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Abstract

Background: Cellular senescence is a complex stress response that impacts cellular function and organismal health.
Multiple developmental and environmental factors, such as intrinsic cellular cues, radiation, oxidative stress,
oncogenes, and protein accumulation, activate genes and pathways that can lead to senescence. Enormous efforts
have been made to identify and characterize senescence genes (SnGs) in stress and disease systems. However, the
prevalence of senescent cells in healthy human tissues and the global SnG expression signature in different cell
types are poorly understood.

Methods: This study performed an integrative gene network analysis of bulk and single-cell RNA-seq data in non-
diseased human tissues to investigate SnG co-expression signatures and their cell-type specificity.

Results: Through a comprehensive transcriptomic network analysis of 50 human tissues in the Genotype-Tissue
Expression Project (GTEx) cohort, we identified SnG-enriched gene modules, characterized SnG co-expression
patterns, and constructed aggregated SnG networks across primary tissues of the human body. Our network
approaches identified 51 SnGs highly conserved across the human tissues, including CDKN1A (p21)-centered
regulators that control cell cycle progression and the senescence-associated secretory phenotype (SASP). The SnG-
enriched modules showed remarkable cell-type specificity, especially in fibroblasts, endothelial cells, and immune
cells. Further analyses of single-cell RNA-seq and spatial transcriptomic data independently validated the cell-type
specific SnG signatures predicted by the network analysis.

Conclusions: This study systematically revealed the co-regulated organizations and cell type specificity of SnGs in
major human tissues, which can serve as a blueprint for future studies to map senescent cells and their cellular
interactions in human tissues.

Keywords: Senescence, Network, Transcriptome, Human tissues, RNA-seq, Single cell

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: bin.zhang@mssm.edu
1Department of Genetics and Genomic Sciences, Icahn School of Medicine at
Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
2Mount Sinai Center for Transformative Disease Modeling, Icahn School of
Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029,
USA
Full list of author information is available at the end of the article

Xu et al. Molecular Neurodegeneration            (2022) 17:5 
https://doi.org/10.1186/s13024-021-00507-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s13024-021-00507-7&domain=pdf
http://orcid.org/0000-0002-9549-5653
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:bin.zhang@mssm.edu


Background
Cellular senescence is a complex stress response associ-
ated with four inter-dependent hallmarks: cell-cycle
withdrawal, macromolecular damage, secretory pheno-
type, and deregulated metabolism [1]. The first report of
cellular senescence described human fibroblasts reaching
the end of their replicative lifespan in vitro [2]. Subse-
quent studies demonstrated that cells could prematurely
enter senescence when exposed to adverse stimuli, in-
cluding radiation, oxidative stress, telomere attrition,
and oncogene signaling [3]. Senescence contributes to
physiological processes such as embryonic development,
regeneration, cell fate reprogramming [4], and is benefi-
cial in wound healing and tumor suppression [5, 6].
Meanwhile, the accumulation of senescent cells may lead
to various human diseases, including pulmonary fibrosis,
hepatic steatosis, diabetes, and neurodegenerative dis-
eases [7–10]. As senescence is closely associated with
human diseases from multiple organs, the removal of
senescent cells has been proposed to improve
senescence-associated pathologies [11, 12].
Cellular senescence can be activated and maintained

through diverse pathways [13]. Among them, p53/
CDKN1A (p21) and CDKN2A (p16) /pRB pathways are
central for cell cycle arrest. During the process of cellu-
lar senescence, senescent cells often display enlarged
and flattened cell shape, vacuole accumulation, enhanced
beta-galactosidase activity at pH 6.0 (SAβ-gal), and
senescence-associated heterochromatin foci [14]. They
also secrete a cocktail of inflammatory and stromal regu-
lators [15], referred to as the senescence-associated
secretory phenotype (SASP) [16]. These SASP factors,
including interleukins, chemokines, growth factors, and
proteases, are mainly regulated by NF-κB, C/EBPβ
(CEBPB), p38MAPK, and mTOR signaling pathways [17–
21]. Although senescent cells exhibit morphological
changes with activation of cell cycle inhibitors and rele-
vant SASP, no single marker is reliable for the in vivo
recognition of senescent cells [22]. The knowledge of
how senescence genes are expressed and co-regulated in
various human tissues is limited.
The recent advances in sequencing technologies make

genome-wide profiling of senescence-related signatures
feasible. The transcriptomic and proteomic patterns of
senescent cells have been studied in multiple model sys-
tems under different conditions [23–25]. The senescence
gene (SnG) database CellAge was constructed by a com-
prehensive literature search of gene manipulation experi-
ments [26]; most genomic profiling and genetic
manipulations were based on in vitro systems such as
cell lines. The in vivo expression patterns of SnGs across
multiple human tissues remain unknown, and the cell-
type specific molecular signatures of cellular senescence
have not been revealed. In this study, we applied our

previously established system biology approach [27–30]
to identify co-expressed networks of SnGs in 50 non-
diseased human tissues. We identified co-expression
structures of SnGs and constructed a consensus senes-
cence network conserved across multiple healthy tissues.
To characterize the cell-type specific signatures of cellu-
lar senescence, we further analyzed single-cell RNA-seq
(scRNA-seq) in six human tissues and performed an in-
tegrative analysis with tissue-specific co-expressed gene
modules.

Materials and methods
GTEx bulk RNA-seq processing
To analyze bulk RNA-seq datasets of human tissues, we
downloaded the raw count of RNA-seq data from the
GTEx (v8) database. After filtering the tissues with less
than 20 samples, we obtained RNA-seq samples from 50
tissues. Each tissue contained 20 to 663 samples. The
samples were collected from non-diseased tissues of 948
individuals 20–80 years old. For each tissue, we used
genes with an expression level higher than one log2CPM
(count per million) in more than 25% of the samples for
analysis. The read count data were normalized using a
trimmed mean of M-values normalization (TMM)
method to adjust for sequencing library size difference
[31]. The normalized gene expressions were log2 trans-
formed. We applied a linear model to adjust for the co-
variates including “SMCENTER” (collection sites),
“SMRIN” (RNA integrity), “SMTSISCH” (ischemic time),
“SMEXNCRT” (exonic rate), “SMRRNART” (rRNA
rate), “SMNTERRT” (intergenic rate) and “SEX” (gen-
der). The residuals from the regression model were used
for downstream analyses, including network construc-
tion and age correlation. As the age of GTEx donors was
recorded in a ten-year range, the mean value of the age
range was used for correlation analysis.

MEGENA co-expression network analysis
We constructed gene co-expression networks from nor-
malized and covariate-adjusted gene expression data. As
age may influence senescence geneexpression, we con-
structed two sets of gene co-expression networks
through the established multiscale gene co-expression
network analysis (MEGENA) [27–30], one based on the
data adjusted for age and the other from the data with-
out age adjustment. Briefly, Pearson correlation coeffi-
cients (PCCs) were computed for all gene pairs. Then
significant PCCs were filtered by a false discovery rate
(FDR) cutoff of 0.05. The ranked significant PCCs were
iteratively tested for planarity to grow a Planar Filtered
Network (PFN) using the PMFG algorithm [32]. The re-
sulted PFN was analyzed by Multiscale Clustering Ana-
lysis (MCA) to identify co-expression modules at
different scales of compactness. The Multiscale Hub

Xu et al. Molecular Neurodegeneration            (2022) 17:5 Page 2 of 20



Analysis (MHA) was performed to identify hub genes
highly connected in each cluster. As our goal was to
construct co-expression networks for the whole senes-
cence landscape, we implemented the MEGENA pipe-
line by constructing “unsigned” networks (default
parameter) where the connections of nodes only repre-
sent their relatedness, regardless of positive or negative
correlations.

