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Background: Deep learning image reconstruction (DLIR) and adaptive statistical iterative 
reconstruction-V (ASIR-V) has been used for cardiac computed tomography imaging. However, DLIR and 
ASIR-V may influence the quantification of coronary artery calcification (CAC).
Methods: CT images of 96 patients were reconstructed using filtered back projection (FBP), ASIR-V 50%, 
and three levels of DLIR [low (L), medium (M), and high (H)]. Image noise and the Agatston, volume, and 
mass scores were compared between the reconstructions. Patients were stratified into six Agatston score-
based risk categories and five CAC percentile risk categories adjusted by Agatston score, age, sex, and race. 
The number of patients who were switched to another risk stratification group when ASIR-V and DLIR 
were used was compared. Bland-Altman plots were used to present the agreement of Agatston scores 
between FBP and the different reconstruction techniques. 
Results: Compared to that with FBP, image noise was significantly decreased with ASIR-V 50%, and 
DLIR-L, -M, and -H (all P<0.001). The Agatston, volume, and mass scores with ASIR-V 50% and DLIR-L, 
-M, and -H showed significant decreases in comparison to those calculated with FBP (all P<0.001). Severity 
classification showed no significant differences between the five reconstruction techniques in any of the CAC 
score-based risk categories (all P>0.05). 
Conclusions: DLIR and ASIR-V show great potential for improving CT image quality, and appear to 
have no pronounced impact on CAC quantification or Agatston score-based risk stratification.
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Introduction

Coronary artery calcium (CAC) quantification in non-
contrast CT examination is a robust tool for stratifying 
cardiovascular risk. It has high predictive value for incident 
cardiovascular events in asymptomatic patients (1-3), 
especially those with intermediate cardiovascular risk. The 

presence of CAC, a manifestation of plaque stabilization, 
increases the incidence of acute cardiovascular events 
independent of traditional risk factors (4,5). Predicting 
acute events based on the Agatston score produces higher 
accuracy than based on the Framingham risk factors (1). 
Coronary calcium scoring has become a common method 
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for monitoring the progression of coronary atherosclerotic 
plaques, and it is commonly used in patients who are 
ineligible for enhanced examinations.

Recent innovations in CT techniques have enabled 
reconstruction algorithms supplied by various vendors 
and by lowering the tube voltage/current to be extensively 
investigated in coronary CT angiography (CTA) (6,7). 
However, the reference protocol for CAC acquisition still 
requires 120 kVp presetting and filter back projection (FBP) 
reconstruction (8), and there are considerable concerns 
about medical radiation exposure and its resultant cancer 
risk (9,10). 

Iterative reconstruction (IR) algorithms (11-13), 
which are available commercially from various vendors, 
can maintain adequate image quality while allowing 
for a low radiation dose. Adaptive statistical iterative 
reconstruction-V is partial model-based technique that 
overcomes the computational performance limitations of 
full-model iterative reconstruction (Veo; GE Healthcare) 
and reduces processing time, it has been suggested with 
modeling of objects and physics but pays less attention to 
the modelling of system optics, which is commonly used 
by GE company (13-15). However, these algorithms can 
affect the noise amplitude and texture features of images, 
particularly with high-strength IR (15,16). 

In recent years, artificial intelligence (AI) has shown 
significant application promise in cardiovascular imaging to 
detect coronary calcium accurately and of great efficiency 
(17-19). Deep learning image reconstruction (20) (DLIR, 
TrueFidelity, GE Healthcare) based on a convolutional 
neural network (CNN), The features extracted by the CNN 
are learned by training the network rather than manual 
design, so that the CNN can extract more key features and 
achieve greater performance (19). DLIR has shown great 
potential in improving CT image reconstruction, and has 
been verified to reduce image noise by some phantom (21) 
and clinical (22,23) studies. Simultaneously, the image 
texture of DLIR is similar to that of high-dose FBP (21).  
However, the influence of such new reconstruction 
algorithms on CAC quantification is still unclear. 

In the current study, we aimed to investigate the effects 
of DLIR and adaptive statistical IR-V (ASIR-V) on the 
quantitative evaluation of coronary calcification and 
subsequent cardiovascular risk stratification, and to compare 
image quality of DLIR and ASIR-V with those of FBP. We 
present the following article in accordance with the MDAR 
checklist (available at https://dx.doi.org/10.21037/atm-21-
5548).

