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Abstract

Objective: Needle electromyography (EMG) is used to study the electrical behavior of myofiber 

properties in patients with neuromuscular disorders. However, due to the complexity of electrical 

potential spatial propagation in nonhomogeneous diseased muscle, a comprehensive understanding 

of volume conduction effects remains elusive. Here, we develop a framework to study the 

conduction effect of extracellular abnormalities and electrode positioning on extracellular local 

field potential (LFP) recordings.

Methods: The framework describes the macroscopic conduction of electrical potential in 

an isotropic, nonhomogeneous (i.e., two tissue) model. Numerical and finite element model 

simulations are provided to study the conduction effect in prototypical monopolar EMG 

measurements.

Results: LFPs recorded are influenced in amplitude, phase and duration by the electrode position 

in regards to the vicinity of tissue with different electrical properties.

Conclusion: The framework reveals the influence of multiple mechanisms affecting LFPs 

including changes in the distance between the source – electrode and tissue electrical properties.

Clinical significance: Our modeled predictions may lead to new ways for interpreting volume 

conduction effects on recorded EMG activity, for example in neuromuscular diseases that cause 

structural and compositional changes in muscle tissue. These change will manifest itself by 
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changing the electric properties of the conductor media and will impact recorded potentials in the 

area of affected tissue.
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1. Introduction

Needle electromyography (EMG) remains the standard “go-to” test used to evaluate 

neuromuscular disorders in adult population (Katirji 2014). In standard EMG (Figure 1 

A), a monopolar (1-electrode) or concentric (2-electrode) needle is inserted through the 

skin and subcutaneous fat into a muscle of interest using anatomical landmarks. Once 

placed in the muscle, it is gently maneuvered through the tissue to intentionally irritate 

and injure individual myocyte membranes with the limb at rest. With each passage of 

the needle, electrical discharges are observed from the resulting membrane depolarization. 

Through pattern recognition, the examiner seeks to identify abnormal spontaneous electrical 

potentials, including repetitive discharges from single muscle fibers (e.g., fibrillation 

potentials and myotonic potentials) or from groups of muscle fibers (e.g., fasciculation 

potentials and myokymic potentials). Once this part of the procedure is completed, the 

patient is then asked to contract the muscle and the characteristics of the voluntary motor 

unit potentials are evaluated as well as the recruitment patterns.

EMG records low frequency extracellular local field potentials (LFPs) generated by 

“electrically-active” motor units. In nonhomogeneous diseased muscle as shown in Figure 1, 

the filtering characteristics of the tissue affecting the morphology (i.e., in amplitude, latency 

and phase) of LFPs are likely determined by structural (e.g., myofiber atrophy or tissue 

necrosis) and compositional (e.g., fatty infiltration or interstitial edema) alterations affecting 

the extracellular conducting medium (Nagy et al. 2019). These tissue alterations are a main 

determinant of the frequency-filtering properties of LFPs and their effect on far-distant 

surface EMG recordings has been exhaustively studied in (Mesin & Farina 2004, Mesin 

2013a, Mesin 2013b). Here, we expand these studies and develop simplified analytical 

models to describe electrical potentials recorded in nonhomogeneous muscle during a needle 

EMG test, i.e., the clinical approach to diagnose neuromuscular disorders (de Morentin et al. 

2021).

Experimental observation of volume conduction and its relevance to features on needle 

EMG has been studied for decades. Work going back to the 1980s assessed the impact of 

depolarizing neurons or myofibers through a volume conductor. For example, studies have 

assessed how the distance between the source of the potential and recording electrodes 

will impact the observed responses and were especially important in the field of evoked 

potentials (Machida et al. 1983, Yamada et al. 1982). Dimitru also investigated the effects 

of the position of the recording electrodes to the potential source in a review paper in 1991 

that summarized beautifully our understanding of potentials that stands to this day (Dumitru 

& Delisa 1991). These studies showed how the amplitude and morphology of common 

waveforms, including fibrillation and motor unit potentials, would change depending on 
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the distance between the recording electrode and source. However, there was always an 

assumption of homogeneous, conductive media. In most neurological disorders, in contrast, 

this is known not to be the case. In disorders with inflammation, the presence of edema 

could actually increase tissue conductivity with the muscle (Sanchez & Rutkove 2017). 

Conversely, in conditions in which there is substantial fat deposition, such as in a muscular 

dystrophy or chronic neurogenic disease, the overall conductivity may decrease. Although 

some have studied the impact of subcutaneous fat on surface EMG measurements (Lowery 

et al. 2002, Blok et al. 2002, Lowery et al. 2004), to our knowledge, none have sought to 

assess the impact of such additional components in a nonhomogeneous pattern within the 

muscle itself.

