
Li et al. Stem Cell Research & Therapy            (2022) 13:9  
https://doi.org/10.1186/s13287-021-02683-1

REVIEW

When stem cells meet COVID‑19: recent 
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Abstract 

Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory coronavirus 2 is currently spread-
ing throughout the world with a high rate of infection and mortality and poses a huge threat to global public health. 
COVID-19 primarily manifests as hypoxic respiratory failure and acute respiratory distress syndrome, which can lead 
to multiple organ failure. Despite advances in the supportive care approaches, there is still a lack of clinically effective 
therapies, and there is an urgent need to develop novel strategies to fight this disease. Currently, stem cell therapy 
and stem cell-derived organoid models have received extensive attention as a new treatment and research method 
for COVID-19. Here, we discuss how stem cells play a role in the battle against COVID-19 and present a systematic 
review and prospective of the study on stem cell treatment and organoid models of COVID-19, which provides a 
reference for the effective control of the COVID-19 pandemic worldwide.
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Background
Since December 2019, surveillance of influenza and 
related diseases has been carried out in Wuhan, China, 
and a number of cases of viral pneumonia have been 
found, all of which were diagnosed as viral pneumonia or 
pulmonary infection [1]. On January 12, 2020, the World 
Health Organization (WHO) officially named it 2019-
nCoV [2]. The virus was later renamed as severe acute 
respiratory syndrome coronavirus (SARS-CoV-2) by the 
coronavirus Research Group, and the WHO named the 
disease caused by this virus COVID-19. Subsequently, 
the WHO also classified the outbreak as a public health 

emergency of international concern and declared a global 
pandemic. As of 26 November 2021, 259,502,031  con-
firmed cases and 5,183,003 deaths have been reported 
globally (www.​WHO.​int).

Coronaviruses are pathogenic microorganisms that 
pose a serious threat to human and animal health and 
are known to cause colds and more serious diseases, 
such as Middle East respiratory syndrome (MERS) and 
severe acute respiratory syndrome (SARS). SARS-CoV-2 
is a novel coronavirus strain that has never been found in 
humans before [3, 4]. Since 2003, research on SARS and 
MERS coronaviruses has never stopped, and certain pro-
gress has been made in its natural origin and pathogenic 
mechanism. To date, however, there is no specific treat-
ment for SARS-CoV, MERS-CoV, SARS-CoV-2 and other 
HCoV infections. Fortunately, the COVID-19 vaccine has 
been marketed with the joint efforts of various countries. 
Upon vaccination, the body can be stimulated to produce 
corresponding protective antibodies, thereby mitigat-
ing the risk of infection with SARS-CoV-2. Nevertheless, 
SARS-CoV-2 virus remains cryptic up to now as its many 
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features including transmission, infection, and treatment 
are still waiting for unraveling [5]. The virus has been 
undergone various mutations that may influence the 
effectiveness of antibodies [6, 7]. Therefore, finding safe 
and effective treatments for COVID-19 has always been 
our goal.

Stem cells, especially mesenchymal stem cells (MSCs), 
have powerful immune regulation and tissue damage 
repair functions. In recent years, MSCs and lung stem/
progenitor cells (LSCs) have been widely used in the 
treatment of viral infections and various diseases, includ-
ing acute lung injury (ALI) [8]. Mesenchymal stem cell 
(MSC) therapy has also been in the spotlight since the 
COVID-19 outbreak [9]. Current studies have shown 
that MSCs can effectively reduce the severe inflamma-
tory response in patients caused by SARS-CoV-2, reduce 
lung injury, improve lung function, protect and repair the 
lung, and play a positive role in alleviating pulmonary 
fibrosis in COVID-19 patients.

In addition, many studies have shown that a variety of 
organoids derived from stem cells provide an ideal and 
sufficient model for exploring the possibility and mecha-
nism of SARS-CoV-2 infecting multiple organs, which 
can better serve clinical treatment research. Here, we dis-
cuss how stem cells will play a role in the battle against 
COVID-19 and present a systematic review and prospec-
tive of the study on stem cell-based therapy and disease 
modeling for COVID-19.

Overview of SARS‑CoV‑2 infection (COVID‑19)
Coronaviruses are a class of enveloped plus stranded 
RNA viruses that can cause severe respiratory, digestive 
and nervous system diseases in humans and various ani-
mals [10–12]. On the basis of phylogenetic analyses of 
viral nucleic acid sequences, the International Commit-
tee on taxonomy of viruses divides coronavirus into four 
genera:α、β、γ and δ. Among them, the β coronavirus 
are the most highly infectious and pathogenic, and they 
have led to the outbreak of the severe respiratory syn-
drome (SARS, SARS-CoV infection) in 2003, the Middle 
East respiratory syndrome (MERS, MERS-CoV infection) 
in 2012 and the Coronavirus disease in 2019 (COVID-19, 
SARS-CoV-2 infection). The genome of the SARS-CoV-2 
virus consists of 29,891 base pairs and encodes 9,860 
amino acids. It has approximately a 79% and 50% identity 
with the nucleotide sequences of SARS-CoV and MERS-
CoV, respectively [13, 14]. The diameter of SARS-CoV-2 
virus is approximately 80–120 nm, and it can encode 29 
proteins, among which the spike glycoprotein (S protein) 
expressed on viral envelopes is an essential structural 
protein to mediate the invasion of the virus into host cells 
[15]. After the S protein of SARS-CoV-2 binding with 
the angiotensin converting enzyme 2 (ACE2) receptor of 

host cells, the virus is absorbed and enters into the host 
cells and then replicates and spreads in large quantities 
(Fig. 1). The main target cells for SARS-CoV-2 infection 
are ACE2-positive cells, such as type II alveolar epithe-
lial (AT2) cells and resident alveolar macrophages in the 
lung, and the endothelial cells in the liver, kidney, hearts 
and intestines [16–20].