Methods

Study population

This retrospective study was approved by the Human 
Research Ethics Committee of the First Affiliated 
Hospital of Zhengzhou University (2021-KY-0043-002). 
All procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013). All patients included in the 
study signed a written informed consent form. A total 
of 108 patients who underwent coronary CTA due to 
suspected coronary artery disease were enrolled. Before 
CTA examination, all patients underwent electrocardiogram 
(ECG)-gated non-contrast CT CAC scan. Of the enrollees, 
12 patients were excluded for the following reasons: 
coronary stent implantation (n=7), previous coronary artery 
bypass grafting (n=3), and prosthetic valve replacement 
(n=2). Ultimately, 96 patients were included in the study. 

CT acquisition

All scans were acquired with a 256-slice CT scanner 
(Revolution CT, GE Healthcare, Waukesha, WI, USA). 
Patients with a resting heart rate >70 beats/min were 
given oral beta-blockers unless contraindications existed. 
Calcium scoring scans were performed using prospective 
ECG-gating, triggered at 75% of the R-R interval with the 
following acquisition parameters: a tube voltage of 120 kV, 
an automatic tube current modulation range of 100−720 mA, 
a noise index of 12, a collimation of 256 mm × 0.625 mm,  
a gantry rotation time of 280 ms, a scan coverage of 140 or 
160 mm, and a display field of view of 25 mm.

The volume CT dose index (CTDIvol) and dose length 
product (DLP) were recorded in the dose report. The 
effective radiation dose (ED) was estimated by multiplying 
the DLP by a body region-specific conversion coefficient 
(k=0.014 mSv × mGy-1 × cm-1).

Image reconstruction and analysis 

Calcium score scanning images were reconstructed 
by standard FBP, ASIR-V at a level of 50%, and three 
strength levels of DLIR [low (L), medium (M), and high 
(H), respectively], with a section thickness of 2.5 mm and 
without padding. 

Analysis  of  objective image quality parameters 
was performed on an offline workstation (Advantage 
Workstation Version 4.7, GE Healthcare). The signal and 
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image noise were measured as the mean attenuation value in 
Hounsfield units (HU) and standard deviation (noise) in the 
aortic root and the left ventricle, using a 0.5-cm2 region of 
interest (ROI). Compare Viewer (GE Healthcare) was used 
to ensure that all images were at the same level. The signal-
to-noise ratio (SNR) was calculated as the ratio of signal to 
noise.

CAC scoring was initially performed by a diagnostic 
cardiovascular physician with 3 years’ experience using 
commercially available semiautomatic software (SmartScore 
4.0, GE Healthcare). Calcified lesions were detected using 
this application. All pixels with a density equal to or greater 
than a fixed threshold (130 HU) and with an area of >1 mm2  
were marked automatically. Then, the calcified lesions 
were identified manually on the basis of their anatomical 
locations. Finally, the Agatston score, lesion volume (mm3), 
and mass (mg) were calculated automatically. All CAC scores 
were reconfirmed by a senior radiologist with 10 years’  
experience in cardiovascular imaging.

Patients were classified into the following five CAC 
score risk categories according to their Agatston score, 
as determined by FBP: very low risk (0), low risk [1−10], 
moderate risk [11−100], high risk [101−400], and very 
high risk (>400). According to the Multi-Ethnic Study of 
Atherosclerosis (MESA) (24), patients were grouped by 

age, sex, and race into five Agatston score percentile-based 
risk categories (0–25, 26–50, 51–75, 76–90, and >90). The 
number of patients who were switched to another risk 
stratification group when ASIR-V and DLIR were used was 
recorded.

The Agatston, volume, and mass scores obtained by 
ASIR-V and different levels of DLIR (low, medium and 
high) algorithms and subsequent risk reclassification rates 
will be compared and the differences with the results 
obtained by the standard FBP algorithm will be determined.

