Table 2. Quantitative analysis of image noise and SNR for the reconstruction techniques.
Reconstruction | Quantitative image quality metrics (%) | |||
---|---|---|---|---|
Noise in AR (HU) | SNR in AR | Noise in LV (HU) | SNR in LV | |
ASiR-V 50% vs. FBP | −26.7±3.4* | 36.5±5.8* | −25.9±3.2* | 35±5.5* |
DLIR-L vs. FBP | −27.6±8.3* | 39.9±16.1* | −23.7±9.2* | 32.1±18.3* |
DLIR-M vs. FBP | −37.3±7.2* | 61.3±17.7* | −34.6±7.7* | 54.3±18.4* |
DLIR-H vs. FBP | −46.4±5.4* | 88.2±21.7* | −44.9±5.7* | 82.5±19.9* |
DLIR-L vs. ASiR-V 50% | −1.4±9.7 | 2.4±10.1 | 2.9±10.9 | −2.3±11.6 |
DLIR-M vs. ASiR-V 50% | −14.6±8.7* | 18.1±11.4* | −11.8±8.5* | 14.1±11.7* |
DLIR-H vs. ASiR-V 50% | −26.9±6.4* | 37.8±13.5* | −25.7±6.4* | 35.1±11.2* |
Data given are mean relative differences ± standard deviation (SD) (expressed in percentages) between the targeted and the referenced reconstruction groups. *, P<0.05. SNR, signal-to-noise ratio; AR, aortic root, LV, left ventricular cavity; FBP, filtered back projection; ASIR-V 50%, adaptive statistical iterative reconstruction-V at 50% intensity; DLIR-L, deep learning image reconstruction at low level; DLIR-M, deep learning image reconstruction at medium level; DLIR-H, deep learning image reconstruction at high level; HU, Hounsfield units.