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Reproductive division of labour is a hallmark of eusocial insects. However, its
stability can often be hampered by the potential for reproduction by other-
wise sterile nest-mates. Dominance hierarchy has a crucial role in some
species in regulating which individuals reproduce. Compared with those in
vertebrates, the dominance hierarchies in eusocial insects tend to involve
many more individuals, and should require additional selective forces
unique to them. Here, we provide an overview of a series of studies on dom-
inance hierarchies in eusocial insects. Although reported from diverse
eusocial taxa, dominance hierarchies have been extensively studied in
paper wasps and ponerine ants. Starting from molecular physiological
attributes of individuals, we describe how the emergence of dominance hier-
archies can be understood as a kind of self-organizing process through
individual memory and local behavioural interactions. The resulting global
structures can be captured by using network analyses. Lastly, we argue the
adaptive significance of dominance hierarchies from the standpoint of sterile
subordinates. Kin selection, underpinned by relatedness between nest-mates,
is key to the subordinates’ acceptance of their positions in the hierarchies.

This article is part of the theme issue ‘The centennial of the pecking
order: current state and future prospects for the study of dominance
hierarchies’.
1. Introduction
Reproductive division of labour is a hallmark of eusocial insects such as ants, bees,
wasps and termites. Typically, the reproductive castes (‘reproductives’, hereafter
referred to as ‘Rs’) devote themselves to reproduction, whereas the non-reproduc-
tive castes (‘non-reproductives’ or ‘NRs’) take charge of colony maintenance, such
as raising broods, guarding the nest and foraging for food [1]. This systemhas been
regarded as key to the ecological and evolutionary success of eusocial insects [1–3].
The peaceful maintenance of the reproductive division of labour is, however, often
hampered by the presence of adults who are expected to be NRs but retain the
physiological potential for reproduction. For example, in eusocial Hymenoptera
the haplodiploid system requires mating for the production of diploid daughters,
which is allowed only for Rs in a colony. Nevertheless, in many species, female
NRs retain functional ovaries and can produce haploid sons in the same colony
without mating [4]. Under this tension, dominance behaviours find their role in
maintaining the reproductive division of labour.

Since the pioneering work of Pardi [5] on Polistes wasps, dominance beha-
viours of dominants towards subordinates have been reported in a wide range
of eusocial Hymenoptera. The resulting dominance hierarchies are remarkable
for their size: the number of individuals in the hierarchy often reaches 70 ([6],
see also [7]). The formation and maintenance of such large hierarchies would
require unique selective forces that are not present in other animal societies.

In this review, we first list the occurrences of dominance behaviours in euso-
cial insects along the timeline of colony development, and give an overview of
their taxonomic diversity. We then describe the build-up of dominance
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hierarchy in a bottom-up manner, from individual attributes
through interaction dynamics to the global network struc-
tures. Finally, we discuss the adaptive significance of the
dominance behaviours and hierarchy from the standpoint
of sterile subordinates.
maintenance phase

reformation phase

(b)

(c)

Figure 1. Typical formation of dominance hierarchies at three phases in the
life cycle of a colony of eusocial insects. (a) Formation phase: foundresses
compete for top ranking in the hierarchy. The resulting one dominant indi-
vidual can take over reproduction as a ‘reproductive’ (R) and the others
engage in non-reproductive roles as ‘NRs’ in the colony. (b) Maintenance
phase: in addition to the R, dominant NRs perform dominance behaviours,
leading to a stable hierarchical structure that allows the highest individual
to maintain the R position. (c) Reformation phase: after the R is lost from
the colony, the remaining dominant NRs compete and one NR takes over
the top-ranked position in the hierarchy. The reconstructed hierarchy will
move into maintenance phase again. The red colour scale indicates reproduc-
tive ability, with red indicating full development of ovaries and white
indicating non-development. Arrows point from actors to recipients of dom-
inance behaviours. (Online version in colour.)
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2. Dominance behaviours in the colony life cycle
Generally, dominance behaviours manifest in both the for-
mation and the maintenance of a dominance hierarchy. In
eusocial insects, dominance behaviours are typically
observed at three phases in the colony’s life cycle (figure 1).
The first phase occurs at the colony founding stage. In
many species, an initial colony contains a single female
(called a foundress). In some species, however, multiple semi-
nated females, related or unrelated, come together and create
a new colony (pleometrosis). Dominance behaviours are
observed among these foundresses (formation phase: figure 1a).
All founding nest-mates are reproductively equal at the onset,
and dominance behaviours occur once the colony is estab-
lished. In the resulting linear dominance hierarchy, a
differentiation arises between top-ranked Rs and other NRs
that is associated with physiological and behavioural modifi-
cations. In some species, aggressive interactions between
foundresses sometimes result in the death of some
individuals or even a single survivor [8].