Statistical analysis

Statistical analyses were performed using the SPSS 22.0 
statistical software (SPSS, Chicago, IL, USA). Data were 
tested for normal distribution using the Shapiro-Wilk test. 
Continuous variables were expressed as mean ± standard 
deviation or as median and interquartile range (IQR), 
whereas categorical variables were expressed as percentage 
and count. McNemar’s test was used to assess the Agatston 
score classes and the Agatston score percentile-based risk 
categories. Noise measurements, the SNR, and CAC 
variables were compared using the Wilcoxon signed-
rank test as well as the Bonferroni method for multiple 
comparisons. Bland-Altman plots were used to present 
the agreement of Agatston scores between FBP and the 
different reconstruction techniques. A P value of ≤0.05 
indicated a significant difference.

Results

Patient characteristics

Baseline characteristics and radiological parameters of the 
included patients are listed in Table 1. The study population 
comprised 96 patients (60% males) with a mean age of 
65.3±10.2 years, a mean body mass index (BMI) of 23.9± 
3.3 kg/m2.

Image noise 

In comparison to that with FBP, the mean image noise 
in the aortic root was decreased by 26.7%±3.4% with 
ASIR-V 50% (used widely in clinical), and by 27.6%±8.3%, 
37.3%±7.2%, and 46.4%±5.4% with the three levels of 
DLIR (DLIR-L, -M, and -H, respectively), while the 
mean image noise in the left ventricular cavity decreased 
by 25.9%±3.2% with ASIR-V 50%, and by 23.7%±9.2%, 

Table 1 Baseline characteristics and radiological parameters of the 
study participants

Characteristics Values

No. of patients 96

Age (y), mean ± SD 65.3±10.2

Male, n (%) 58 (60.0)

BMI (kg/m2), mean ± SD 23.9±3.3

Hypertension, n (%) 37 (39.0)

Smoker, n (%) 19 (20.0)

Dyslipidemia, n (%) 53 (55.0)

Diabetes, n (%) 26 (27.0)

Mean heart rate (bpm), mean ± SD 64.3±9.5

CTDI vol (mGy), mean ± SD 11.2±3.1

DLP (mGy·cm-1), mean ± SD 175.8±48.8

ED (mSv), mean ± SD 2.4±0.6

y, years; SD, standard deviation; BMI, body mass index; bpm, 
beats per minute; CTDI vol, the volume CT dose index; DLP, 
dose-length product, ED, effective radiation dose.
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34.6%±7.7%, and 44.9%±5.7% with DLIR-L, M, and H, 
respectively (all P<0.05). 

The image noise was significantly decreased with 
DLIR-M and DLIR-H as compared to ASIR-V 50% 
(P<0.05). However, no significant difference in image noise 
was observed between DLIR-L and ASIR-V 50% (P>0.05). 
As shown in Figures 1,2, there were significant differences in 
image noise between the three levels of DLIR (all P<0.05), 
with DLIR-H showing the greatest noise reduction. 
The mean signal in the aortic root and the left ventricle 
remained constant across the various groups (P>0.05). 
Consequently, with DLIR, the SNRs of the aortic root and 
left ventricular cavity showed significant rises compared 
to those measured using FBP; these rises increased with 
the strength of DLIR (aortic root: from 3.1±0.7 to 4.3±1.1 
with DLIR-L, DLIR-M and DLIR-H, respectively; left 
ventricular cavity: from 2.8±0.8 to 3.7±1.2 with DLIR-L, 
DLIR-M and DLIR-H, respectively (all P<0.05). The 
SNR also showed a significant rise with both DLIR-M and 

DLIR-H compared to ASIR-V 50%, and with ASIR-V 50% 
compared to FBP (P<0.05, in both the aortic root and left 
ventricular cavity). Data relating to the mean CT values and 
SNRs in the aortic root and the left ventricle can be found 
in Table S1. Table 2 displays the data of relative differences 
(expressed as mean percentages ± SD) between the targeted 
and referenced reconstruction groups.

CAC scoring

Patients with an Agatston score =0 in FBP had the same 
score using ASIR-V and DLIR. Therefore, to compare the 
Agatston score, calcium volume, and CAC mass between 
the five reconstruction techniques, 89 patients with an 
Agatston score of >1 were included, and the data are shown 
in Table 3.