This work aims to contribute to the understanding macroscopic nonhomogeneous volume 

conduction effects on monopolar needle EMG. For this, we develop a theoretical framework 

to model electrical potential recordings in a nonhomogeneous volume conductor composed 

of two separate, interspersed and both tissues with different electrical properties. The 

framework is general enough to describe an arbitrary boundary between the tissues with 

the voltage recording electrode in a different tissue from the (current) source or even 

at the boundary between tissues. We develop in Section 2 and 3 a framework to model 

quasi-stationary and transient LFPs, respectively. Two simplified case studies are analyzed 

in Section 4 considering the effect of subcutaneous fat and muscle fat deposition in Section 

5. Section 6 compares our theoretical prediction against FEM simulations, which confirm 

the usefulness of the novel framework presented. Finally, the main findings are discussed in 

Section 7.

2. Quasi-stationary volume conduction framework in a nonhomogeneous 

domain

We consider a nonhomogeneous tissue Λ ≔ Ω1 ∪ Ω2 = ℝ3 containing two arbitary domains 

Ω1, Ω2 and their boundary Ψ ≔ Ω1 ∩ Ω2 in full space. The boundary can be either an 

inifnite surface (Figure 2 A, B, C) or a limited closed surface (Figure 2 D, E, F). The system 

of coordinates r ≔ (x, y, z) ∈ Λ defines the position of the current source and voltage 

measuring electrodes S at rS ≔ (xS, yS, zS) and E at rE ≔ (xE, yE, zE), respectively, with 

rS ≠ rE. Electrode S, E are capable to locate in the same domain (Figure 2 A, D) and in 

different domains (Figure 2 B, E). In addition, either of S, E can be placed on the boundary 

(Figure 2 C, F). To develop a biophysic-driven model for aforementioned nonhomogeneous 

tissue, we make the following assumptions: (1), the source and voltage recording electrodes 

are dimensionless; (2), each sub-domain has isotropic, frequency-dependent electrical 

properties; and (3), there are no free charges in the model.

2.1. Governing equation

In order to build an analytical model describing the spatial propagation of electrical potential 

through skeletal muscle tissue as a volume conductor requires to define the genesis of 

electrical current, either endogenously (e.g., action current) or exogenously (e.g., externally 

induced electrical current), generated within the model. Firstly we consider a sinusoidal 

electrical current i(t) ≔ I cos(ωkt) generated by the current source S positioned at rS with 
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current sink at infinity, where t ∈ ℝ(s) is the time variable, I ∈ ℝ(A) is the current amplitude 

at the measurement frequency ωk ∈ ℝ rad s−1 . An electrode E is placed at rE to determine 

the electrical potential with reference zero potential at infinity (in practice, this is the ground 

electrode in EMG measurements). Since the electrical potential generated by sink infinitely 

far away, it has no impact on the region of source S that we are interested to study. 

Thus the electrical potential recorded by E is stimulated by source S only. The admittivity 

γ ∈ ℂ S m−1  in Λ expressed explicitly as a function of the position and measurement 

frequency is

γ r, ωk ≔
γi ωk if r in Ωi
γ1 ωk + γ2 ωk /2 if r on Ψ, (1)

where i ∈ {1, 2} is the domain index, γ 1, 2 ωk ≔ σ 1, 2 ωk + jωkε 1, 2 ωk , 

σ 1, 2 ωk ∈ ℝ > 0 S m−1  and ε 1, 2 ωk ∈ ℝ > 0 F m−1  are the isotropic conductivity and 

permittivity, i.e., γ1 in Ω1 and γ2 in Ω2, respectively, and j = −1 is the imaginary unit 

(dimensionless).

From Maxwell equations in quasi-stationary regime (Maxwell 1873), the generalized 

Poisson equation with respect to the electrical potential distribution U r, ωk ∈ ℂ (V)
generated by the current source S applying current I is

∇ ⋅ γ r, ωk ∇U r, ωk = − Iδ r − rS , (2)

in which ∇ is the vector differential operator, and δ(r) is the Dirac delta function. 

Henceforth, we omit both the spatial and the frequency dependence of both the admittivity 

γ(r, ωk) and potential U(r, ωk) as γ and U, respectively, for the sake of notation clarity.

Next, we define an arbitrary point Q with coordinates rQ ≔ (xQ, yQ, zQ) on boundary Ψ. 