The second phase occurs after the reproductive division
of labour has been established in a colony (maintenance
phase: figure 1b). In this phase, each individual R or NR per-
forms dominance behaviours towards lower-ranked NRs in
the hierarchy, and thereby represses their reproductive ability.
A unique feature of this phase is that birth–death of individ-
uals in the colony gives a certain local instability to the
dominance hierarchy.

The third phase arises after the top-ranked R is lost from
the colony (reformation phase: figure 1c). This event destabi-
lizes the dominance hierarchy among the remaining NRs,
but dominance behaviours quickly reconstruct a new hierar-
chy and determine a new R among the previous NRs.
This agility is in part attributed to the physiological hetero-
geneity that is already established among NRs during the
second phase.
3. Taxonomic distributions
Dominance behaviours have been found in a wide range of
taxa in eusocial Hymenoptera (electronic supplementary
material, table S1). They are particularly enriched in phylogen-
etically basal (so-called ‘primitive’) eusocial species that are
characterized by small colony size (up to the order of 102 indi-
viduals) and low degrees of morphological differentiation
between Rs (usually queens) and NRs (workers). In this sec-
tion, we focus on several species of wasps and ants to
illustrate the role of dominance behaviours in their colonies.

(a) Wasps
Dominance behaviours in wasps are arguably the best
studied among eusocial insects [5,9,10]. In the genus Polistes,
colony foundation occurs in two ways: by a single foundress
or by multiple foundresses. As with other eusocial species,
dominance behaviours at the formation phase are expected
in the latter case, which results in a linear dominance hierar-
chy under which the top- or higher-ranked female(s)
become(s) the R(s). The dominance hierarchy is then main-
tained by dominance behaviours among Rs and NRs
(maintenance phase). Dominance behaviours are also
observed after the Rs are lost, i.e. at the reformation phase.
Jandt et al. [10] provides a good review of the dominance
behaviours in Polistes.

In the same subfamily Polistinae, Ropalidia marginata is
another species whose dominance behaviours have been
well studied. Multiple females initiate a new colony, and a
mature colony consists of a single R (queen) and fewer than
100 NRs (workers) [11]. Dominance behaviours manifest in
all of the above three phases [12,13]. Foundresses frequently
perform dominance behaviours, and then a top-ranked
individual becomes the R in a colony (formation phase).
However, unlike in Polistes, once the dominance hierarchy is
established, the R rarely acts aggressively towards NRs.
Instead of physical interactions, hydrocarbon profiles
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secreted from Dufour’s gland of the R are known to suppress
the reproductive ability of NRs [14].
oyalsocietypublishing.org/journal/rstb
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(b) Ants
Ants, a large family of eusocial Hymenoptera, exhibit diverse
social systems [2]. Cole [15] found a dominance hierarchy
among NRs (workers) in a myrmicine ant, Temnothorax (for-
merly Leptothorax) allardycei (maintenance and reformation
phases). Since this discovery, dominance behaviours have
been studied in a variety of ants covering all of the above
three phases (electronic supplementary material, table S1).
The studied species share common features such as small
colony size and low degrees of morphological differentiation
between Rs and NRs. By contrast to eusocial wasps, reports
of dominance behaviours at the formation phase, i.e. when
the colony is initiated by multiple foundresses, are relatively
rare in ants (electronic supplementary material, table S1).
This is chiefly because the losers are typically killed by the
winner and also workers [8]. However, Hölldobler & Carlin
[16] reported a case of dominance behaviours at the for-
mation phase in the formicine ant Iridomyrmex purpureus.