The median Agatston calcium score was 199 (IQR, 
32–451), 188 (IQR, 26–422), 196 (IQR, 30–426), 192.0 
(IQR, 28–419), and 185 (IQR, 28–408) with FBP, ASIR-V 

Figure 1 Box-and-whisker plots of quantitative comparisons between FBP, ASIR-V, and three levels of DLIR. (A) Image noise in the 
aortic root; (B) image noise in the left ventricular cavity; (C) SNR in the aortic root; (D) SNR in the left ventricular cavity. The figure 
shows date including the median, IQR between the 25th and 75th percentiles (box), and 1.5 IQR range (whisker). *, P<0.05 between the 
reconstructions. FBP, filtered back projection; SNR, signal-to-noise ratio; IQR, interquartile range; ASIR-V, adaptive statistical iterative 
reconstruction-V; DLIR-L, DLIR-M, and DLIR-H: deep learning image reconstruction at low, medium, and high levels, respectively.

50

40

30

20

10

0

50

40

30

20

10

0

12

10

8

6

4

2

0

12

10

8

6

4

2

0

FBP     ASIR-V   DLIR-L  DLIR-M  DLIR-H

SNR in the aortic root

* *

*

* *

* ** *

*
*

*

* *

*

*
*

* * *

**
*

*
*

*
*

*

*
*

*
*

* *

**

SNR in the left ventricular cavity

Image noise in the left ventricular cavityImage noise in the aortic root

FBP     ASIR-V   DLIR-L   DLIR-M  DLIR-H

FBP     ASIR-V   DLIR-L   DLIR-M   DLIR-HFBP     ASIR-V   DLIR-L   DLIR-M  DLIR-H

A B

C D

(H
U

)

(H
U

)

https://cdn.amegroups.cn/static/public/ATM-21-5548-Supplementary.pdf


Annals of Translational Medicine, Vol 9, No 23 December 2021 Page 5 of 12

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(23):1726 | https://dx.doi.org/10.21037/atm-21-5548

A B

C D E

Figure 2 Axial cardiac CT images of a 75-year-old man (body mass index, 26.5 kg/m2) reconstructed using FBP, ASIR-V 50%, and three 
levels of DLIR (DLIR-L, M, and H, respectively), The section thickness was 2.5 mm. Image noise was 31.1, 23, 26.2, 20.9, and 18.1 HU in 
the left ventricle from (A) to (E). At the level of the distal segment of the RCA, calcified lesions were marked manually in red dots. Scattered 
false-positive dots were marked in green automatically on FBP (A), ASIR-V 50% (B), and DLIR (with incremental strength levels) (C-E) 
images. One calcified plaque could not be detected in the ASIR-V 50% group (white arrows). FBP, filtered back projection; ASIR-V, adaptive 
statistical iterative reconstruction-V; RCA, right coronary artery; DLIR-L, DLIR-M, and DLIR-H: deep learning image reconstruction at 
low, medium, and high levels, respectively.

Table 2 Quantitative analysis of image noise and SNR for the reconstruction techniques

Reconstruction
Quantitative image quality metrics (%)