Module annotation and enrichment analysis
To annotate the biological functions of the co-expressed
modules, we applied ClusterProfiler to perform Fisher’s
exact test of the module genes against the REACTOME
pathways from the Molecular Signatures Database
(MSigDB) [33]. To identify cell-type enrichment of net-
work modules, we obtained marker genes of different
cell types from the PanglaoDB database [34], and per-
formed Fisher’s exact test by ClusterProfiler to compare
the module genes and marker genes in each cell type.
To analyze the module correlation with age, we calcu-
lated the module eigengene (the first principal compo-
nent of module gene expression profile) by Principle
Component Analysis (PCA). Then we performed Spear-
man correlation analysis to calculate the correlation be-
tween module eigengene and the donor age. Multi-
testing p-values were adjusted by the BH method.

Clustering of the CellAge SnGs and SnG-enriched
modules
To study the distribution patterns of the CellAge SnGs,
we performed a two-way clustering analysis of the Cel-
lAge SnGs and their enriched modules. We first con-
structed a binary presence matrix that contained the
CellAge SnGs as the rows and the SnG-enriched mod-
ules as the columns. In the presence matrix, 1 indicated
the presence of SnGs in each module, while 0 indicated
the absence. Then the matrix was used for the euclidean
distance based k-means (k = 4) clustering analysis imple-
mented by the ComplexHeatmap [35] (v2.6.2) package
in R. The clustering analysis was performed to identify
the clusters of the CellAge SnGs and SnG-enriched
modules, respectively. The k-means clustering was per-
formed 100 times to generate a final consensus cluster.
To visualize the dendrogram, the ComplexHeatmap
showed the hierarchical clustering for the heatmap and
then split the dendrogram based on the k-means
clusters.

Network aggregation and gene neighborhood analysis
To identify the conserved co-expression networks in
multiple tissues, we performed the network aggregation
based on the MEGENA co-expression networks and the
125 SnG-enriched modules. For each tissue, we identi-
fied the genes from the SnG-enriched modules. Then we

constructed the co-expression network among these
genes based on the links of the MEGENA network. The
resultant networks in different tissues were merged by
calculating the conservation weights for the nodes and
edges. The node conservation weight was defined as the
total frequency of the node gene in the tissues showing
SnG-enrichment. Similarly, the edge conservation weight
was defined as the total frequency of the gene-gene co-
expression link in different co-expression networks. To
obtain a global conserved co-expression network, we fil-
tered the less conserved nodes with weights < 5, and
constructed the final aggregated network from all the
SnG-enriched modules.
To generate consensus networks of gene neighbor-

hoods of CDKN1A and TP53, we first extracted the
neighbor genes of the two genes in each MEGENA net-
work. For each MEGENA network, we extracted 3-layer
neighbor genes by iteratively searching the network
edges that were connected to the target genes. The net-
work among the neighbor genes was constructed based
on the MEGENA network links. Then we merged the
neighborhood networks of CDKN1A and TP53 in all the
tissues and calculated the conservation weights for the
network nodes and edges. The node conservation weight
corresponded to the total frequency of the node being
the neighborhood genes in all the tissues. To obtain a
global conserved co-expression network, we filtered the
less conserved nodes with weights < 5, and constructed
the final consensus neighborhood network from all
tissues.

Single-cell RNA-seq analysis
We curated several scRNA-seq datasets of different hu-
man tissues from four different publications. For the
brain tissue, the single-nuclei RNA-seq (snRNA-seq)
dataset was collected from three adults aged 19, 36, and
64 years old [36]. The raw counts were downloaded from
the website http://development.psychencode.org/. Gene
expressions were normalized by the global-scaling
normalization method “LogNormalize” in Seurat (v3.9.9)
[37], which normalized the gene expressions for each
cell by the total expression, followed by multiplying by a
scale factor (10,000 by default) and log-transformation.
The cell type annotation for the sequenced cells was dir-
ectly retrieved from the previous publication [36]. To
identify marker genes of each cell type, the “FindAllMar-
kers” function from Seurat was applied to identify differ-
entially expressed genes using a Wilcoxon Rank Sum
test. Only significantly upregulated genes (FDR < 0.05)
with 0.25 log fold change and 0.25 minimum expression
fraction were retained as marker genes.
To analyze scRNA-seq from testis tissue, we down-

loaded raw counts from GEO (https://www.ncbi.nlm.nih.
gov/geo/) with accession number GSE112013. The
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analysis pipeline follows the Seurat recommendations.
Briefly, gene expressions were normalized by “LogNor-
malize” method. The top 2,000 variable genes were iden-
tified by the “FindVariableFeatures” function. After
scaling gene expressions, a linear dimensional reduc-
tion was performed using the variable genes by
“RunPCA” functions, which generated 30 principle
components. For single-cell clustering, the “Find-
Neighbors” function was used to construct a K-
nearest neighbor (KNN) graph based on the euclidean
distance with the top 10 principal components. Then
the “FindClusters” function was applied to optimize
modularity by the Louvain algorithm. The resolution
parameter for the clustering granularity was set to
0.05. Finally, the UMAP method was used for non-
linear dimensional reduction and cluster visualization.
The cell types were determined by expressions of the
marker genes from the previous publication [38]. The
“FindAllMarkers” function was applied to identify
marker genes using the Wilcoxon Rank Sum test. The
criteria to filter marker genes were the same as the
brain scRNA-seq pipeline.
To analyze scRNA-seq from pancreas tissue, we down-

loaded raw counts from GEO with accession number
GSE84133. The analysis was similar to the testis pipe-
line, including gene expression normalization, linear di-
mensional reduction, KNN graph construction, cell
clustering, and cell-type annotation. To annotate differ-
ent cell clusters, we used the same marker genes as the
previous publication [39]. For esophagus, lung, and
spleen tissues, the analysis was similar to brain pipeline.
Raw counts were directly downloaded from https://www.
tissuestabilitycellatlas.org/. The cell types for each tissue
were retrieved from the publication [40]. Then marker
genes for each cell type were identified by the “FindAll-
Markers” function using the Wilcoxon Rank Sum test.

Gene coexistence analysis
We performed gene coexistence analysis to verify that
the genes from the aggregated network were co-
expressed with senescence markers in single cells. As
dropout effects frequently influence gene expression in
single cells, we defined the strength of gene co-
expression as the coexistence proportion, which calcu-
lates the percentage of cells expressing two genes of
interest (normalized expressions higher than zero) sim-
ultaneously. We quantified the coexistence proportion
for each senescence marker gene and each gene in the
aggregated network or 1,000 random background genes
from the whole genome. Wilcoxon test was used to cal-
culate the significance of altered coexistence proportions
between aggregated network genes and background
genes in different cell types.

Cell communication analysis
We analyzed the cell communications based on the
marker genes of each cell type. First, we downloaded the
ligand-receptor interactions in humans from the Cell-
ChatDB database [41], which contains manually curated
literature-supported ligand-receptor pairs. To assess
whether two cell types had significant interactions, the
marker genes from the source cell type were searched
against the marker genes from the target cell type based
on the ligand-receptor pairs in the CellChatDB. Mean-
while, 10,000 permutations were performed from the
expressed genes to calculate the background frequency
of ligand-receptor pairs. The significance of cell type
communication was determined by the permutation test,
which compared the observed frequency with the back-
ground signal.