There are many examples of dominance behaviours in
ants at both the maintenance and reformation phases.
Among them are those from queenless ants of the subfamily
Ponerinae, which are considered to represent ancestral societies
[17,18]. Here we focus on two species, Pachycondyla sublaevis
and Diacamma cf. indicum, whose dominance behaviours in
these two phases are well characterized.

Colonies of P. sublaevis contain 2–18 adult females mor-
phologically classified as workers; only one mated worker
(called a gamergate) becomes an R that dominates reproduc-
tion in the colony [19,20]. The gamergate continues to
perform dominance behaviours after mating (maintenance
phase), forming an almost linear dominance hierarchy with
her at the top [20]. Newly emerged females often take over
positions of higher-ranked elder females during this mainten-
ance phase. The gamergate can be lost (i.e. the colony is
orphaned) when she dies or when a colony splits into two
through colony fission. A dominance hierarchy is then recon-
structed among the remaining unmated NRs in the colony,
but usually the second-ranked NR takes over the reproduc-
tive position (reformation phase) [19]. Although all females
in a colony are at least physiologically capable of mating, it
is only the new top-ranking female that is expected to
encounter her mating partner and become a new R [20].

Another example comes from D. cf. indicum from Japan
[21,22], which has a well-documented colony life cycle [23].
This species has long been reported as ‘Diacamma sp. from
Japan’ owing to taxonomic issues, but the elusive taxonomic
status does not hinder the unique identification of this species
(or at least population), because the study sites are located in
a limited area on Okinawa Island, in southern Japan. Exten-
sive population genetic studies on the island [24,25] have
not yet identified a cryptic species. Colonies of this species
contain one gamergate (R) and 50–300 unmated workers
(NRs) in the field [26]. All females on emergence possess a
pair of tiny rudimentary or vestigial wings (called gemmae)
on the thorax, which are surgically bitten off by the gamer-
gate. Consequently, the ‘mutilated’ adults lose their mating
ability and differentiate into NRs (maintenance phase).
When the gamergate is lost, the first adult that emerges in
the colony successfully retains her gemmae without being
targeted and becomes a gamergate-to-be. This female per-
forms dominance behaviours towards the other elder sisters
(reformation phase). Interestingly, aggressiveness of the new
gamergate declines with her age [27] (a similar pattern is
observed in the congeneric species Diacamma ceylonense
[28]), and the reproductive division of labour seems to be
mediated by mechanisms other than behavioural interactions
[29]. NRs in the maintenance phase engage in dominance
behaviours, leading to an almost perfectly linear dominance
hierarchy among the NRs [6]. In the hierarchy, a few higher-
ranked females attain the right to male production [30].
The dominance hierarchy among NRs in the presence of the
non-aggressive R is reminiscent of those observed in R.margin-
ata and T. allardycei. Dominance behaviours among NRs
continue at the reformation phase.
4. Individual-level attributes affecting ranking in
the hierarchy

Recent advances in the study of the molecular underpinnings
of social behaviours have opened up the possibility of under-
standing the formation of dominance hierarchies from the
bottom up. Here, we focus on individual age and physiologi-
cal state as the individual-level attributes of the dominance
hierarchies.

In eusocial insect colonies, unlike in vertebrate societies,
ranking in a dominance hierarchy is usually associated with
individual age rather than body size ([10,31,32], but see
also [33], regarding the effect of body size on dominance
status). The effect of individual age on ranking in the
dominance hierarchy becomes clear when the birth of individ-
uals during the maintenance phase is taken into account: in a
colony with Rs, new adults are continuously supplied and
challenge the pre-existing dominance hierarchy.

Interestingly, the relationship between age and hierarchi-
cal ranking is taxon-specific. In Polistes wasps that live in
temperate regions and show an annual colony life cycle,
older individuals tend to be higher ranked and become Rs
when the current R is lost from the colony [33,34]. By con-
trast, in ants that typically show a perennial life cycle,
younger workers rank higher in the dominance hierarchy
[20,35,36]. This taxonomic difference in the age effect can be
understood as adaptation to relative life expectancy of indi-
viduals and colonies [37]. However, those rules may have
some flexibility rather than being fixed by age. For example,
Monnin & Peeters [35] showed that in colonies of the poner-
ine ant Dinoponera quadriceps consisting of 50–112 workers,
although the callows (very young workers) took over
higher positions from older workers (greater than three
months old), relatively younger workers defended their
positions against the callows.

