Skip to main content
. 2021 Dec;9(23):1726. doi: 10.21037/atm-21-5548

Table 2. Quantitative analysis of image noise and SNR for the reconstruction techniques.

Reconstruction Quantitative image quality metrics (%)
Noise in AR (HU) SNR in AR Noise in LV (HU) SNR in LV
ASiR-V 50% vs. FBP −26.7±3.4* 36.5±5.8* −25.9±3.2* 35±5.5*
DLIR-L vs. FBP −27.6±8.3* 39.9±16.1* −23.7±9.2* 32.1±18.3*
DLIR-M vs. FBP −37.3±7.2* 61.3±17.7* −34.6±7.7* 54.3±18.4*
DLIR-H vs. FBP −46.4±5.4* 88.2±21.7* −44.9±5.7* 82.5±19.9*
DLIR-L vs. ASiR-V 50% −1.4±9.7 2.4±10.1 2.9±10.9 −2.3±11.6
DLIR-M vs. ASiR-V 50% −14.6±8.7* 18.1±11.4* −11.8±8.5* 14.1±11.7*
DLIR-H vs. ASiR-V 50% −26.9±6.4* 37.8±13.5* −25.7±6.4* 35.1±11.2*

Data given are mean relative differences ± standard deviation (SD) (expressed in percentages) between the targeted and the referenced reconstruction groups. *, P<0.05. SNR, signal-to-noise ratio; AR, aortic root, LV, left ventricular cavity; FBP, filtered back projection; ASIR-V 50%, adaptive statistical iterative reconstruction-V at 50% intensity; DLIR-L, deep learning image reconstruction at low level; DLIR-M, deep learning image reconstruction at medium level; DLIR-H, deep learning image reconstruction at high level; HU, Hounsfield units.