Noise in AR (HU) SNR in AR Noise in LV (HU) SNR in LV

ASiR-V 50% vs. FBP −26.7±3.4* 36.5±5.8* −25.9±3.2* 35±5.5*

DLIR-L vs. FBP −27.6±8.3* 39.9±16.1* −23.7±9.2* 32.1±18.3*

DLIR-M vs. FBP −37.3±7.2* 61.3±17.7* −34.6±7.7* 54.3±18.4*

DLIR-H vs. FBP −46.4±5.4* 88.2±21.7* −44.9±5.7* 82.5±19.9*

DLIR-L vs. ASiR-V 50% −1.4±9.7 2.4±10.1 2.9±10.9 −2.3±11.6

DLIR-M vs. ASiR-V 50% −14.6±8.7* 18.1±11.4* −11.8±8.5* 14.1±11.7*

DLIR-H vs. ASiR-V 50% −26.9±6.4* 37.8±13.5* −25.7±6.4* 35.1±11.2*

Data given are mean relative differences ± standard deviation (SD) (expressed in percentages) between the targeted and the referenced 
reconstruction groups. *, P<0.05. SNR, signal-to-noise ratio; AR, aortic root, LV, left ventricular cavity; FBP, filtered back projection; ASIR-V 
50%, adaptive statistical iterative reconstruction-V at 50% intensity; DLIR-L, deep learning image reconstruction at low level; DLIR-M, 
deep learning image reconstruction at medium level; DLIR-H, deep learning image reconstruction at high level; HU, Hounsfield units. 
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50%, DLIR-L, DLIR-M, and DLIR-H, respectively. The 
relative differences for ASIR-V 50%, DLIR-L, DLIR-M, 
and DLIR-H to FBP were 5.5%, 1.5%, 3.5%, and 7.0%, 
respectively (all P<0.001). The Agatston score was higher 
with DLIR-L and smaller with DLIR-H than with ASIR-V 
50% (both P<0.001). However, no difference was observed 
between the Agatston score of images reconstructed with 
DLIR-M and ASIR-V 50% (p = 0.23). However, the 
Agatston score showed significant differences between the 
three DLIR reconstruction levels (all P<0.05). 

The median CAC volumes on ASIR-V and DLIR images 
differed significantly from those on FBP images {99 [20.8, 
179.5], 95 [15, 165], 95.5 [15.8, 173], 93 [15, 169.8] vs. 
91 [14, 164.8] mm3}. Post-hoc analysis showed significant 
differences between the five techniques (all P<0.05). The 
median mass scores were 32 [7, 63], 29 [6, 61], 31 [6.5, 
63], 30 [6.5, 59], and 30 [6.5, 59] mg for FBP, ASIR-V 
50%, DLIR-L, DLIR-M, and DLIR-H, respectively. 
Post-hoc analysis revealed that ASIR-V and three DLIR 
reconstruction levels differed significantly from FBP in 
mass score (all P<0.05). However, DLIR-M and DLIR-H 
exhibited no significant difference compared to ASIR-V 
50% in mass score (P=0.186 and 0.858, respectively). The 
mass score was higher with DLIR-L than with ASIR-V 
(P<0.05), but no significant difference in mass score was 
observed between the three DLIR reconstruction levels (all 
P>0.05). 

Bland-Altman plots comparing the Agatston score with 
the mean and limits of agreement for images reconstructed 
with ASIR-V and DLIR with that for images reconstructed 

with FBP are shown in Figure 3. 
In the risk classification analysis, 5 (5.6%), 3 (3.4%), 5 

(5.6%), and 5 (5.6%) patients with a CAC score of ≥1 were 
reassigned to another risk category when ASIR-V 50%, 
DLIR-L, DLIR-M, and DLIR-H were used, respectively. 
No patients moved by two or more risk categories. 
The detailed data are available in Table 4. Severity 
classification revealed no significant differences between the 
reconstruction techniques (all P>0.05). 

Furthermore, no significant differences were observed 
between FBP, ASIR-V 50%, and the different levels of 
DLIR when the CAC percentile risk categories were 
adjusted for Agatston score, age, sex, and race (all P>0.05). 
Eighty-five patients aged between 45 and 85 years old were 
included according to the MESA study. When CAC scores 
were acquired with ASIR-V 50% and DLIR L, M, and H, a 
change in risk category was observed in 4 (4.7%), 3 (3.5%), 
4 (4.7%), and 5 (5.9%) patients, respectively (Table 5). For 
one 57-year-old patient, the Agatston score decreased 
from 1 (low risk, 50–75th percentile) with FBP to 0 (very 
low risk, 0–25th percentile) with ASIR-V 50%, DLIR-M, 
and DLIR-H; however, the patient’s Agatston score with 
DLIR-L stayed the same.

Discussion

Our study demonstrated that compared to the standard FBP 
algorithm, DLIR and ASIR-V reduced the Agatston score, 
calcium mass, and calcium volume. However, although the 
Agatston score decreased significantly with ASIR-V and 

Table 3 Agatston, volumetric, and mass scores using the different reconstruction techniques

Reconstruction technique FBP  ASIR-V DLIR-L DLIR-M DLIR-H

Agatston score

Mean 328.8±416.1 314.3±407.2 321.9±410.9 315.6±402.1 307.5±392.8

Median 199 (32, 451) 188 (26, 422) 196 (30, 426) 192 (28, 419) 185 (28, 408)

Volumetric score (mm3)