Physiological correlates of individual ranking in the
dominance hierarchy would give us an insight into the mech-
anisms of formation and maintenance of the hierarchy
(figure 2a). Surprisingly, however, information on the molecu-
lar physiological mechanisms triggering dominance
behaviours is still scarce. One possible reason would be
that the expression of dominance behaviours depends on
the rank of the partner, making it difficult to identify causal
relationships.

Generally, the ovarian development of eusocial insects is
regulated by several factors, such as biogenic amines, juvenile
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Figure 2. Build-up of a dominance hierarchy (as represented by the leftmost diagram). The colour scale indicates reproductive ability, with white indicating non-
development of ovaries. (a) Amplification of physiological states by dominance behaviour is an example of how changes in individual-level attributes affect ranking
in the hierarchy. (b) A dominance hierarchy can be abstracted into a directed network, whose global structure is characterized by several quantitative measures such
as motif frequencies. (c) Evolution of costly (–c) obeying, i.e. acceptance of a subordinate position, in dominance interactions requires special explanation.
Inclusive fitness benefit (r × b) to the subordinate provides a general solution. Arrows point from actors to recipients of dominance behaviours. (Online version
in colour.)
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hormones and insulin-like peptides [38–40]. These factors
serve as activators of reproduction (i.e. have a gonadotropic
effect), and their production is affected not only by the
nutritional state of individuals but also by social interactions
with other individuals [27,39,41,42] (figure 2a). Some
studies have shown an association between individual
ranking in the dominance hierarchy and titres of the
gonadotropic factors. For example, the correlation between
dopamine and dominance rank has been shown in studies
of D. cf. indicum [43]. Moreover, in the paper wasp Pistacia
chinensis, Tsuchida et al. [44] showed that in addition
to dopamine, juvenile hormone titres positively associated
with rank. The above physiological factors have also
been reported to regulate individual behaviours in eusocial
insects (biogenic amines: [45]; juvenile hormones: [46]). For
example, serotonin regulates the aggressiveness of workers
in the trap-jaw ant Odontomachus kuroiwae [47]. This
aggressiveness might well be a component of dominance
behaviours. Moreover, in the paper wasp Polistes annularis,
Barth et al. [48] showed that application of juvenile
hormone and ecdysone to foundresses increased both ovary
development and frequency of dominance behaviours, and
that the oocyte length was positively correlated with the be-
havioural score. Nevertheless, the causal relationship
between physiological factors and dominance behaviours
deserves further study.
5. Patterns of interactions shaping hierarchy
structure

As is the case for other social behaviours, understanding
patterns of interactions among individuals is essential to
the study of dominance behaviours. We begin this section
by considering recognition systems of ranking in the
hierarchy. Based on the signal-receiver systems, repeated
interactions alter the individuals’ physiological states,
which serves as an amplification mechanism of difference
between individuals (figure 2a). The reinforcement of indi-
vidual ranking contributes to the formation of stable
dominance hierarchies. The global structure of the resulting
dominance hierarchies can be summarized by directed net-
works (figure 2b). We argue how recent network analyses
applied to dominance hierarchies in eusocial insects can
improve our understanding of their social systems.

(a) Recognition system
Generally, dominance behaviours are directed selectively
towards the lower-ranked individuals in a stable dominance
hierarchy. Therefore, each individual in the hierarchy is
expected to have some cues that enable others to recognize
rank relationships and prevent subordinates from challen-
ging higher-ranking individuals. When a cue has been
evolutionarily modified in accordance with the interest of
the bearer, it can be regarded as a signal that alters its recei-
ver’s response in favour of the signaller [49]. This
evolutionary process entails that the signal can be either
honest or deceptive as a result of coevolution between sen-
ders and receivers. In eusocial insects, interactions between
relatives and selection at the level of the colony make this
evolutionary process even more complex.