Spatial transcriptomic analysis
We downloaded the spatial transcriptome dataset of the
human postmortem dorsolateral prefrontal cortex from
http://research.libd.org/globus/, which profiled gene ex-
pressions on 10-μm serial tissue sections using 10x Gen-
omics Visium platform [42]. Section slide 151,507 from
a 35-year-old donor was used to investigate cell-type lo-
calizations. Gene expressions from each voxel were nor-
malized by the sctransform [43] in Seurat, which uses
regularized negative binomial models to account for
technical artifacts while preserving biological variance.
Then top 30 principal components were calculated and
used to construct the KNN graph. The Louvain algo-
rithm was used to cluster the voxels. To learn cell type
compositions of each voxel, the anchor-based integration
workflow from Seurat was used to calculate probabilistic
annotations from the scRNA-seq reference. To achieve
this, the scRNA-seq dataset [36] was processed by a
similar pipeline, which normalized gene expression by
the sctransform and clustered cells by the Louvain algo-
rithm. Then the “FindTransferAnchors” function from
Seurat was used to project the PCA structure of the
scRNA-seq onto the spatial transcriptomic dataset. The
“TransferData” function was used to classify the voxel
cells based on the scRNA-seq cell type annotations.
To calculate the M82-enriched spatial voxels, we ap-

plied the GSEA method [44] similar to the previous pub-
lication [45]. Briefly, we generated the entire ranked list
for each voxel by ranking the expressed genes according
to their normalized and scaled expressions. Then, we
used the M82 gene set to calculate the enrichment score
by “fgsea” package [46] in the R program. The enrich-
ment score reflected the degree to which the M82 gene
set was overrepresented at the extremes (top or bottom)
of the entire ranked list. Conceptually, the score was cal-
culated by walking down the ranked list, increasing a
running-sum statistic when encountering a gene in the
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M82, and otherwise decreasing it [44]. The enrichment
score corresponded to a weighted Kolmogorov–Smir-
nov-like statistic, standing for the maximum deviation
from zero encountered in the random walk. The statis-
tical significance (nominal p value) of the enrichment
score was estimated by an empirical phenotype-based
permutation test procedure with 1,000 permutations.

Results
The co-expression networks of SnGs in 50 human tissues
To investigate senescence gene signatures in various hu-
man tissues and cell types, we developed a network biol-
ogy based framework to integrate bulk and scRNA-seq
data (Fig. 1a). We performed a well-established Multi-
scale Embedded Gene Co-expression Network Analysis
(MEGENA) [27–30] on 50 non-diseased human tissues
using the bulk RNA-seq data in the GTEx database [47–
49]. MEGENA identified 38,152 gene modules from 50
tissue-specific gene co-expression networks, with an
average of 763 modules per tissue (network). The mem-
ber genes of each module were then compared with the
CellAge database [26], which contains 279 experimen-
tally validated SnGs. We identified 125 network modules
with significant enrichment (multiple-testing corrected
Fisher’s exact test (FET) p-value < 0.05) of the CellAge
SnGs (Fig. 1b, Table S1). These enriched modules were
from 32 tissues. The gene modules were then rank-
ordered by the significance of the enrichment for the
CellAge SnGs. The top-ranked modules were from tis-
sues such as the brain, the adipose, the uterus, the heart,
the testis, the lung, and the esophagus, suggesting vari-
ous origins of senescence signatures. The testis had
the most modules enriched for the CellAge SnGs,
followed by the esophagus, the hippocampus, the stom-
ach, the colon, and the spleen (Fig. 1c). The CellAge
SnGs were enriched in the modules across different
brain regions (e.g., the hippocampus, the cortex, the
spinal cord, the substantia nigra, and the hypothalamus).
In the SnG-enriched modules, the most frequently de-
tected genes included not only well-defined senescence
markers (e.g., cell cycle regulator CDKN1A [50], SASP
regulators CEBPB and MAP2K3 [17, 51]), but also gene
regulators from diverse senescence pathways (e.g., SER-
PINE1 in replicative senescence [52], ETS2 in oncogene
stress [53], CYR61/CCN1 in wound healing [54], FOS in
enhancer organization [55], ZFP36 in mRNA stability
regulation [56], and ING1 in epigenetic regulation [57])
(Fig. 1d). Consistent with the functional roles, the SnG-
enriched modules were most related to biological path-
ways in interleukin signaling, TP53 regulations, cellular
senescence, and cell cycle regulations (Fig. 1e). These re-
sults revealed the co-expression and co-regulated organi-
zations of SnGs in human tissues.

Cellular senescence is triggered by diverse factors, in-
cluding organismal aging [58]. Therefore, we calculated
the correlation between age and network modules to
evaluate the age influence on individual modules. We
performed the Spearman correlation analysis of age and
module eigengenes. We found that 34 (27%) of the 125
SnG-enriched modules were correlated with age (Spear-
man correlation p < 0.05; Table S1). The age-correlated
modules were from 15 different tissues, including the
lung (n = 5), the spleen (n = 4), the brain hippocampus
(n = 3), the esophagus (n = 3), and the heart left ventricle
(n = 3). For example, M5 was the module most signifi-
cantly enriched for SnGs (p = 5.8e-08, Fisher’s exact test)
in the hippocampus (Fig. 1b, Table S1). Its eigengene
was also significantly correlated with age (r = 0.23, p =
1.2e-03, Spearman correlation), suggesting increased ex-
pression of M5 with advanced chronological age.

The co-expression patterns of the CellAge SnGs
Although the CellAge SnGs were identified by various
experimental approaches [26], how they are expressed
and co-regulated in different human tissues is largely
unknown. The network analysis identified 125 SnG-
enriched gene modules in 32 human tissues. These SnG-
enriched modules included 225 or 81% of the SnGs from
the CellAge database. To explore the co-expression pat-
terns of the 225 CellAge SnGs, we performed a two-way
clustering analysis of the 225 SnGs and the 125 SnG-
enriched modules using the k-means method. By calcu-
lating Euclidean distance from the presence matrix of
SnGs in each module, the k-means method (k = 4, 100
iterations) identified four SnG clusters (namely, sc1–4)
and four module clusters (namely, mc1–4) (Fig. 2a,
Table S2–3). Among the four SnG clusters, the cluster
sc4 contained 11 genes (e.g., CDKN1A and CEBPB) and
was most widely present in the SnG-enriched modules
in 30 different tissues (Fig. 2b). On average, each Cel-
lAge SnG in the cluster sc4 was detected in the SnG-
enriched modules from 21 different tissues. Functional
studies supported the central roles of the cluster sc4 in
regulating various senescence pathways. For example,
CDKN1A is a key senescence marker gene that represses
cell cycle progression [50]; ZFP36 regulates mRNA sta-
bility of cell cycle and cytokine genes [56]; CYR61/CCN1
induces fibroblast senescence during wound healing
[54]; MCL1 is an apoptosis repressor from the BCL2
family [59]; CEBPB is a crucial regulator of senescence
and SASP [17, 51]; SERPINE1 regulates replicative senes-
cence downstream of TP53 [52]; FOS forms the AP-1
complex that drives the senescence enhancer landscape
[55]. Intriguingly, the cluster sc4 also contained onco-
genes FOS, MYC, and SNAI1, consistent with the close
relationship between cellular senescence and cell
proliferation.
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Apart from the SnG cluster sc4, the cluster sc2 con-
tained 40 CellAge SnGs and was also widely expressed
in the SnG-enriched modules from 26 different tissues.

