 
results for both SR and LR assemblies, the cgMLST of SR and 
LR assemblies differed significantly. A lower number of gene 
targets valid for allele calls were detected in a predefined 
set of genes for LR assemblies (on average 76%) compared 
to SR assemblies (on average 99%). Ultimately, the genetic 
distances between the isolates were higher in LR assembly 
NJ trees. Based on the clustering information provided on 

https://github.com/tseemann/shovill
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the isolates, we determined that the read-mapping approach, 
instead of the assembly approach, is the most appropriate 
way of performing cgMLST and cgSNP typing of MTB 
from SRs, as used by many laboratories [21]. The higher 
accuracy of typing by read-mapping than assembly could be 
attributed to incorrect nucleotide calling during assembly 
or error correction [53, 54]. When we further considered 
the minimum genetic distance expected between duplicate 
samples, the cgSNP typing by reference-based mapping of 
SRs would be the best option for MTB genome typing. We 
furthermore observed that cgSNP typing of LRs and LR 
assemblies had the highest correlation with the SR-based 
typing (Mantel r statistics=0.97–0.99, P=0.001) (Tables S13 
and S14). Therefore, a cgSNP-based typing approach should 
be chosen for surveillance and transmission investigations 
using LR sequence data.

Short-read sequencing has a high GC bias but is highly 
accurate for single nucleotide variant calling and small 
indels. Long-read sequencing, instead, has the advantage 
of resolving structural variations and variants in repetitive 
regions. For example, the highly repetitive PE/PPE gene 
families, which comprise approximately 10 % of the coding 
regions in M. tuberculosis, have been suggested to play 
a role in virulence [55] and their association with drug 
resistance remains largely unexplored. These regions are 
poorly resolved by short-reads and are often excluded by 
bioinformatics studies of M. tuberculosis [55] but long-read 
sequencing could provide a more comprehensive under-
standing of these regions, their contribution to the resist-
ance phenotype, and the pathogenesis of the strain [52]. 
However, until very recently (after this project was initi-
ated) the accuracy of LR nanopore sequencing was limited 
because of error-prone homopolymer regions [56]. The 
R.10 flow cells, designed to provide optimal translocation 
speed for homopolymer sequences within pores, and the 
improvements in basecallers (namely Guppy) are improving 
the sequence accuracy, thereby the variant calling and 
subsequent drug-resistance prediction [57].

The bioinformatics analysis for anti-TB drug resistance 
prediction and strain typing for molecular epidemiology 
of MTB, particularly for LR sequence data, remains 
challenging. There must be a balance between finding as 
many variants as possible, even if in minor populations, 
and correctly predicting the susceptibility patterns. Addi-
tionally, differences in variant databases can impact the 
predicted resistance profiles while using different tools. 
These variants should be further evaluated in vitro (e.g. 
determine the need for compensatory variants to express 
the resistant profile). For LR, the accuracy of the results 
will potentially be improved with improved chemistry 
and bioinformatics (e.g. R10 flowcells, recent versions of 
Guppy). While WGS has been used as a complementary 
diagnostic method guiding phenotypic testing, the imple-
mentation of WGS-diagnosis needs further standardization 
and extensive validation studies for the currently in use 
bioinformatics tools for MTB. Nevertheless, we could show 
that polishing LR assemblies improved the genome quality 

and that reproducible phylogeny can be achieved using 
cgSNP approaches, especially for LR sequence data.
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