Nest-mate communications in eusocial insects are known
to be mediated by their cuticular hydrocarbons (CHCs) [50].
With regard to the reproductive division of labour, queen-
specific CHC profiles are highly conserved across species in
eusocial Hymenoptera [51,52]. Workers, even with functional
ovaries, refrain from laying their own eggs in the presence of
the chemicals. From an evolutionary perspective, the queen-
specific profiles can be regarded as an honest signal, not a
manipulative agent, to inform the presence of active queens
([53], see also [54]). This means that workers can flexibly
change their behaviours depending on the quality or the
quantity of the signal, leading to worker reproduction in cer-
tain situations. Likewise, in a dominance hierarchy, CHCs
serve as an honest signal to inform individual ranking
[50,55–57]. The signal pattern among individuals changes
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gradually with dominance rank rather than showing a dis-
tinct difference between Rs and NRs, thus providing a
good indicator for deciding targets by dominants. In other
words, the higher-ranked individuals can effectively suppress
the physiological states of their rivals on the basis of the
signal patterns.

In addition to chemical profiles, individuals can rely
on visual features to identify individuals’ ranking in the
dominance hierarchy. The most spectacular case of visual
discrimination is reported from Polistes fuscatus and Polistes
dominulus wasps, where facial colour patterns are used by
nest-mates as a good visual indicator of individual ranking
([58,59]; see also [60] for the relationships between recognition
systems and dominance hierarchies [60]).
il.Trans.R.Soc.B
377:20200437
(b) Reinforcement of dominance hierarchy
Adding the time dimension to dominance hierarchies high-
lights their dynamical aspects, which involve temporal
changes in both individual-level attributes and interactions
among individuals. An initially subtle difference in power
relationships between individuals can be amplified over
time in a positive feedback manner (figure 2a), which will
contribute to the global stability of the dominance hierarchy,
especially in its maintenance phase (figure 1b). Self-organizing
mechanisms of amplification behind the dominance hierarchy
have been a main topic in the study of biological self-
organization [61].

The primary factor amplifying initial differences among
individuals is the winner and loser effect, in which an indi-
vidual who experienced winning (losing) in a previous
interaction retains the information and increases (decreases)
its probability of winning in the next interaction. Being
solely based on individual memory, this effect amplifies
between-individual differences and thus stabilizes the rank-
ing of individuals in a dominance hierarchy [62,63].
Bonabeau et al. [64] provide a basic model for understanding
this process. They modelled the formation of dominance hier-
archies in Polistes colonies. In the model, each individual i is
given an initial value of the intrinsic parameter F, which
changes depending on the outcome of a contest with another
individual j during dominance interactions. When iwins, Fi is
increased and Fj is decreased, both by a constant δ. The larger
the difference between opponents in the values of F, the
higher the probability of winning for the individual with
the larger F. Simulations clearly demonstrated that initially
subtle differences between individuals became amplified
towards the formation of a linear dominance hierarchy in a
self-organizing manner.

The classic model of Bonabeau et al. [64] can be extended
in various ways by incorporating features observed in real
colonies. First, the assumption of the constant shift of Fi per
interaction can be modified to reflect the empirical obser-
vations that the memory of losing is better retained than
that of winning [63,65–67]. Incorporating this fact might con-
tribute to better stability of the dominance hierarchy. Second,
Fi and δ can change intrinsically depending on an individ-
ual’s age. This modification could explain how an
individual’s age is often associated with her ranking in the
dominance hierarchy in eusocial Hymenoptera [20,31,34,35].
Third, the birth and death of individuals during the mainten-
ance phase, which were not incorporated in the model of
Bonabeau et al. [64], can act as a destabilizing force to the
hierarchy. How these factors affect the process of reinforcement
deserves further theoretical consideration.
(c) Network structure of dominance hierarchies
In the past two decades, network sciences have revolutio-
nized our view of social interactions in group-living
animals [68,69]. In the study of eusocial insects, network
analysis is increasingly used to detect patterns of social inter-
actions [70–74], including dominance interactions [6,75,76].
Individuals and interactions in a dominance hierarchy are,
respectively, represented by nodes and links of a network,
and the structure of a dominance hierarchy, or more generally
a dominance network, is characterized by several statistics
known as network properties, such as degree, clustering coef-
ficient, centrality and type/frequency of motifs [69,77,78]
(figure 2b). Here, the network can be regarded as a colony-
level ‘phenotype’ that can be compared among colonies
and among species.