Symptoms of COVID-19 vary widely among individu-
als, ranging from asymptomatic infection to critical ill-
ness. A medical observation of 47 patients in the early 
stage of the epidemic found that fever, fatigue and dry 
cough were the main manifestations of COVID-19, and 
a few patients had expectoration and diarrhea [21, 22]. 
Most severe cases develop dyspnea or hypoxemia within 
a week and even rapidly developed ARDS, septic shock, 
metabolic acidosis and coagulation dysfunction in severe 
cases [21, 23, 24]. COVID-19 symptoms occur after an 
incubation period of approximately 5.2 days of infection, 
and the time from symptom onset to death ranges from 
6 to 41 days [25]. Through a retrospective analysis of the 
reported cases, it was found that the age of the confirmed 
cases was between 30 and 69 years old (77.8%), and male 
cases accounted for 51.4%. The death cases were mainly 
people aged 60  years or above, and they originally suf-
fered from cardiovascular diseases, hypertension and 
other basic diseases. Studies have confirmed that human 
respiration is an important mode of transmission for 
COVID-19, but it is not the only way to spread the infec-
tion. Moreover, aerosol transmission and gastrointestinal 
transmission have also been reported [26, 27]. The expo-
sure of the mucous membranes and unprotected eyes 
increases the risk of infection, and newborns may also 
be infected while in the uterus or during the perinatal 
period [28–31].

Although several vaccines have been successfully mar-
keted and successively given to people, COVID-19 has 
not been fully controlled globally. The effectiveness and 
safety of vaccines are still issues that need to be con-
cerned. And similar with other viruses, SARS-CoV-2 
accumulates nucleotide mutations over time [32]. Along 
with its further diffusion, more variants may continue 
to emerge, which may be subject to selective pressures 
from natural immunity, vaccines and therapeutic drugs. 
To complement the role of vaccines, the treatment of 
COVID-19 still needs to be continuously explored. 
Among these potential treatments, stem cell therapy has 
received extensive attention as a new treatment method.

Stem cells for COVID‑19 Therapy
Cell therapy is a significant treatment that has been 
applied in a variety of diseases, including lung [33–37], 
cardiovascular [38–40], liver [41, 42], kidney [43, 44] and 
other diseases [45–48]. Stem cells are primitive cells with 
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self-renewal ability and multidirectional differentiation 
potential and can differentiate into a variety of functional 
cells or tissues. Stem cell therapy involves cultivat-
ing new, normal, younger cells, tissues and even micro 
organs through isolation, culture, and directed differen-
tiation of the stem cells in  vitro and then transplanting 
them to specific parts of the body instead of the cells that 
are damaged or have died, thereby restoring body func-
tions. Stem cell therapy is available not only for severe 
COVID-19 patients but also to those who have recovered 
from severe COVID-19 complications to repair damaged 
lungs, making it an ideal treatment.

Currently, there are many applications and studies for 
experimental stem cell therapy in critically ill patients 
with COVID-19 (Table  1), especially MSC therapy [49]. 
MSCs are derived from the mesoderm and ectoderm 
at the early stage of embryonic development and have 
attracted increasing attention due to their multidirec-
tional differentiation potential, immunomodulatory 
properties and lack of ethical controversy [50–52]. With 
the development of regenerative medicine and preci-
sion medicine, MSCs have been isolated from different 

tissues, and used for specific tissue repair and regenera-
tion [53]. To date, MSCs can be obtained from a variety 
of adult tissues, mainly bone marrow, umbilical cord 
blood, adipose tissue, endometrium, uterine blood, 
embryos, etc. [54–56].

Bone marrow mesenchymal stem cells (BMSCs)
The first study for stem cell treatment in COVID-19 by 
Leng et al. reported that 7 COVID-19 patients improved 
their functional outcomes and promoted rehabilitation 
after giving intravenous clinical grade MSCs [57]. Seven 
COVID-19 patients (1 critically severe, 4 severe, 2 com-
mon type) were recruited by the Beijing YouAn Hospi-
tal in China from January 23, 2020 to February 16, 2020. 
Each patient received an intravenous infusion of 1 × 106 
MSCs per kilogram of body weight. No acute infusion-
related adverse or allergic reactions were observed 
within two hours after transplantation. Before the MSC 
transplantation, the patients presented with high fever, 
weakness, shortness of breath and hypoxia. However, 
at 2–4  days after transplantation, all of the symptoms 
had disappeared, and the lung function had improved 

Fig. 1  Schematic diagram illustrating COVID-19 pathophysiology and the potential mechanisms of MSC therapy
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significantly in all patients. In addition, this study sug-
gests that the absence of ACE2 and the high expression 
of certain trophic factors may be the immunomodulatory 
mechanism of MSCs.