On average, each SnG from sc2 was detected in the
SnG-enriched modules from eight different tissues.
Many important senescence regulators fell into cluster

Fig. 1 Gene co-expression network analysis of SnGs in human tissues. a An integrative network biology approach to study SnGs in human
tissues. For bulk RNA-seq datasets, a gene co-expression network was constructed in each tissue to identify co-expressed gene modules enriched
for the CellAge SnGs and marker genes of different cell types (subpopulations). For each scRNA-seq dataset, unsupervised clustering and
differential gene expression analyses were performed to identify cell clusters (subpopulations) and their marker genes. Then the cell-type specific
markers were tested for the enrichment in the SnG-enriched modules, revealing cell-type specific SnG signatures in each tissue. The bulk RNA-seq
based network analysis and the scRNA-seq based cell type analysis were complementary and cross-validated, providing rich information on co-
expression structures and cell-type specificity of SnGs. b Modules enriched for the CellAge SnGs in the 50 tissue-specific gene co-expression
networks. Each dot indicates a SnG-enriched module, with the x-axis showing the module size and the y-axis showing the enrichment
significance. False Discovery Rate (FDR) in the y-axis was calculated as multiple-testing corrected FET p-value. Color intensity and size of each dot
are scaled with the enrichment p-value. The top 20 modules most significantly enriched for the CellAge SnGs are labeled. c The top 20 tissues
with the gene modules enriched for the CellAge SnGs. The x-axis shows the number of modules enriched for the CellAge SnGs in each tissue. d
The top 20 genes most frequently detected in the SnG-enriched modules. The x-axis indicates the number of enriched modules which contain a
given gene. e The top 10 REACTOME pathways for the SnG-enriched modules. The x-axis shows the number of the SnG-enriched modules
enriched for a given pathway
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sc2 (Fig. 2b). For example, TP53 is a senescence marker
gene that represses cell cycle in response to cellular
stress and DNA damage [60]; IRF5 and IRF7 encode
interferon regulatory factors that inhibit cell growth and

induce senescence [61]; MAP2K3 (MKK3) can activate
the stress-inducible p38MAPK pathway for SASP induc-
tion [19, 62]; RUNX1 (AML1) is an oncogene that in-
duces a senescence-like growth arrest in fibroblasts [63];

Fig. 2 The co-expression patterns of the CellAge SnGs and SnG-enriched modules. a Heatmap plot of the clusters of the CellAge SnGs and SnG-
enriched modules, with each row representing for a SnG and each column for a SnG-enriched module. The hierarchical dendrograms were
shown for the heatmap and further split based on the k-means clusters (k = 4, 100 iterations). The red color of each pixel indicates the presence
of a SnG in a module. The blue dotted rectangles indicate three representative gene-module clusters shown in panel 2b. b Heatmap plots of
three representative gene-module clusters from sc4-mc4, sc3-mc3, and sc2-mc4, respectively. Each row represents a SnG, and each column
represents a module in the selected cluster. c-d The consensus networks of CDKN1A (c) and TP53 (d) neighborhood genes across 50 tissues. The
network of each gene was constructed by aggregating 3-layer neighbor genes across 50 co-expression networks. The node weight was
calculated based on the gene conservation in the 50 networks. The genes with node weight > = 5 were used for aggregation. The node size in
the network plot is proportional to the node weight, and the gene symbols with the top 50 node weights are labeled. The pink node color
indicates the CellAge SnGs
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ING1a can bind to histone deacetylases and induce sen-
escent cell morphology [57]; NOTCH3 from the
NOTCH signaling pathway regulates CDKN1A expres-
sion in senescent cells [64]. Among the four SnG clus-
ters, sc1 was the largest cluster with 161 CellAge SnGs.
However, on average, the SnGs from sc1 only came from
two different tissues, suggesting the expression of this
cluster was not prevalent in the SnG-enriched modules.
Cluster sc3 was well separated from the other clusters.
Consistent with the distinct clustering position, sc3 con-
tained 13 CellAge SnGs, including BRCA1, FOXM1,
E2F1, and CDK1, which are mainly related to cell cycle
progression and cellular senescence inhibition. The Cel-
lAge database contains inducer and inhibitor genes of
cellular senescence, and both of them are crucial for
regulating cellular senescence. Interestingly, the senes-
cence inhibitors fromsc3 were preferentially co-
expressed in a number of tissue-specific gene modules
independent of other senescence-related genes, indicat-
ing their coordinated activities in regulating cellular
senescence.
As the clusters sc4 (n = 11) and sc2 (n = 40) contained

the CellAge SnGs in more than half of the surveyed tis-
sues, we considered 51 genes from the two clusters as the
conserved SnGs. Among them, CDKN1A from sc4 and
TP53 from sc2 are well-recognized marker genes for cellu-
lar senescence. Therefore, we explored the conservation of
co-expression relationships of the two genes in different
tissues. By extracting 3-layer neighborhood genes in the
co-expression networks, we constructed consensus net-
works of CDKN1A and TP53 in at least five tissues
(Methods, Table S4–5). The consensus network of the
CDKN1A neighborhood had 531 genes, including 28 Cel-
lAge SnGs (Fig. 2c). Interestingly, the CDKN1A neighbor-
hood contained all the genes (n = 11) from the SnG
cluster sc4 and 14 (35%) genes from the cluster sc2, sug-
gesting a central role of CDKN1A. For example, CDKN1A
was co-expressed with MCL1, CEBPB, FOS, and SER-
PINE1 in 27, 21, 18, and 15 tissues, respectively. The top
enriched pathways of the CDKN1A network neighbor-
hood genes included the interleukin signaling, the Toll-
like receptors, the metal ions response, and cellular senes-
cence. The interferon signaling genes STAT3, IL4R, IL1R1,
CCL2, and IL6, were co-expressed with CDKN1A in 21,
18, 16, 13, and 9 tissues, respectively. In the consensus
network of TP53, 225 genes were identified as the network
neighbors in more than four tissues, including nine Cel-
lAge SnGs. These neighborhood genes contained seven
(17.5%) genes from the SnG cluster sc2, but none of them
came from the cluster sc4. The consensus networks of
CDKN1A and TP53 shared 63 neighborhood genes, in-
cluding several essential cytokine regulators (e.g., interleu-
kin signaling regulator STAT3, NF-κB signaling regulator
RELA, and TNF receptor gene TNFRSF1A).

Aggregation of the SnG-enriched modules
As the SnG-enriched modules were identified by tissue-
specific co-expression networks, we further merged
these modules into a global network to reveal the land-
scape of SnG co-expression structure across multiple
tissues. We first extracted conserved genes from the
SnG-enriched modules in at least five tissues and then
constructed an aggregated network by merging the co-
expression links between these conserved genes in all
the tissues (Methods). The aggregated network thus rep-
resented the global correlationship between highly con-
served genes from the SnG-enriched modules. We
identified 2,001 highly connected genes in the aggre-
gated network (Fig. 3a, Table S6). All the genes (n = 11)
from cluster sc4 and 38 (95%) genes from cluster sc2
were present in the aggregated network, suggesting con-
served signatures of the two gene clusters. In contrast,
cluster sc1 only had 16 (10%) genes in the aggregated
network. Gene set enrichment analysis (GSEA) showed
that genes from the clusters sc4 and sc2 were signifi-
cantly enriched (p = 1.5e-9, 1,000 permutations) in the
top-ranked nodes with high conservation weights. In the
aggregated network, ZFP36, CDKN1A, MCL1, FOS, and
MYC from the CellAge database were ranked among the
top 10 conserved nodes. To further understand the ag-
gregated network, we compared it with SnG annotations
from the GO (n = 77), the REACTOME (n = 194), and
the CellAge (n = 279), as well as a replicative senescence
signature (n = 1259) from the recent meta-analysis [65].
The aggregated network significantly overlapped the
senescence signatures from all annotation datasets (Fig.
3b). Remarkably, the aggregated network was most
enriched for the replicative senescence signature (fold
enrichment (FE) = 3.4, FET p = 2.3e-99). Meanwhile, the
aggregated network contained 77 genes from the Cel-
lAge database (FE = 3.4, FET p = 2.0e-22), 38 genes from
REACTOME database (FE = 2.4, FET p = 2.6e-7), and 17
genes (FE = 2.7, FET p = 1.1e-4) from GO database.
These results suggested the aggregated network shares
similarities with other SnG annotations and captures the
replicative senescence in multiple tissues, which were
mostly described by in vitro cell lines [65].
Among the 2,001 genes from the aggregated network,