A few studies have focused on global network structures
of dominance hierarchies to characterize the role of individ-
uals and the functioning of the dominance networks.
Shimoji et al. [6] examined dominance networks in the poner-
ine ant D. cf. indicum through behavioural observation for
4 days. The networks that they studied had direct links
from actors to recipients of unilateral dominance behaviours
(typically bite and jerk; [79]). They found that higher-
ranked NRs, but not top-ranked Rs, had a greater number
of out-degrees than expected from corresponding positions
in a randomized network (i.e. they served as ‘hub domi-
nants’), and that there were no specific NRs targeted by
many dominant NRs, making the network structure tree-
like. These results suggest that their dominance hierarchies
are maintained by the higher-ranked NRs rather than by
the top-ranked R in the colony. Nandi et al. [75] showed
another property of dominance networks using the polistine
wasp R. marginata. By applying Boolean network modelling,
they found that the dominance network of this wasp is highly
efficient in terms of information flow in the colony. Interest-
ingly, network structures in both species shared the same
characteristics in motif distribution, i.e. over-representation
of the ‘feed-forward loop’. This characteristic is also revealed
from motif analysis of directed contact networks in the seed
harvester ant Pogonomyrmex californicus [71]. These results
support the idea that these interaction networks in eusocial
insect colonies, and even their dominance networks, serve
as regulatory networks selected to maximize information
processing at the colony level [71].

One challenge for future studies will be longer-term
observations of dominance networks, which have been
enabled by the recent development of automated tracking
systems (e.g. [73]). Generally, the network structure of a
group is affected by the group size, which changes through
individual birth–death and immigration–emigration pro-
cesses [80]. The individual rank would also vary over time
as described above. Long-term observations, ideally through-
out the three phases of the colony (figure 1), will help to
capture such temporal dynamics of dominance hierarchies.
In addition, experimental removal of nodes with crucial
roles in a dominance network will allow examination of the
resilience and stability of the network (e.g. [81]), which is
exactly what we observe in the reformation phase (figure 1c).
These analyses could be combined with the assessment of
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colony-level productivity and efficiency as functional
measures. Moreover, future studies should clarify how
changes in individual attributes (see above) affect global net-
work structures in the modelling framework of biological
self-organization. Finally, it would be of interest to subject
dominance networks to analysis by phylogenetic compara-
tive methods, in which network statistics are treated as
multivariate phenotypes [82]. To facilitate such comparative
analyses, observation methods should be standardized (e.g.
[83]). These approaches would help to gain a more complete
understanding of the developmental and evolutionary build-
up of dominance hierarchies.
 tb
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6. Evolution of subordination
The initial driving force for the evolution of hostile inter-
actions among individuals within a group would have
most likely been interference competition over resources for
reproduction, which is simply understood by adaptation at
the level of individuals. In most dominance hierarchies, how-
ever, one characteristic distinguishing dominance behaviours
from interference competition, in general, is that the former
do not escalate into immediate lethality; that is, the loser
does not resist and instead seems to ‘obey’ in its subordinate
position [84]. In the general context of interference compe-
tition, the evolution of ‘obeying’ behaviours is understood
under the hawk–dove game in evolutionary game theory
[85], in which a severe cost of combat compared with the
individual’s resource-holding potential should favour obey-
ing behaviours as a dove strategy. However, the resulting
evolutionary stable state requires that all individuals in the
population realize the same fitness, which is not the case
under the reproductive division of labour in most dominance
hierarchies. Therefore, additional factors should be con-
sidered. Historically, this consideration has been elaborated
in the reproductive skew theory [86–88]. Here, we have
attempted to simplify the discussion by focusing on
subordinates.