Human umbilical cord derived MSCs (hUC‑MSCs)
The umbilical cord (especially Wharton’s jelly) is differ-
ent from the bone marrow and contains a high concen-
tration of MSCs. It is one of the most abundant sources 
of MSC. MSCs derived from the human umbilical cord 
(hUC-MSCs) can be extracted noninvasively, and the 
cells proliferate rapidly, making them the most suitable 
stem cells for the treatment of COVID-19. Alturi et  al. 
reported a patient treated with hUC-MSCs (3 doses 
each of 50 million 3 days apart with allogenic umbilical 
cord MSCs), and the patient was a 65-year-old COVID-
19 patient from China [58]. After treatment, there were 
no known adverse or hypersensitivity reactions. Wang 
et al. reported a phase I clinical trial of hUC-MSCs in the 
treatment of COVID-19 [59]. hUC-MSCs were infused 
intravenously three times on days 0, 3 and 6 in moder-
ate and severe patients (3 × 107 cells per infusion). No 
serious infusion-related adverse events were observed. 
A severe patient in the control group still had signifi-
cant lung lesions upon discharge. In patients treated with 
hUC-MSCs, the PaO2/FiO2 ratio improved, and the IL-6 
level decreased. Chest CTs showed that the lung lesions 
of patients with hUC-MSC infusion were well con-
trolled within 6 days and disappeared completely within 
2 weeks.

Shu et al. reported the efficacy and safety of the infu-
sion of hUC-MSCs for severe COVID-19, with an intra-
venous infusion of UC-MSCs performed in 12 patients 
with severe COVID-19 [60]. The results showed that 
compared with the control group, the hUC-MSC infu-
sion could reduce the levels of inflammatory CRP and 
IL-6, accelerate the recovery of the lymphocyte count 
and shorten the absorption period of lung inflammation. 
In addition, the hUC-MSC infusion improved the clini-
cal symptoms of weakness and fatigue, tachypnea, and 
hypoxia. The 28-day mortality of the treatment group 
was 0, while that of the control group was 10.34%.

Similarly, Peng et  al. reported the case of a 66-year-
old female patient who received hUC-MSC treatment 
[61]. The patient developed sore throat, cough, fever and 
SARS-CoV-2 after contact with a COVID-19 patient. The 
patient continued to deteriorate with conventional treat-
ment, but her pulmonary function improved significantly 
after an intravenous infusion of convalescent plasma (CP) 
and UC-MSCs. A few days later, her SARS-CoV-2 test 
was negative, and she recovered and was discharged from 
the hospital. Another study by Liang et  al. presented a 
case of a severe COVID-19 patient aged 65 years treated 

with hUC-MSCs [62]. The patient received 3 intrave-
nous injections of hUC-MSCs (5 × 107 cells each), and 
the allograft showed good immune tolerance. After the 
second intravenous injection, neutrophils had decreased, 
lymphocytes had increased, and CD4+/CD8+ T cells 
returned to normal levels. In addition, the patient’s virol-
ogy, pulmonary imaging, and clinical biochemical labora-
tory indicators were significantly improved.

Zhang et al. also reported a case of a 54-year-old man 
with a history of cough, chest tightness and fever for 
4  days [63]. He had no specific medical history other 
than a 2-year history of diabetes. Due to the deteriora-
tion of the patient’s condition and the serious organ 
damage caused by inflammation, human umbilical cord 
Wharton’s jelly derived MSC (hWJC) adoptive transfer 
therapy was proposed under the advice and guidance of 
the expert group. During the hWJC injection, other con-
ventional therapies were used as usual. No acute infu-
sion-related or allergic reactions, delayed hypersensitivity 
or secondary infection were observed within 2  h after 
transplantation. Two to seven days after transplantation, 
the symptoms of discomfort disappeared, the patient’s 
inflammatory state and lung function improved signifi-
cantly, and he was discharged from the hospital 7  days 
after treatment.

MSCs derived from other sources
COVID-19 patients treated with MSCs derived from adi-
pose tissue (AT-MSCs) were reported by Sanchez-Guijo 
et al. [64]. Thirteen adult patients with COVID-19 under 
invasive mechanical ventilation who had received anti-
viral and anti-inflammatory therapy received allogeneic 
AT-MSC treatment in this study. Based on the patient 
standard of 0.98 × 106 AT-MSCs/kg, 10 patients received 
2 doses, two patients received 1 dose, and another patient 
received 3 doses. There were no adverse events associ-
ated with the stem cell therapy. After treatment with the 
AT-MSCs, the inflammatory parameters such as C-reac-
tive protein, IL-6, ferritin and LDH were decreased 
and the lymphocytes were increased. Finally, clinical 
improvement was observed in 9 patients (70%), of which 
7 patients were discharged from the ICU.