488 genes are annotated as putative SASP factors (Gene
Ontology Consortium and QuickGO database). About
21.1% (103) of these SASP factors were upregulated in
the senescent human fetal lung (IMR-90) cells induced
by γ-irradiation (Table S7) [66]. In contrast, only 10% of
the total SASP factors (n = 3,513) in the human genome
were upregulated, suggesting the aggregated network
was significantly enriched for the SASP factors in senes-
cent cells (FET p = 1.9e-15). Among the 103 upregulated
SASP factors from the aggregated network, only 5 (5%)
genes were annotated by CellAge experiments, and the
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majority have not been experimentally validated. More
than half (59) of the upregulated SASP factors depend
on CDKN1A expression (Table S7) [66], suggesting a
major regulatory role of CDKN1A in SnG co-
expressions.
Based on the aggregated SnG network, we explored

the cell types that contribute to the co-expression of the
network genes. By comparing cell-type marker genes
from the PanglaoDB database [34], we identified 14 cell
types associated with the genes in the aggregated net-
work (adjusted FET p-value (aFETp) < 0.01). The top five
cell types were endothelial cells (aFETp = 1.9e-27),
microglia (aFETp = 5.3e-21), macrophages (aFETp =
4.1e-18), monocytes (aFETp = 5.6e-16), and fibroblasts
(aFETp = 1.0e-9) (Fig. 3c). To confirm the cell type pre-
dictions from the aggregated network, we further ana-
lyzed the cell type composition for each SnG-enriched
module. After excluding the modules enriched for the in-
hibitory gene cluster sc3, we found 62 SnG-enriched
modules were significantly enriched for 34 cell-type
marker gene signatures (aFETp < 0.01, Fig. 3d, Table
S8). The most frequently enriched cell types were fibro-
blasts (n = 44), endothelial cells (n = 34), monocytes
(n = 20), macrophages (n = 17), and microglia (n = 16),
suggesting these cell types were closely associated with
SnG expression and regulation. Interestingly, many
modules were enriched for multiple cell types. For ex-
ample, the module M5 from the brain hippocampus,
which was most enriched for the CellAge SnGs, signifi-
cantly overlapped with the markers of the endothelial
cells, fibroblasts, and immune cells such as microglia
(Fig. 3d). The network modules from different brain re-
gions showed similar cell-type patterns. This co-
enrichment of diverse cell types indicated their potential
interactions in the senescence response.
To exclude the potential influence of aging on the

cell-type enrichment of SnGs, we constructed another
set of co-expression networks for 50 tissues by including
age as a covariate for adjustment. In the age-adjusted
co-expression networks, we identified 107 SnG-enriched

modules and 1,779 genes from the aggregated network.
In total, 1,619 (91%) of the aggregated network genes
were shared between age-adjusted and unadjusted data-
sets (Fig. S1a). The most frequent SnGs, the cell-type en-
richment signatures, and the conservation pattern with
other SnG annotation databases were also conserved be-
tween the two datasets (Fig. S1b-c). These observations
suggest that co-expression patterns of SnGs are robust
for the human tissues regardless of age adjustment. Al-
though age had a minor influence on network structures,
it still correlated with some gene expressions from the
aggregated network. For example, 134 (6.7%) genes
showed an increased expression with age in at least five
tissues (p < 0.05, Spearman correlation, Table S9). Inter-
estingly, CDKN1A (p21) expression positively correlated
with age in 12 different tissues, ranking as the top gene
with age correlations. Other well-known senescence
genes, such as ZFP36 and CYR61, also had expressions
positively correlated with age in seven and five different
tissues, respectively. The increased expressions of these
SnGs suggest their potential roles in the aging process.

The SnG co-expression network and cell-type signatures
in the brain
As the bulk RNA-seq networks showed strong senes-
cence signals in different brain regions (Fig. 1b), we fur-
ther integrated bulk RNA-seq and scRNA-seq data to
characterize SnG-enriched modules and cell-type specifi-
city of SnGs in the brain. Among 125 SnG-enriched
modules, module M5 from the hippocampus had the
highest enrichment value (aFETp = 1.9e-05) of the Cel-
lAge SnGs. M5 contained 1,485 genes and could be clas-
sified into two sub-modules: M81 with 507 genes and
M82 with 976 genes (Table S10). Interestingly, the mod-
ules M81 and M82 showed different features. The genes
from module M82 were significantly enriched for the
CellAge SnGs (aFETp = 2.2e-05, Fig. 4a), while the eigen-
gene of M81 was significantly correlated with age (p =
9.1e-05, Spearman correlation, Fig. 4b). To accurately es-
timate the cell type composition of these two modules,

(See figure on previous page.)
Fig. 3 The aggregated SnG network and cell-type enrichment. a The aggregated network from 125 SnG-enriched modules. In the network plot,
the node corresponds to a gene from SnG-enriched modules, and the link corresponds to the co-expression relationship between genes in MEGE
NA co-expression networks. The aggregated network was generated by merging co-expression links between SnG-enriched module genes
conserved in at least five tissues (Methods). The node size in the network plot is proportional to the node conservation in different tissues, and
the gene symbols of the CellAge SnGs are labeled. b Comparison of the aggregated network with four SnG annotation datasets. A bar chart
shows possible intersections among the five annotation datasets (including the aggregated network) in a matrix layout, with the solid and empty
circles indicating the presence and absence of the gene sets for each intersection, respectively. The numbers to the right of the matrix indicate
set sizes. The color bars on the top of the matrix show the intersection sizes. The color intensity is proportional to the one-tailed hypergeometric
p-value significance. c Barplot showing the top 10 cell types whose marker genes are significantly enriched (FDR < 0.01) for the aggregated
network genes. The FDR was calculated as the adjusted FET p-value. d The heatmap plot showing the cell types whose marker genes are
enriched (FDR < 0.01) in the SnG-enriched modules. Each row shows the cell types, and each column shows the network module. The colors are
scaled with the enrichment value. The barplot on the right shows the total frequency of cell-type enrichment
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we compared the module genes with the cell-type
marker genes from the brain single-nuclei RNA-seq
(snRNA-seq) dataset [36]. The snRNA-seq analysis iden-
tified 959, 547, and 199 marker genes preferentially
expressed in endothelial cells, vascular smooth muscle
cells (VSMCs), and microglia, respectively. Among them,
220 endothelial cell marker genes and 137 VSMC maker
genes significantly overlapped M82 with FET p = 9.0e-
113 (FE = 6.1) and 9.3e-74 (FE = 6.6), respectively (Fig.
4c). In contrast, the microglia cell marker genes signifi-
cantly overlapped M81 (FET p = 2.1e-56). Consistently,
the co-expression networks from bulk RNA-seq showed
that M81 contained several microglia marker genes (e.g.,

APBB1IP, TYROBP, and CSF1R) as the hub genes, and
M82 contained several well-characterized SnGs (e.g.,
CDKN1A, CEBPB, SERPINE1, and TP53) (Fig. 4d-e). To
further illustrate cell-type expression profiles of SnGs,
we compared the CellAge SnGs with the marker genes
of different brain cell types. We found that the CellAge
SnGs were significantly enriched for the marker genes of
endothelial cells (aFETp = 4.8e-04) and VSMCs (aFETp =
1.1e-08). For example, 24 CellAge SnGs, including
ETS1, MCL1, and PRKCH, were marker genes preferen-
tially expressed in endothelial cells, and 25 SnGs (e.g.,
CDKN1A, CEBPB, and IGFBP5) were preferentially
expressed in VSMCs (Fig. 4f). The endothelial cells and