Mean 132.8±158.9 126.3±154.8 122.6±149.6 119.6±146.7 116.8±143.1

Median 99 (20.8, 179.5) 95 (15, 165) 95.5 (15.8, 173) 93 (15, 169.8) 91 (14, 164.8)

Mass score (mg)

Mean 52.9±72.8 51.3±71.7 52.3±72.8 51.6±71.6 51.0±70.9

Median 32 (7, 63) 29 (6, 61) 31 (6.5, 63) 30 (6.5, 59) 30 (6.5, 59)

Data given is mean ± standard deviation (SD) or interquartile range (IQR). FBP, filtered back projection; ASIR-V 50%, adaptive statistical 
iterative reconstruction-V at 50% intensity; DLIR-L, deep learning image reconstruction at low level; DLIR-M, deep learning image 
reconstruction at medium level; DLIR-H, deep learning image reconstruction at high level.
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increasing DLIR strength levels, no significant differences 
were observed in cardiovascular risk stratification based on 
Agatston scores calculated using the different reconstruction 
techniques. Furthermore, DLIR and ASIR-V also resulted 
in significant noise reduction, but the signal remained 
constant, thus improving the SNR. 

The improvement of image quality (for instance, by 
reducing image noise) has been reported to result in a 
decrease in CAC score (25-28). However, the widespread 
existence of image noise may hinder the dependable 
quantification of CAC. Several studies have confirmed the 
increasing value of CAC score to informing cardiovascular 
risk stratification and treatment decisions, including 
downstream detection (6). With the introduction of the 
CAC data and reporting system (CAC-DRS) (29), an expert 
consensus published by the Cardiovascular Computed 
Tomography Society, correct and reproducible CAC 
acquisition has become essential to make clinical follow-up 

accurate (30). 
Tube voltage, tube current,  sl ice thickness and 

reconstruction technique are the main factors influencing 
CAC quantification (14). Several studies have shown 
that lower tube voltage led to lower CAC score (31,32), 
while appropriately lowering tube current helps to reduce 
radiation dose with little risk reclassifications (7). Thinner 
slice thickness improved the detection of small calcifications 
and increased noise-level, which may result in more false-
positives (33). Also, multiple studies have reported varying 
impact of iterative reconstruction on CAC quantification 
and risk stratification (25-28).

The Agatston score is widely used in quantitative 
assessment of CAC under low tube voltage or tube currents. 
Considering the ultimate goal to implement advanced 
image reconstruction is to reduce radiation exposure, Gräni 
et al. attempted to reduce the tube voltage to lower levels 
(70 and 80 kVp) while applying tube-adapted thresholds to 

Figure 3 Bland-Altman plots comparing all Agatston scores measured using ASIR-V 50% and three levels of DLIR (DLIR-L, M, and H, 
respectively) and using FBP. The limit of agreement and mean difference for the Agatston scores are shown in (A-D). FBP, filtered back 
projection; ASIR-V, adaptive statistical iterative reconstruction-V; DLIR-L, DLIR-M, and DLIR-H: deep learning image reconstruction at 
low, medium, and high levels, respectively.
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reduce the radiation dose by 80% with little effect on risk 
classification (31). Nada Sulaiman used ASIR-V combined 
with low tube current to reduce radiation dose by 26% 
but enables stable Agatston score (7), while Kamani et al.  
applied low KV combined with ASIR-V introduces 
marked underestimation of Agatston score and clinically 
unacceptably high reclassification rates as compared with 
standard-dose CAC scoring (34). 