MSCs derived from menstrual blood (MenSCs) have 
typical MSC characteristics such as self-cloning, rapid 
proliferation, and pluripotency [65]. MenSCs can be 
easily obtained from discarded menstrual blood in a 
noninvasive way, and can be obtained periodically and 
transplanted without trauma or ethical risk. Therefore, 
MenSCs have a greater clinical application potential than 
BMSCs and ADSCs. Tang et  al. reported that MenSCs 
can also be used as an alternative treatment for COVID-
19, especially in ARDS patients [66]. MenSC transplan-
tation increased the number of CD4+ lymphocytes and 
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decreased the expression of inflammatory markers. After 
transplant treatment, both the SAO2 and PO2 improved, 
and chest CTs showed the adsorption of bilateral pulmo-
nary exudates.

Pulmonary fibrosis is a serious complication in patients 
with COVID-19. Wu et al. reported a population of MSC-
like stem cells derived from human embryonic stem cells 
(hESCs), which they named immune-and-matrix-regula-
tory cells (IMRCs) [67]. Based on the success of IMRCs 
in the study of acute lung injury in a mouse model, they 
conducted a phase 1 clinical trial using hESC-IMRCs 
in patients with pulmonary fibrosis due to COVID-19 
[68]. In this trial, 27 COVID-19 patients with varying 
degrees of pulmonary fibrosis and respiratory symp-
toms received intravenous infusions of hESC-IMRCs at a 
dose of 3 × 106 cells/kg body weight. All patients showed 
clinical improvement at 84 days after treatment with the 
hESC-IMRC. The pulmonary fibrotic lesions were sig-
nificantly reduced, and the hematological and clinical 
chemical parameters remained within the normal range. 
None of the patients receiving cell therapy had any asso-
ciated abnormal reactions or adverse events. In addition, 
no tumor markers were detected in the serum, indicating 
that the intravenous infusion of hESC-IMRCs is safe for 
COVID-19 patients with lung injury.

Other stem cells
Allogeneic cardiosphere-derived cells (CDCs) are a type 
of cardiac stem cells that have a strong ability to differ-
entiate and regenerate the vasculature in vitro. After an 
injection into animals, CDCs can colonize, migrate and 
differentiate well. Singh et al. assessed the safety and effi-
cacy of another cell-based therapy (CAP-1002, derived 
from CDCs) in critically ill patients diagnosed with 
COVID-19 in 2019 [69]. They evaluated six patients in 
the age range of 19–75  years who had an intravenous 
infusion of CAP-1002, and no adverse events related to 
the administration were observed. The six patients with 
severe COVID-19 tolerated the CAP-1002 intravenous 
infusion well, and four of them were discharged. How-
ever, the mortality of 34 critically ill patients in the con-
trol group was 18%. These results support the safety of 
CAP-100 in COVID-19 patients.

Exosomes Derived from MSCs
Recent studies suggest that the therapeutic effects of 
MSCs, especially those that are immunomodulatory, 
can be largely attributed to paracrine effectors [70, 71]. 
Exosomes (EXOs) released by MSCs are one of the 
important components of paracrine factors. Thanks to 
its remote targeting and stability, some EXOs can replace 
MSCs from which they are derived to perform similar 
therapeutic functions. In a prospective nonrandomized 

open-label cohort study conducted by Sengupta et al. the 
safety and effectiveness of allogeneic bone marrow MSC-
derived exosomes (ExoFlo) was explored in the treatment 
of patients with severe COVID-19 [72]. Twenty-four 
patients aged 18–85 received a single 15 mL intravenous 
dose of ExoFlo and were evaluated for safety and effi-
cacy within 14  days after treatment. After the intrave-
nous infusion, there was no adverse reaction attributable 
to the ExoFlo treatment. The study had a survival rate 
of 83%, a cure rate of 71%, and a mortality rate of 16% 
(not related to ExoFlo treatment), while 13% of patients 
remained seriously ill. After the ExoFlo administration, 
in addition to the reduction in acute phase reactants, the 
reduction in neutrophils and lymphocytes was signifi-
cantly improved.

Compared with MSCs, MSC-EXOs can be isolated 
from patients in a non-invasive manner. They present 
the composition, physiological state and characteris-
tics of original MSCs and contain unique bioactive mol-
ecules [73]. Importantly, MSC-EXOs are small and easy 
to circulate, with low immunogenicity, long half-life, high 
stability and efficiency [74]. Moreover, use of EXOs is a 
cell-free therapy, which would minimize safety concerns 
upon injecting live cells by avoiding the transfer of cells 
that may have mutated or damaged DNA and the risk 
of malignant transformation associated with MSC infu-
sion [75]. However, MSC-EXO therapy is still in its early 
stage and many questions should be addressed before it 
can be widely used in clinic. For example, the qualities of 
MSC-EXOs need to be controlled, as the characteristics 
of EXOs depend on the state of MSCs, which decides the 
therapeutic effect [71]. Only when guidelines and stand-
ards for efficacy and safety issues are well established for 
the therapeutic effect of EXOs, the clinical application of 
MSC-EXOs could be accelerated.