Recent analyses of dominance hierarchies in animal
societies have been increasingly focusing on the efficiency
of information transfer at the colony level [71,75], where the
colony is typically viewed as a ‘superorganism’. However,
it is not obvious whether or how such group-level traits
have been achieved through adaptive evolution that is chiefly
driven by the evolutionary interests of individuals. A unique
feature characterizing eusocial insect colonies is that the evol-
utionary interest of a colony member is shared by the other
members to varying degrees. In the following sections, we
compare the outcome of docile behaviour of subordinates
with those of two possible alternative strategies. The first is
to leave the natal group and reproduce independently, and
the second is to ‘rebel’ against the hierarchy while staying
in the group. We clarify how docile behaviours can be adap-
tive by considering the shared evolutionary interest among
individuals in terms of inclusive fitness theory.

(a) Stay versus leave
We start our consideration with a group composed of unre-
lated individuals. If the lifetime reproductive success of
staying exceeds that of leaving, individual-level selection
should favour staying. The ‘staying’ subordinates, even cur-
rently with NR status, can eventually reproduce in their
group when the original R is lost, and the benefits of takeover
(known as nest inheritance) can exceed those obtained by
leaving the group. This explanation, based on direct fitness
benefit, has been applied to the evolution of helpers in
some vertebrate societies [89], and in eusocial insects seems
to best fit the dominance hierarchies observed among unre-
lated Polistes wasp foundresses. Subordinates are considered
to ‘make the best of a bad job’ by waiting (known as social
queuing) [90] to take over the top rank after the current domi-
nant dies [91–93]. If the focal subordinate can contribute to
the inherited benefit simply by staying, the degree of staying
can be adaptively raised on the basis of her eventual direct
fitness benefits. It is possible that this process leads to more
efficient dominance hierarchies.

However, there is a more substantial factor by which the
evolution of staying can be promoted even further, namely
the genetic relatedness between the focal subordinate and
her nest-mates. If the staying behaviour (and associated beha-
viours such as helping) of the focal subordinate improves the
fitness of genetically related dominants, the frequency of
alleles responsible for staying can increase. According to
the inclusive fitness argument, even lifelong sterility (with
cost c, which would have been obtained by leaving and pro-
ducing offspring in an independent colony) should pay for a
subordinate when Hamilton’s rule rb > c is fulfilled, where
the subordinate gives fitness benefit b (measured by repro-
ductive offspring of the dominant) to the dominants whose
genetic relatedness is r (figure 2c). Dominance hierarchies in
Polistes wasps are often formed among sisters [4]. The evol-
ution of staying behaviour and hence the formation of their
dominance hierarchies should be promoted even without
the direct fitness benefit for the staying subordinates when
independent colony foundation is risky. The above inclusive
fitness argument is a special case of the general explanation
of the evolution of sterile workers in eusocial insects [94],
where a daughter of the queen can enjoy inclusive fitness
benefit, even if she gives up independent colony foundation
as a next-generation R to become a sterile worker, by helping
her younger siblings develop into new Rs in the next gener-
ation. Likewise, the subordinate status of daughter workers
during dominance interactions with their mother queen can
be understood as the improvement of their inclusive fitness
through their younger siblings (but see [95]).
(b) Obey versus rebel
Even if subordinates stay in their natal nest, they can still
enjoy their direct fitness by self-reproducing there. In many
species of eusocial Hymenoptera, workers cannot mate but
retain the ability to produce males, which is indeed predicted
by inclusive fitness theory. This situation is known as the
evolutionary conflict over who reproduces in the colony
[96]. In this case, even the inclusive fitness benefit for subor-
dinates obtained by staying might be insufficient to result in
the formation of stable reproductive division of labour.
Nevertheless, in real dominance hierarchies, the ability of
self-reproduction seems to be well suppressed during their
maintenance phase (figure 1b), and the ‘obeying’ behaviour
is even correlated with the helping behaviours. At the
extreme, the subordinate status would be achieved without
dominance behaviours. This is realized through mechanisms
such as differential nutrition during pre-adult development
(e.g. royal-jelly feeding in honeybee larvae) and completely



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20200437

7
non-aggressive communications among individuals
mediated only by ‘honest’ chemical signals (e.g. queen man-
dibular pheromone in honeybees) [97–99]. In all of these
cases, the question is why subordinates finally ‘obey’ the
rule, i.e. refrain from reproducing, despite their potential
for self-reproduction that is realized in the reformation
phase (figure 1c).