Fig. 4 SnG-enriched modules and associated cell types in the brain. a Sunburst plot of the SnG-enriched modules in the hippocampus. Each cell
showed a hierarchical module from the co-expression network. The color intensity of each cell is proportional to the corresponding enrichment
of the CellAge SnGs (FET p-value). b Sunburst plot of module correlation with donor age. For each network module, the Spearman correlation
was calculated between the module eigengene and the donor age. The color intensity of each cell is proportional to the corresponding
correlation p-value. c The enrichment of cell-type marker genes for the modules M81 and M82. For each cell type, the marker genes were
identified from the snRNA-seq dataset by the Wilcoxon Rank Sum test. FDR was calculated as the adjusted FET p-value, which tested marker gene
enrichment for M81 and the M82. d The co-expression network of M81. The hub genes in the module are labeled and shaded with red color. e
The co-expression network of M82. The CellAge SnGs are labeled and highlighted with red color. The orange nodes are the hub genes. The node
sizes are proportional to the connectivity in the network. f Violin plot of the SnGs preferentially expressed in VSMCs (top two rows) and
endothelial cells (bottom two rows) in the brain snRNA-seq dataset. The x-axis shows the cell types in the scRNA-seq, and the y-axis shows the
log-transformed normalized gene expressions
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VSMCs also shared 13 CellAge SnGs (e.g., CDKN1B,
ZFP36, and NOTCH3) as marker genes.
We estimated the proportion of cells enriched for

SnGs using the brain snRNA-seq dataset. Similar to pre-
vious publications [44, 45], we applied the GSEA method
to identify the cells with top-ranked expressions of SnGs
by comparing them with permutation trials. The 153
SnGs with inducer functions from the CellAge database
were used for GSEA analysis to exclude the genes with
potentially unrelated functions. Among the 17,093 single
cells profiled in brain tissues, GSEA identified 192
(1.1%) cells significantly enriched for SnGs (p < 0.01,
1000 permutations), including 109 endothelial cells, 20
astrocytes, 19 VSMCs, 19 excitatory neurons, 8 microglia
cells, 8 oligodendrocyte precursor cells, 6 inhibitory
neurons, and 3 oligodendrocytes. For different cell
types, the highest fraction of SnG-enriched cells were
observed in VSMCs (55.9%), endothelial cells (23.5%),
and microglia (6.2%).
We further validated the co-expressions between the

aggregated network genes with senescence makers in
single cells of the brain. As the dropout effect frequently
influences gene expressions in single cells, we performed
the coexistence analysis that measured the percentage of
cells expressing two target genes simultaneously. Two
widely accepted genes, CDKN1A (p21) and GLB1 (en-
coding human senescence-associated β-galactosidase
[67]), were chosen as senescence markers. CDKN1A and
GLB1 co-expressed in 5.9% VSMCs, 3.1% microglia, and
1.3% endothelial cells, and they were also detected in
other cell types including excitatory neurons (0.56%), in-
hibitory neurons (0.27%), and oligodendrocyte precursor
cells (0.12%) (Table S11). The median pairwise coexist-
ence proportions between CDKN1A and 77 CellAge-
annotated genes from the aggregated network were 2.94,
0.77, and 0.65% in VSMCs, microglia, and endothelial
cells, respectively, comparable to the coexistence propor-
tions between CDKN1A and the 1924 unannotated
genes (2.94, 0.77, and 0.43%, respectively). In contrast,
the median coexistence proportions between CDKN1A
and 1,000 random background genes were 0, 0.77, and
0.22% in the three cell types. Wilcoxon test showed that
the coexistence proportions between CDKN1A and ag-
gregated network genes significantly increased in
VSMCs and endothelial cells compared with random
genes (p < 4.1e-05). Similarly, the coexistence propor-
tions of GLB1 in endothelial cells increased from 0.65 to
1.3% (p = 1.7e-3, Wilcoxon test) and 1.7% (p = 1.6e-35,
Wilcoxon test) for the CellAge-annotated and unanno-
tated genes, respectively. Therefore, compared with
background genes, both annotated and unannotated
genes from the aggregated network showed significant
co-expressions with senescence markers in VSMCs and
endothelial cells of brain tissues.

The cell-type analysis showed that genes in the M82
were enriched for the CellAge SnGs and preferentially
expressed in the endothelial cells and the VSMCs. How-
ever, such analysis lacked information on cell spatial dis-
tribution and co-localization. To further illustrate the
spatial localization of M82-enriched cells, we analyzed a
spatial transcriptomic dataset of the postmortem human
brain using the 10x Genomics Visium platform [42]. By
applying an anchor-based integration workflow, we
transferred probabilistic cell-type annotations from pre-
defined cell types of the scRNA-seq dataset [36]. As each
voxel from the spatial transcriptomic slide contained
multiple cells from different cell types, we analyzed the
probabilistic annotations of the voxels separately for
each cell type. Visualization of the spatial transcriptomic
slide showed that endothelial cells, microglia, and astro-
cytes had strong spatial co-localization at the sulcus,
while excitatory and inhibitory neurons were organized
throughout the cortex (Fig. 5a and b). We further per-
formed GSEA to calculate the enrichment score of the
M82 and map M82-enriched voxels [44, 45]. Among all
the 4,226 voxels from the spatial transcriptomic slide,
342 voxels (8%) showed significant enrichment (p < 0.01,
1000 permutations) of the genes in M82 (Fig. 5b). Spatial
localization of the M82-enriched voxels resembled the
distribution patterns of endothelial cells, microglia, and
astrocytes on the slide. Consistently, compared with the
voxels not enriched for the M82, the M82-enriched vox-
els exhibited higher probabilistic annotations in the cell
types including endothelial cells (p = 9.6e-116, Wilcoxon
test), microglia (p = 6.9e-36, Wilcoxon test), and astro-
cytes (p = 6.8e-53, Wilcoxon test), suggesting the M82
genes were expressed in these cell types (Fig. 5c).

The SnG co-expression network and cell-type signatures
in the testis
According to the gene co-expression networks, the testis
was the tissue most enriched for the CellAge SnGs (Fig.
1c). Therefore, we integrated the bulk RNA-seq and
scRNA-seq data in the testis to characterize the SnG sig-
natures. In the testis co-expression network, the module
M6 contained 1,769 genes and was most enriched for
the CellAge SnGs (aFETp = 2.3e-04, Fig. 6a). In M6, 48
(17.2%) genes were annotated by the CellAge database,
including well-defined senescence regulators CDKN1A,
CEBPB, SERPINE1, EST2, CYR61, and MAPK14/p38α
(Fig. 6b, Table S12). To investigate the cell types con-
tributing to the CellAge SnGs of M6, we analyzed a
scRNA-seq dataset in the testis [38]. We found that the
CellAge SnGs from M6 significantly overlapped the
marker genes of endothelial cells, macrophages, and the
supporting cells including myoid, Sertoli, and Leydig
cells (aFETp < 0.05, Fig. 6c). For example, 1,628 marker
genes of endothelial cells were identified by the scRNA-
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seq analysis of the testis (Fig. 6d), and they contained
nearly half (n = 23, 47.9%) of the CellAge SnGs in the
M6 (FE = 8, FET p = 4.7e-16) including CDKN1A and
EST1 (Fig. 6d-e). Myoid cells are a type of smooth
muscle cell that surroundsg the seminiferous tubules.
The marker genes of myoid cells were also significantly
enriched for the CellAge SnGs of M6 (n = 19, FET p =
5.2e-11), including CEBPB and IGFBP5 (Fig. 6e). Ten
genes (e.g., CYR61 and CAV1) were shared as the
marker genes by the endothelial and myoid cells (Fig.

6e). We further performed the GSEA analysis to esti-
mate the proportion of cells enriched for SnGs in the
testis. Among the total 6,490 cells, 417 (6.4%) were sig-
nificantly enriched for the senescence inducers from the
CellAge database (p < 0.01, 1,000 permutations), includ-
ing 118 endothelial cells, 107 elongated spermatids, 85
spermatids, 33 Leydig cells, 31 myoid cells, and 25 mac-
rophages. The cell types with the highest percentage of
SnG-enriched cells came from endothelial cells (33.4%),
myoid cells (10.2%), and Sertoli cells (9.3%).