Mechanisms of stem cell therapy for COVID‑19
Immune abnormalities are the main reason for the pro-
gression of severe COVID-19 patients. SARS-CoV-2 
rapidly replicates after invading the body, triggering the 
immune system to release inflammatory cells and anti-
bodies. In most cases, the virus is smoothly cleared by 
the immune system of the body. However, after SARS-
CoV-2 infection, the immune regulatory network of the 
body is unbalanced, and a large number of inflammatory 
cytokines are released, such as tumor necrosis factor 
(TNF)-α, granulocyte colony-stimulating factor (GCSF), 
inter-leukin (IL)-1α, IL-12, IL-1β, IL-2, IL-6, IL-7, IL-10 
(Th2) and IFN-γ (Th1), resulting in cytokine storm syn-
drome (CSS) [21, 23]. The mechanism of the cytokine 
storm causes further ARDS, acute cardiac injury and 
secondary infection, leading to generalized sepsis and 
multisystem failure. Accumulating studies have shown 
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significant increases in plasma cytokine levels occur in 
patients with severe COVID-19, suggesting that CSS 
plays an important role in SARS-CoV-2 deaths. Avoiding 
the CSS may be the key for the treatment of COVID-19 
infected patients.

MSCs possess extensive immunoregulatory abilities 
and can regulate both the innate immune system and the 
adaptive immune system, making them the most prom-
ising cell-based therapy for COVID-19 [50, 76]. As indi-
cated in Fig. 1, MSCs can secrete many types of soluble 
factors, such as nitric oxide, indoleamine 2,3-dioxyge-
nase, prostaglandin E2, TGF-β and IL-10 by paracrine 
secretion, as well as the release of extracellular vesicles 
and EXOs to suppress excessive immune responses and 
CSS. In addition, MSCs can also make direct interactions 
with various immune cells including lymphocytic T cells, 
B cells, macrophages, neutrophils and NK cells to regu-
late the intensity and balance of the immune response 
[77]. Moreover, studies have found that adult cells only 
produce interferon when the virus invades, which acti-
vates hundreds of genes that resist viral infection and 
recruits immune cells to resist the viral infection, while 
stem cells can be independent of interferon and can con-
tinuously activate many antiviral genes.

In addition to regulating immunity, MSCs also have 
promising advantages in the treatment of lung injury and 
repair caused by viral infections. MSCs have the potential 
function of multipotent differentiation and can produce a 
variety of cytokines and growth factors, which can treat 
or repair virus-induced lung tissue damage by affecting 
the PI3K/Akt, Wnt, NF-κB and other cell signaling path-
ways [52]. After an intravenous injection, some of the 
MSCs homing in the lungs can differentiate into alveolar 
epithelial cells and pulmonary vascular endothelial cells 
[78], which can increase the secretion of alveolar surface 
active substances and promote vascular regeneration, 
thus promoting injury repair. In addition, MSCs can also 
promote the repair of other damaged tissues in patients 
with COVID-19. Studies have shown that MSCs activate 
a variety of repair mechanisms by secreting cytokines, 
including anti-inflammatory and anti-apoptotic effect 
factors, and promote angiogenesis to promote the repair 
of the kidney and intestine.

Challenges in stem cell therapy of COVID‑19
MSC-mediated immunomodulation and regenera-
tive therapy have been suggested for the treatment of 
COVID-19. However, there are still many challenges in 
treatment using MSCs. The main technical challenge 
is the low homing efficiency of the MSCs [79]. Intrave-
nous injection of MSCs shows low homing efficiency, 
and the cells are trapped in pulmonary capillaries. 

This process can be partially explained by the insuffi-
cient production of homing factors (such as CXCR4) 
on MSCs [80, 81]. According to reports, the pres-
ence of MSCs gradually leads to a significant decrease 
in the expression of homing factors during in  vitro 
propagation [82]. Several strategies have been used to 
improve the homing ability of MSCs, including targeted 
drug delivery, gene modification, magnetic guidance, 
in  vitro priming, cell surface modification, and radio-
therapy techniques [83, 84]. In addition, other factors 
include the source and dose of MSCs, the time win-
dow of administration, the route of administration, the 
frequency of administration, cell isolation and growth 
strategies, etc., which require further exploration and 
optimization. MSCs also have a low internal survival 
rate, and there is donor variability. These issues need to 
be urgently solved.

MSC-mediated therapy of COVID-19 also faces 
problems such as immunogenicity, a limited num-
ber of cells, and the possible risks of infusion [85]. In 
terms of safety and efficacy, the clinical use of autolo-
gous BMSCs is the best method, but it takes quite a 
long time to produce clinically relevant numbers of 
stem cells, which is not always feasible in the current 
COVID-19 emergency. Rapidly preparing the optimal 
number of clinical grade MSCs and providing them 
during treatment is an important challenge for stem 
cell therapy [86]. For example, BMSCs are scarce in pri-
mary tissues, so these cells need to be expanded in vitro 
to obtain hundreds of millions of cells as a therapeutic 
dose. Such cell expansion takes several weeks. In the 
current urgency of the epidemic, managing time, cost, 
GMP-grade reagents and appropriate quality testing are 
another challenge [87]. In addition, the genomic stabil-
ity and regenerative potential of expanded MSCs may 
be compromised, which raises another concern about 
the safety of expanded MSCs for clinical use. In addi-
tion, stem cell therapy is expensive, and most people 
may not be able to afford it [88].