If the evolutionary conflict were realized, the resulting
state of the colony would be the persistent absence of repro-
ductive division of labour. As discussed above, the
individual’s reproductive activity correlates with the domi-
nance behaviours. Consequently, all colony members would
be involved in ‘the war of all against all’. Artificial removal
of dominants from a dominance hierarchy (i.e. artificial
induction of the reformation phase; figure 1c) enables us to
get a glimpse of how the resulting instability of the hierarchy
could impair reproductive outputs of the Rs in a ‘tragedy of
the commons’ [100] manner. Cole [101] found that among
individuals of the ant T. allardycei in a queenless colony, the
time spent on dominance behaviours was negatively corre-
lated with the time spent on brood care. In orphaned
colonies of the ponerine ant D. cf. indicum, Tsuji et al. [102]
found that the instability of the colonies resulted in excessive
brood-care workload on the subordinate NRs and shortened
their lifespans. These results, often referred to as a colony-
level cost of worker reproduction [103], illustrate the
necessity of an efficient stabilizing mechanism in the
evolutionary conflict. The obeying behaviours of subordi-
nates in dominance hierarchies provide an implementation
of such a mechanism. Again, it should be stressed that the
resulting stability of the colonies would be impossible with-
out the inclusive fitness benefit for the subordinates, which
is underpinned by the relatedness of their siblings (the inclus-
ive fitness is equivalent to the group selection argument
that stresses the emergence of selection and heritability
components for the group-level phenotype such as the pro-
portion of subordinate individuals [104]). This view is
corroborated by observations of lethal combat between unre-
lated foundresses when peaceful behaviour no longer ensures
either direct or inclusive fitness benefits for a foundress [8].

The adaptive significance of dominance behaviours has
already been relatively well argued in previous studies
[7,98,105,106]. Our view of dominance hierarchies as a mech-
anism for ‘conflict resolution’ is close to the concept of
policing in eusocial insects [98,105]. On the basis of these ear-
lier studies, it is necessary to further clarify the relationship
between dominance and policing behaviours, especially the
concepts of ‘selfish worker policing’ (eating of worker-laid
eggs by reproductively active workers) [107], ‘second-order
altruism’ (policing behaviour with fitness cost) [108] and
‘social enforcement’ in more general contexts [109]. In
addition, the very idea that real dominance hierarchies in
eusocial insects have been adaptively fine-tuned in their effi-
ciency of information transfer at the colony level remains to
be directly tested. The self-organization models for the for-
mation of dominance hierarchies should be considered in
the light of evolution, and the inclusive fitness concept out-
lined above will play a crucial role.
7. Conclusion
Ever since the discovery of pecking order in the domestic
chicken by Schjelderup-Ebbe [110], dominance hierarchies
have been reported in various animal taxa, which has led
us to a deeper understanding of animal societies. In eusocial
insects, the dominance hierarchy plays a crucial role in regu-
lating which individuals become Rs in the colony. Figure 2
summarizes our bottom-up approach to understanding
the developmental and evolutionary build-up of these
dominance hierarchies. The dominance behaviours suppress
ovary development of NRs by modulating their physiological
states (bar graphs in figure 2a), and self-organizing processes
connect the local behavioural interactions and the global het-
erogeneity in reproduction among colony members (thick
arrow in figure 2a). Our understanding of the dominance
hierarchy has been revolutionized by network analysis,
which has provided quantitative measures of this colony-
level phenotype (figure 2b). With the notable exception of
some colonies in Polistes paper wasps where foundresses
are unrelated, dominance hierarchies of eusocial insects are
typically composed of genetic relatives, and inclusive fitness
benefit of subordinates explains why they accept their
positions in the hierarchy (figure 2c). The resulting reproduc-
tive harmony enables their dominance hierarchies to achieve
larger sizes than those in other animal societies.
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