With the rapid development of multi-slice spiral CT 
technology, new reconstruction algorithms have continued 
to appear. Reconstruction algorithms supplied by various 
vendors can have different effects on the assessment of 
cardiovascular risk. In their study using the sinogram-
affirmed IR algorithm (25), Kurata et al. reported that 
the Agatston score was decreased by 48% compared to 
that calculated using FBP. Messerli et al. (26) also noted 
significant reductions of 39%, 41%, and 40% in the 
Agatston, volume, and mass scores, respectively, with high-
level ADMIRE. In the present study, the Agatston, volume, 
and mass scores were decreased by 7%, 8.1%, and 6.3%, 
respectively, with high-strength DLIR as compared to FBP. 
Szilveszter et al. (27) used data from cardiovascular screening 
in asymptomatic patients to assess the risk reclassification 
rate by virtue of an IR technique. They observed that the 
reclassification rate was moderate (2.4%) for risk categories 
derived from the CAC; however, 6 out of 63 (9.5%) patients 
in the symptomatic test cohort were assigned to another 
risk category. Gebhard et al. (28) reported that compared 
with FBP, reconstruction with increasing ASIR levels 
significantly reduced the Agatston and CAC volume scores, 
whereas the CAC mass score remained unchanged. They 
hypothesized that IR reconstructions made the borders 
of the lesion smoother and the center appear denser. 
Contrary to the results observed with ASIR, the decreases 
in CAC mass score with DLIR and ASIR-V were similar 
to those observed for Agatston score and CAC volume 
score in our study, with a small but significant reduction 
in mean mass score also being observed. The ambiguity of 
these results should prompt caution toward the adoption 
of new reconstruction algorithms in clinical practice. In 
future, a standardized process for different vendors or 
reconstruction-based CAC value adjustment is needed to 
minimize the influence of reconstruction algorithms on 
cardiovascular risk stratification.

At present, the disadvantage of mainstream IR is the 
resulting change in image texture. Multiple studies (15,16) 
have suggested that with the increase of IR strength, 
“blotchy”, “plastic-looking”, or “unnatural” noise texture, 

caused by differences in the noise power spectrum of FBP 
and IR, can appear in images, thus hindering the image 
interpretation. 

As a branch  of machine learning and AI, DLIR 
overcomes the modeling limitations of IR by handling 
complex models and thousands of parameters during the 
training process (20). DLIR uses deep neural networks 
(DNNs) trained with high-quality FBP data to generate 
images that accurately match the ground truth data, and 
retains a noise texture similar to that of high-dose FBP 
images (35). With the increase of reconstruction strength, 
the noise decreases and the SNR increases significantly. 
Recently published comparison studies (36,37) of DLIR 
versus IR in chest plain scan and abdominal multi-phase 
enhanced scan have reported that DLIR may aid in 
reducing the radiation dose, with the noise level remaining 
the same or significantly decreasing.

To the best of our knowledge, the effects of DLIR on 
CAC score-based cardiovascular risk re-stratification have 
yet to be reported. In this study, only small differences 
in CAC score were observed between the reconstruction 
techniques. Bland–Altman analysis showed that the 
Agatston scores with ASIR-V and incremental DLIR 
levels showed good agreement with those calculated with 
FBP, and there was no systematic bias. We confirmed that 
compared to FBP, ASIR-V and DLIR can significantly 
reduce noise while having little effect on Agatston score-
based risk assessment or CAC percentile risk categories 
adjusted for Agatston score, age, sex, and race.

Our study has several limitations. First, this is a single-
center study, and we only investigated the effects of specific 
reconstruction algorithms from one CT vendor. Second, 
the BMI of the patients in our cohort was low (about  
24 kg/m2, with small standard deviations) compared to that 
of Western European cohorts (38). However, we used an 
automatic tube current technique adapted to BMI to obtain 
stable image quality parameters for comparison. Third, we 
did not prospectively use low tube voltage/tube current 
techniques combined with DLIR in diagnostic accuracy 
compared to FBP in standard doses. Studies to evaluate the 
potential of novel reconstruction technology in reducing 
the radiation dose without affecting calcium quantification 
are needed in future in order to address the continuously 
increasing concerns regarding radiation exposure. Finally, 
the symptomatic patients included in this study were 
predominantly moderate risk, with the median Agatston 
score of these patients being 199 and only 7 patients having 
a CAC score of 0. Therefore, our study has potentially 
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limited applicability. However, including a large number 
of patients without CAC would have only added limited 
information for CAC comparison.

In conclusion, compared with traditional FBP, DLIR and 
ASIR-V can reduce the CAC score, while having little effect 
on cardiac risk categorization. As advanced reconstruction 
methods, DLIR and ASIR-V show great potential in 
improving CT image quality. DLIR and ASIR-V appear to 
have no pronounced impact on the quantification of CAC 
and subsequent risk stratification based on the Agatston 
score.
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