MSC transplantation for the treatment of COVID-
19 may also have infusion risks: first, there are product 
risks related to the stem cell quality standards and pro-
duction processes, and these include fever and allergic 
reactions caused by the heterologous substances such 
as serum and the culture medium added during the 
culturing process. The second is the risk related to the 
route of administration of stem cells and the distribu-
tion in the body after infusion [89, 90]. After intra-
venous administration of stem cells, they first pass 
through the pulmonary circulation. An impaired lung 
function may further increase the burden of the lung 
microcirculation, resulting in decreased gas exchange 
and an increase in the heart load. Close monitoring of 
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respiratory and circulatory indicators after infusion can 
help to detect possible infusion risks in time.

Stem cells in modeling multiorgan infection 
by SARS‑CoV‑2
In addition to being used for therapy, stem cells also play 
a key role in modeling COVID-19 disease. In the past 
decade, organoid technology has been one of the most 
important advances in stem cell research. Three-dimen-
sional (3D) organoids are in vitro tissue models derived 
from stem cells, including adult stem cells (ASCs) or 
pluripotent stem cells (PSCs), which contain multiple 
organ-specific cell types, can truly simulate the physi-
ological structure and function of organs in  vivo and 
are called "organs in-a-dish" [91]. At present, a variety 
of organoids have been successfully established, such as 
retinal-, lung-, brain-, and gastrointestinal-organoids 
[92–96]. They have been rapidly and widely used in many 
applications, including basic research and translational 
medicine.

The SARS-CoV-2 virus that caused the COVID-19 pan-
demic primarily targets the respiratory epithelium and 
causes acute respiratory distress syndrome. Clinical stud-
ies over the past year have shown that SARS-CoV-2 may 
cause multiple organ dysfunctions in patients, and the 
presence of the virus has been detected in various organ 
systems [97]. To investigate the possibility of SARS-
CoV-2 infection in multiple organs, stem cell models of 
different organ systems, including the lung, intestine, 
heart, and brain, can serve as a tool for the direct study of 
multiple organ damage in COVID-19 (Table 2).

Adult stem cell derived model
The first study of using organoids to model SARS-CoV-2 
infection was completed by Zhao et  al. [98]. This study 
explored the mechanism by which SARS-CoV-2 attacks 
the human liver. They used liver bile duct-derived pro-
genitor cells embedded in Matrigel to assemble long-term 
extensible 3D structures known as liver ductal organoids. 
Based on this liver organoid model, it was confirmed that 
SARS-CoV-2 can infect bile duct cells and downregulate 
the expression of genes related to cellular tight junctions 
and bile acid transport in bile duct tissue, suggesting that 
bile duct dysfunction may be the cause of liver injury in 
some COVID-19 patients. In addition, the expression of 
apoptosis-related factors in SARS-CoV-2-infected orga-
noids was upregulated, which provides an important tool 
for the study of novel coronavirus cell affinity, pathogenic 
mechanisms and subsequent drug development.

SARS-CoV-2 is thought to be transmitted through the 
respiratory tract and infect lung. Youk et al. developed a 
long-term feeder free (3D) culture technique to extract 

human lung alveolar type 2 (hAT2) cells from primary 
human lung tissue to study the response to SARS-CoV-2 
infection [26]. It was found that the virus replicated rap-
idly in the infected cells, and the expression of interferon 
related genes and proinflammatory genes increased. 
This model provides a useful tool for the study of the 
pathogenesis of SARS-CoV-2. Similarly, Katsura et  al. 
established a feeder free, scalable, chemically defined 
and modular alveolar circle culture system for the pro-
liferation and differentiation of human alveolar type 2 
cells/pneumocytes extracted from primary lung tissue 
[99]. The cultured lung cells expressed ACE2 and there-
fore could be infected by SARS-CoV-2. Alveolar spheres 
infected with the virus can reflect the characteristics of 
the COVID-19 lungs, including interferon (IFN)-medi-
ated inflammatory reactions, loss of surfactant proteins, 
and apoptosis. The results of the study by Tindle et  al. 
also validated a human lung model of COVID-19, which 
can be immediately used to study the pathogenesis of 
COVID-19 and to review new therapies and vaccines 
[100].

Additionally, Zhou et  al. found that SARS-CoV-2 can 
infect the intestinal organs of humans and bats and can 
maintain strong viral replication ability [101]. In this 
study, bat and human intestinal organoids were con-
structed by intestinal stem cells using a previously 
reported method [102]. Then, nasopharyngeal samples 
obtained from COVID-19 patients were cocultured with 
human or bat intestinal organoids, and the cultured 
supernatant was used to reinfect the organoids. The test 
results showed that the viral load in the intestinal organs 
increased rapidly over time. In addition, the researchers 
found that both the ACE2 and TMPRSS2 expression lev-
els required for SARS-CoV-2 to invade the host cells were 
significantly improved in differentiated human intestinal 
organoids and the distribution of ACE2 and TMPRSS2 
protein in bat intestinal organoids. Similarly, Lamers 
et al. established a 3D model of human small intelligent 
organisms (hSIOs) from primary gut endothelial stem 
cells and carried out viral infection experiments [103]. 
These research results showed that in hSIOs, intestinal 
cells are easily infected by SARS-CoV and SARS-CoV-2 
and support SARS-CoV-2 replication.