Fig. 5 Spatial transcriptomic analysis of M82-enriched cell types in the brain. a Cell type inference of spatial voxels from the spatial transcriptomic
slide. Gene expressions in the dorsolateral prefrontal cortex were profiled from 10-μm serial tissue sections by the 10x Genomics Visium platform.
Color intensity is proportional to cell-type specific gene expression in the snRNA-seq dataset. Scale = 1mm. b The spatial voxels enriched for the
module M82 (left) and the corresponding histology slide (right). For each spatial voxel, the enrichment score was calculated by the GSEA method,
which tested whether the module M82 genes were enriched in the highly expressed genes. Only spatial voxels with significant enrichment
scores (p < 0.01, 1,000 permutations) were considered to be enriched for M82. c Relative probability of cell type assignment in the M82-enriched
voxels versus the voxels that are not enriched for the M82
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In the testis tissue, co-expression of CDKN1A and GLB1
was most detected in macrophages (7.3%), endothelial
cells (4.0%), and myoid cells (2.0%) (Table S13). The me-
dian coexistence proportions between CDKN1A and the
CellAge-annotated genes from the aggregated network
were 2.6%, 4.0%, and 1.0% in macrophages, endothelial
cells and myoid cells, respectively, comparable to the co-
existence proportions with the unannotated genes. In con-
trast, the coexistence proportions between CDKN1A and
1,000 random background genes were only 0.29%, 0.28%,

and 0% in macrophages, endothelial cells and myoid cells,
respectively. GLB1 co-exists with aggregated network
genes in more than 1.7% macrophages, 1.6% endothelial
cells, and 1.3% myoid cells. Meanwhile, the coexistence
proportions between GLB1 and random background
genes were 0.3, 0.3, and 0% macrophages, endothelial cells
and myoid cells, respectively. Wilcoxon test showed that
both annotated and unannotated genes were significantly
co-expressed with CDKN1A and GLB1 greater than the
background genes (p < 8.4e-05).

Fig. 6 SnG-enriched modules and associated cell types in the testis. a Sunburst plot of SnG-enriched modules in the testis. Each cell indicates a
network module, and the color intensity indicates the significance of the enrichment for the CellAge SnGs (FET p-value). b The co-expression
network of module M6. The CellAge SnGs in module M6 are labeled and highlighted with red color. The orange nodes are hub genes, and the
node size is proportional to the connectivity in the network. c The cell-type specificity of the M6 SnGs. The marker genes for each cell type were
identified by the Wilcoxon Rank Sum test from the scRNA-seq dataset. FET was performed to test the enrichment of the marker genes for the
CellAge SnGs of the M6. d Volcano plot of marker gene expressions in endothelial cells. The x-axis indicates log2 transformed fold change
compared with the other cell types. The y-axis indicates the statistical significance from the Wilcoxon Rank Sum test. The CellAge SnGs from M6
are labeled and highlighted in red color. e Violin plot of SnG expressions preferentially in endothelial cells (top two rows) and myoid cells
(bottom two rows)
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The SnG-enriched cell types in other tissues
Apart from the brain and the testis, the SnG-enriched
modules were also identified in other tissues such as the
pancreas, the esophagus, the lung, and the spleen (Fig.
1b). Therefore, we performed an in-depth analysis of the
scRNA-seq data in these four tissues. Using the 51 con-
served SnGs from the clusters sc4 (n = 11) and sc2 (n =
40), we mapped cell types enriched for the conserved
SnGs in different scRNA-seq datasets (Fig. 7a). In the pan-
creas, the ductal cells showed the highest enrichment
(aFETp = 7.9e-11), followed by stellate cells (aFETp = 5.1e-
07) and endothelial cells (aFETp = 1.2e-05). Among the 51
conserved SnGs, 19 (37%) genes were marker genes of
ductal cells (FE = 6.7, FET p = 8.7e-12). Several well-
defined senescence and SASP regulators, such as

CDKN1A, CEBPB, EST2, MAP2K3, CXCL1, and CYR61,
were preferentially expressed in ductal cells (Fig. 7b). The
marker genes of ductal cells also contained two senes-
cence regulators dependent on the TP53 pathway: the
homophilic adhesion molecule NINJ1 [68] and the PIM1
protein kinase [69]. These observations suggested that
these SnGs were preferentially expressed and co-regulated
in the ductal cells. Apart from pancreas tissue, the con-
served SnGs were weakly enriched in several cell types of
the esophagus, including the blood vessels, stromal cells,
and immune cells (Fig. 7a). In the lung and spleen, the en-
richment of the conserved SnGs was observed in immune
cells, such as dendritic cells, monocytes, macrophages,
and T cells. The muscle cells and blood vessels in the lung
were also enriched for the conserved SnGs.

Fig. 7 The single-cell analysis of SnG signatures in four different tissues. a Enrichment of the 51 conserved SnGs in the cell-type specific marker
gene signatures in four tissues. For each tissue, the y-axis shows the cell types identified from the scRNA-seq data, and the x-axis represents the
enrichment significance. The dotted line indicates the significance cutoff (aFETp = 0.01). b The violin plot showing SnGs that are preferentially
expressed in the ductal cells of the pancreas. c The cell communication network between the ductal cells and other cell types in the pancreas.
Cell communication was calculated by the observed ligand-receptor pairs between the sender (ductal) cell type and the receiver cell types. The
links in the network plot indicate the significant ligand-receptor interactions (p < 0.05, 10,000 permutations) between any two cell types. The line
thickness is proportional to the number of ligand-receptor pairs
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As ductal cells in the pancreas showed the most sig-
nificant enrichment of the conserved SnGs, we further
performed cell communication analysis to investigate
how ductal cells interact with other cell types. Based on
the ligand-receptor pairs from the CellChat database
[41], we identified the cell type pairs that showed signifi-
cantly higher ligand-receptor interactions than back-
ground signals (p < 0.05, 10,000 permutations). We
detected active communications between ductal cells
and other cell types in the pancreas, except alpha and
beta cells (Fig. 7c, Table S14). The ductal cells secreted
15, 18, 8, and 9 ligand molecules, which formed 43, 37,
19, and 12 ligand-receptor pairs with the receptor genes
of stellate, endothelial, acinar, and macrophage cells, re-
spectively. For example, the ductal cells preferentially
expressed IL6 class cytokine LIF, which formed ligand-
receptor pairs with IL6ST receptor in stellate and endo-
thelial cells. The C3 and JAG, which are ligand proteins
in the complement system and NOTCH signaling path-
way, were preferentially expressed in ductal cells and
were predicted to bind to ITGB2 and NOTCH1 in mac-
rophages. These observations suggested active commu-
nications between the SnG-enriched ductal cells and
other cell types.