PSC derived stem cell model
Han et  al. first reported the use of hPSC-derived lung 
organoid models to study COVID-19 disease and the use 
of this model in the screening of therapeutic drugs [104]. 
Three drugs approved by the FDA for COVID-19 infec-
tion were successfully verified as effective in this pulmo-
nary organ model. Before this, SARS-CoV-2-infected cell 
lines were used to screen drugs. However, it is difficult 
for the cell lines to simulate the behavior of tissue cells 
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with regard to the pathophysiological process after viral 
infection, and organoids induced by hPSCs can partially 
simulate the real organ signals, which makes the research 
of the screened drugs have more clinical significance. For 
this, Han et  al. also developed hPSC-derived lung and 
colonic organoids (hPSC-LOs and hPSC-COs) to explore 
the response of colonic cells to SARS-CoV-2 infection 
and optimized as in  vitro platforms for high through-
put drug screening. Using these platforms, they identi-
fied entry inhibitors of SARS-CoV-2, including imatinib, 
mycophenolic acid (MPA) and quinacrine dihydrochlo-
ride (QNHC), which significantly inhibit SARS-COV-2 
infection of both hPSC-LOs and hPSC-COs on physi-
ologically relevant levels [105].

Duan et al. established a coculture system of lung and 
macrophages by directional differentiation of hSCs and 
simulated the host pathogen interaction and immune 
response caused by SARS-CoV-2 infection [106]. This 
study found that in the early stages of infection, M2 
macrophages can eliminate SARS-CoV-2 by preventing 
viruses from entering target cells and enhancing the anti-
inflammatory effects of macrophages. They also praised 
the hPSC induction model for providing a large number 
of cells with a genetic background, thus avoiding con-
cerns about histocompatibility and facilitating reliable 
mechanical and therapeutic research.

Additionally, Huang et  al. simulated the initial infec-
tion of alveolar epithelial cells by SARS-CoV-2 using 
AT2s derived from human induced pluripotent stem cells 
(hiPSCs) that had been adapted to an air–liquid interface 
culture [107]. They found a type of rapid transcriptional 
change in the infected cells, characterized by a shift to 
an inflammatory phenotype, including the upregula-
tion of NF-κB signal transduction and the disappearance 
of mature alveolar programs. Drug testing confirmed 
the effectiveness of remdesivir and TMPRSS2 protease 
inhibition and verified the hypothetical mechanism of 
virus entry into alveolar cells. The stem cell model sys-
tem of this research group revealed the intrinsic cellular 
response of lung target cells to SARS-CoV-2 infection, 
which is helpful for drug development.

Samuel et  al. highlighted the potential of organoids 
derived from hESCs for the in-depth study of diseases 
with specific physiological and pathological character-
istics and provided an excellent model for the develop-
ment of new drugs and precision therapy [108]. Their 
results showed that androgen signaling is a key regulator 
of ACE2 levels, and treatment with anti-androgen drugs 
reduced the expression of ACE2 and protected the lung 
organs derived from hESCs against SARS-CoV-2 infec-
tion. These findings provide insights into the mechanism 
of disproportionate male susceptibility to the disease and 
identify anti-androgen drugs as candidate therapies for 

COVID-19. Pei et al. also generated human lung airway 
and alveolar organoids from hESCs. These organoid sys-
tems can not only simulate SARS-COV-2 lung infection 
as a pathophysiological model to study SARS-COV-2 
infection, but also be used for discovery and testing of 
targeted drugs for COVID-19 treatment [109].

The first evidence of direct infection of SARS-CoV-2 
in human brain organoids came from the team of the 
University of Hong Kong, who used pluripotent induced 
stem cells to create a human brain organoid. The exten-
sive expression of viral proteins and infectious virus 
particles was detected in the neurospheres and brain 
organoids infected by SARS-CoV-2. SARS-CoV-2 infec-
tion was localized in TuJ1 (neuron marker) and Nestin 
(neural stem cell marker) positive cells in the 3D human 
brain organoids, indicating that SARS-CoV-2 can directly 
affect cortical neurons and neural stem cells [110].

Then, Ramani et  al. used iPSC-derived human brain 
organoids to establish a test system for SARS-CoV-2 
infection, which provides an indication of the potential 
neurotoxic effects of SARS-CoV-2 [111]. Through the 
development of a broad platform using a system-wide 
human cell lineage and organoids, Yang et al. found that 
pancreatic α and β cells, liver organs, cardiomyocytes and 
dopaminergic neurons could all be infected with SARS-
CoV-2 by pseudoentry and live SARS-CoV-2 system 
[112].

Some researchers have also used human induced pluri-
potent stem cell-derived cardiomyocytes (hiPSC CMS) 
as a model to study the mechanism of SARS-CoV-2 car-
diomyocyte-specific infection. SARS-CoV-2 infection 
was highly tolerated in liver organoids, and SARS-CoV-2 
infected cardiomyocytes in an ACE2- and cathepsin-
dependent manner in vitro, which could be inhibited by 
the antiviral drug remdesivir [113–116].