Discussion
This study presents a comprehensive landscape of SnG
co-expression networks and cell-type signatures in
healthy human tissues. To date, several studies have ex-
amined cell lines and diseased human tissues for the
presence of senescent cells [9, 23–25, 70, 71], but a thor-
ough interrogation of healthy human tissues has not
been performed. Through an integrative gene network
analysis, we identified 125 SnG-enriched co-expression
modules spanning 32 different tissues. The gene-module
clustering analysis showed that 11 genes from the cluster
sc4 and 40 genes from the cluster sc2 were extensively
co-expressed in different tissues (Fig. 2a). Consistent
with the fundamental roles in regulating cellular senes-
cence, the biological functions of these SnGs are related
to regulations of various aspects of cellular senescence,
including cell cycle (CDKN1A and TP53), SASP (CEBPB,
MAP2K3, IRF5, and IRF7), mRNA stability (ZFP36),
wound healing (CYR61), apoptosis repression (MCL1),
enhancers and epigenetics (FOS and ING1a). In the ag-
gregated network, CDKN1A from cluster sc4 was one of
the top senescence regulators (Fig. 3a). It was closely co-
expressed with interferon signaling genes STAT3, IL4R,
IL1R1, CCL2, and IL6 (Fig. 2c), suggesting its central role
in connecting cell cycle and SASP production. As our
samples were collected from non-diseased human tissues,
it is tempting to speculate that CDKN1A (p21)-mediated
senescence represents physiological, non-pathogenic sen-
escence during healthy tissue maintenance. For example,

cell renewal and differentiation are controlled by senes-
cence regulators [72], which are similar to the CDKN1A-
regulated senescence in embryonic development [73, 74].
Alternatively, our study cannot rule out the possibility that
we identified resident senescent cells that eventually be-
come toxic; evidence supporting this interpretation in-
cludes the cell types identified (i.e., mitotically competent)
and their similarities with replicative senescence in cell
lines that develop toxic SASP.
Our study revealed that SnGs are co-expressed in differ-

ent normal human tissues and cell types. This cell-type
specific SnG signature and its gene co-expression struc-
ture remained stable with age adjustment (Fig. S1), indi-
cating our network biology analysis captures some
intrinsic features of SnGs. Meanwhile, age can also influ-
ence SnG expressions as many module eigengenes and ag-
gregated network genes showed increased expressions
with age. Since fibroblast cell lines have been widely used
to investigate SnG functions, the genes in the CellAge
database may be biased toward fibroblast signatures and
could have contributed to our identification of fibroblasts
as a prominent senescent cell type across tissues. How-
ever, we also identified endothelial cells and some immune
cells (e.g., monocytes, macrophages, and microglia cells)
in SnG-enriched modules, suggesting the results captured
a senescence signature across multiple mitotically compe-
tent cell types in human tissues. Moreover, the senescent
cell types we identified have been associated with human
diseases in other studies, such as fibroblasts in idiopathic
pulmonary fibrosis [8] and endothelial cells in atheroscler-
osis [75]. We found that endothelial cells, myoid, and
other supporting cells in the testis were enriched for
SnGs (Fig. 6). Consistently, a previous study showed
that peritubular myoid cells underwent striking mor-
phological changes, enhanced β-galactosidase activity,
altered nuclear morphology and cellular protein levels
in cell culture [76]. In the pancreas, our analysis re-
vealed that senescence marker genes CDKN1A, CEBPB,
ETS2, MAP2K3, and CXCL1 were preferentially
expressed in ductal cells (Fig. 7). This was also consist-
ent with the observation that primary pancreatic duct
epithelial cells showed premature senescence in cell
culture, including enlarged flattened morphology and
activated β-galactosidase activity [77]. These experi-
mental studies, together with our network and single-
cell predictions, suggest certain cell types in healthy hu-
man tissues display senescence signatures.
Our findings were also consistent with some, but not

all, experimental results previously reported in the litera-
ture for disease conditions. For example, we found that
endothelial cells and VSMCs, the essential components
of the blood-brain barrier and neurovascular unit in the
brain, preferentially expressed SnGs (Fig. 4). An in-
creased ratio of senescent endothelial cells was
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previously observed with advanced aging in the mouse
cerebral microcirculation [45]. The senescence- and
leukocyte adhesion-associated genes, including CXCL8
(IL8), SERPINE1 (PAI-1), CXCL1, CXCL2, ICAM-2, and
TIE1, were previously reported as upregulated in the
cortical microvasculature with advanced Braak stages
[78], supporting the link between tau protein pathogen-
esis and increased cellular senescence [70, 79]. Our net-
work results also indicate coordinated activities between
aging-related immune surveillance and cellular senes-
cence. For example, module M5 in the hippocampus
was composed of two sub-modules, the aging-correlated
module M81, and the SnG-enriched module M82 (Fig.
4a-b). The modules M81 and M82 were significantly
enriched for marker genes from microglia and endothe-
lial cells, respectively (Fig. 4c). Consistently, strong co-
localization signals were observed among endothelial
cells, microglia, and astrocytes in the spatial transcrip-
tomic analysis (Fig. 5a). It is plausible that senescent
endothelial cells and immune surveillance are balanced
in healthy conditions, but disruption of such balance in
aging or stress stages will drive disease pathology. Stud-
ies evaluating senescent cells in human neurodegenera-
tive diseases have identified additional senescent cell
types, including neurons [70], astrocytes [80], and oligo-
dendrocyte precursor cells [12]. Given that our analyses
were performed in healthy tissues, endothelial cells and
VSMCs may become senescent early in disease stages
and drive cellular dysfunction of other cell types. How-
ever, we cannot rule out the possibility that the SnGs
expressed by endothelial cells and VSMCs are physio-
logical and non-pathogenic. Future studies are needed to
determine whether endothelial cells expressing the SnG
profile have altered function, pathogenic morphology, or
deleterious SASP secretion.
As the network analysis was based on the curated

SnGs in the CellAge database, our results may only cap-
ture a subset of senescence signatures, primarily driven
by previously established knowledge. Cellular senescence
triggered by clinical pathologies, which was not experi-
mentally tested in vitro or difficult to culture cell lines
(e.g., neurons and oligodendrocytes in the brain), would
be missed. Consistently, although our analysis identified
TP53 and CDKN1A (p21)-centered regulators, the con-
served SnGs did not include the other senescence regu-
lators such as CDKN2A (p16) and RB1. This result may
reflect different aspects of cellular senescence controlled
by the two gene pathways. As in vivo expression levels
and cell-type specificity of these two genes have not
been elucidated in healthy human tissues, experiments
comparing senescence phenotypes between healthy and
diseased human tissues are needed to verify this finding.
Nevertheless, our results identified novel senescence-
related genes not yet experimentally validated, which

can be used to generate novel hypotheses regarding cel-
lular senescence. Specifically, we identified 2001 genes in
the aggregated network co-expressed in at least five tis-
sues. Among them, only 77 (4%) genes were annotated
by the CellAge database, and 345 (17%) genes over-
lapped replicative signatures identified by meta-analysis
[65]. Therefore, the majority of network genes have not
been functionally validated. Similar to annotated genes,
the unannotated genes from the aggregated network
were also co-expressed with senescence markers in sin-
gle cells of different tissues (Tables S11 and S13). Some
of the network genes encode SASP factors induced in
senescent cells and regulated by CDKN1A, suggesting
their potential functions in cellular senescence (Table
S7). These novel genes are top candidates for future
functional experimental studies to investigate their roles
in senescence.
In scRNA-seq experiments, gene dropout effects and

the biased cell types from cell dissections [81] may in-
hibit the efficiency of capturing the full senescence sig-
nature across all cell types. Also, our cell-type analysis
was based on the relative expression of marker genes
across different cell types. It may miss senescence signals
when only a small fraction of cell populations are af-
fected (e.g., neuron cells in the brain). Future studies
using transcriptomics, both dissociative and spatially re-
volved platforms, from tissues across the lifespan and in
different disease states are needed to better understand
the role of senescent cells in health and disease.

Conclusions
Our study provides a comprehensive landscape of SnG
co-expression signatures and their cell-type specificity in
50 healthy human tissues. We identified SnG-enriched
gene modules, characterized SnG co-expression patterns,
and constructed aggregated SnG networks across pri-
mary tissues of the human body. Our network ap-
proaches identified 51 conserved SnGs in different
human tissues. Further analyses of snRNA-seq and
spatial transcriptomic data validated the cell-type specifi-
city of SnG-enriched modules. The landscape of the co-
regulated organizations and cell-type specificity of SnGs
can serve as a blueprint for future studies to map senes-
cent cells and their cellular interactions in human
tissues.
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