In addition, Monteil et al. established human vascular 
and renal organoids that were induced by iPSCs in vitro 
and found that organoid infection caused by SARS-
CoV-2 can be inhibited by human recombinant soluble 
ACE2 (hrsACE2) and that hrsACE2 inhibits SARS-CoV-2 
infection in a dose-dependent manner [117]. It has been 
directly demonstrated that hrsACE2 can be used as an 
antiviral drug for the treatment of COVID-19.

Conclusion and future perspectives
In general, vaccination is undoubtedly the best choice to 
fight against the COVID-19 pandemic. If universal vacci-
nation can be achieved, an immune barrier will be estab-
lished in population to effectively block the continuous 
transmission of SARS-COV-2. However, data from current 
clinical studies cannot determine the duration of COVID-
19 vaccine protection, and no vaccine can achieve 100% 
protection. A small number of people even achieve no 
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protective efficacy from vaccination, or are still infected, 
which is related to both the characteristics of the vaccine 
itself and the individual health condition of the recipient. 
Therefore, other therapies based on scientific knowledge 
are also viable options in the future, such as stem cell ther-
apy. Previously, stem cell therapy was attempted in patients 
with severe H7N9 avian influenza, and good results were 
achieved. Even if drugs kill and repel the virus, they may 
damage the lungs, causing sequelae. However, stem cell 
therapy can repair the lungs if it is effective and can trans-
plant a new lung, thus fully restoring the respiratory func-
tion. Recently, a large number of preliminary studies have 
shown that stem cells show safety and effectiveness in the 
treatment of severe COVID-19 disease, showing good 
potential.

In addition to a large number of in  vivo and external 
studies, thus far, more than 100 clinical trials for COVID-
19 are on the international clinical research registration 
website (clinicaltrials.gov), and most of the application 
projects are focused on the target population for critical 
COVID-19 patients. Stem cells were derived from tissues 
such as the umbilical cord, umbilical cord blood and den-
tal pulp, with umbilical cord MSCs being the most com-
monly used. hUC-MSCs are abundant and convenient to 
prepare, are considered to have the functions of inhibiting 
the inflammatory response, improve damaged tissue nest-
ing and repair, and play an important role in the treatment 
of autoimmune diseases. As mentioned earlier in this study, 
allogeneic MSCs have been basically used to treat COVID-
19 patients, and no serious adverse events associated with 
MSC administration were observed. On the one hand, after 
MSCs infusion, MSCs are able to increase the number of 
lymphocyte and regulatory DCs to improve their antiviral 
capacity which down-regulates levels of the dominating 
markers of inflammation and ROS to diminish the inflam-
mation and oxidative stress such as the C-reactive protein 
and pro-inflammatory cytokines including IL-6, TNFα, 
IL-8. Meanwhile, the number of infiltrated immune cells 
decreases significantly [62]. On the other hand, MSCs 
can increase the level of IL-10 which functions as an anti-
inflammatory protein to activate regulatory cells such as 
Tregs [118], and reduce the expression levels of TNF-α as 
well as IL-12 in the blood. In addition, there are a num-
ber of projects using the combination of immune cells or 
inhibitory drugs with stem cell therapy interventions, and 
there are new intervention methods using stem cell-derived 
EXOs for atomization inhalation therapy.

Traditional virus research tools are cell lines or labo-
ratory animals, but they cannot effectively simulate the 
infection process of COVID-19 and the real mechanisms 
within the body. The organoids induced by stem cells can 
better reflect the effect of SARS-CoV-2 on human tissues 
because they resemble real tissues, contain multiple cell 

types after growth, and have a short culture cycle in vitro. 
The above studies indicate that organoids have become 
a powerful tool for the study of novel coronaviruses. In 
recent years, organoid technology has developed rapidly 
and has been widely used in the study of organ develop-
ment, the construction of disease models, drug screening 
and individualized medical treatment.

However, the treatment of COVID-19 with stem cells still 
faces many difficulties and challenges. Since stem cell ther-
apy is still in the experimental stage, few stem cell therapies 
have been approved thus far, and a small number of them 
are experimental treatments used in sympathetic usage. 
At the same time, the treatment of COVID-19 with stem 
cell therapy still needs to overcome many technical diffi-
culties. First, the current infection rate of COVID-19 has 
increased, but the number of patients with no disease and 
mild disease is increasing, resulting in fewer cases of severe 
clinical patients. Therefore, it is more difficult to recruit 
patients for clinical trials. Second, stem cell therapy still 
lacks preclinical experimental data, especially data from 
animal models of lung injury caused by SARS-CoV-2 infec-
tion. Third, the biological activity, cell dryness and purity 
of stem cells may change in different production batches, 
which will affect the final efficacy. Fourth, the therapeutic 
effect of stem cells from different tissue sources may vary 
greatly. In addition, the in vitro culture conditions of stem 
cells and organoids are also important quality control con-
ditions that affect clinical trials.

Overall, although the clinical research of stem cells 
is still in its infancy, with the continuous exploration of 
stem cell clinical research and the continuous mining 
of data, stem cell therapy has broad clinical application 
prospects and a far-reaching significance. We also hope 
that the continuous improvement of stem cell therapy 
can save more COVID-19 patients with severe disease 
and save more lives.
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