Vector n21 (rQ) is a normal vector of surface Ψ at rQ pointing from Ω2 to Ω1 and n21 rQ  is 

its unit vector, i.e., n21 rQ ≔ n21 rQ / n21 rQ , where |·| is the L2 norm. According to (1) and 

considering that the gradient of admittivity is ∇γ = γ1 − γ2 δ r − rQ n21 rQ , (2) gives

∇2U = − Iδ r − rS
γ − 2Γδ r − rQ

∂U
∂n21 rQ

⋅ n21 rQ , (3)

where r ≠ rS and Γ ∈ ℂ is the reflection coefficient (dimensionless) on Ψ between Ω1 and 

Ω2 defined as Γ ≔ (γ1 − γ2)/(γ1 + γ2). Finally, (3) determines the electrical potential 

distribution U in Λ generated by unique current source S at an arbitrary position rS.

2.2. Electrical potential distribution

To solve (3), we define an integral transformation operator GΨ[ ⋅ ] here with respect to 

arbitrary surface Ψ as
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f(r) GΨ[f(r)] ≔ 1
2π∬Ψ

∂f rQ
∂n21 rQ

⋅
n21 rQ dΨ rQ

r − rQ
,

where f(r) ∈ ℝ is an arbitrary function defined in ℝ3, and dΨ (rQ) represents the area of 

the micro-elements dΨ on surface Ψ at position rQ. Based on GΨ[ ⋅ ], we can also define a 

mth-order iterative transform GΨ
m[ ⋅ ] as

f(r) GΨ
m[f(r)] ≔ GΨ GΨ ⋯GΨ

m
[f(r)]⋯]],

where m ∈ ℕ0. Then, applying the method of Green’s function (Cohl & Tohline 1999) to (3) 

gives an integral equation for the electrical potential, namely

U = I
4πγS r − rS

+ ΓGΨ[U], (4)

where γS ≔ γ (rS) refers to the admittivity at position rS. Using variational iteration method 

(He 1999, Wazwaz 2007) to solve (4), we define the approximated electrical potential U(p)

as

U(p) ≔

I
4πγS r − rS

if p = 0

I
4πγS r − rS

+ ΓGΨ U(p − 1) else
(5)

where p ∈ ℕ0 is the order of the approximation. Then U can be approximated as 

U = limp ∞U(p). Since |Γ| < 1, we can apply operator GΨ
m[ ⋅ ] to simplify (5) as

U(p) = I
4πγS

∑
m = 0

p
ΓmKΨ

(m) r, rS , (6)

where

KΨ
(m) r, rS ≔ GΨ

m 1
r − rS

(7)

is a mth-order geometrical constant (m−1) determined by the shape of surface Ψ and the 

relative position between the source rS and the potential evaluating point r with respect 

to Ψ. Then, the 1st-order p = 1 approximated electrical potential U(1) rE  measured by the 

voltage recording electrode E is

U(1) rE = I
4πγS

1
rE − rS

+ ΓKΨ
(1) rE, rS . (8)
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3. Transient volume conduction framework in a nonhomogeneous domain

The 1st-order approximated model (8) developed from (2) describes the electrical potential 

U(1) rE, ωk  in quasi-stationary state generated by a sinusoidal current source I at specific 

frequency ωk. Using the Fourier transform method as the same rationale in (Miceli et 

al. 2017), it can be extended to a transient model u(1) rE, t  with an arbitrary waveform 

current source i(t) ∈ ℝ(A) in time domain t ∈ ℝ ≥ 0(s). Then, the 1st-order temporal electrical 

potential approximation u(1) rE, t  recorded by voltage measuring electrode E follows from 

(8), namely

u(1) rE, t ≔ Re ℱ−1 ℐ(ω)
4πγS(ω)

1
rE − rS

+ Γ (ω)KΨ
(1) rE, rS , (9)

where ℐ(ω) ≔ ℱ[i(t)] ∈ ℂ is the current spectrum of an arbitrary current signal i(t); 

ω ∈ ℝ rad s−1  is the (angular) frequency variable; Re{·} is the real operator; and ℱ[ ⋅ ], 

ℱ−1[ ⋅ ] are the (inverse) Fourier transform operator.

4. Case study

4.1. Case study 1: planar boundary model

To analyze the planar boundary model, here we provide a compact analytical expression 

of 1st-order geometrical parameter KΨ
(1) rE, rS  in (8) when boundary Ψ is a plane (i.e., the 

curvature of surface Ψ is 0). That is to consider near the recording site, subcutaneous fat 

tissue and underlying muscle can be seen as a plane. In this case, the source S can be placed 

either on the plane Ψ (Figure 3 A) or in Ω{1,2} (Figure 3 B). The voltage recording electrode 

E can be positioned anywhere else in this model. According to (7) and Lemma 1 in Part A of 

the Supplementary Information, we have the 1st-order geometrical parameter KΨ
(1) rE, rS  for 

framework U(1) rE  in case study 1 as

KΨ
(1) rE, rS =

0 if rS on Ψ

( − 1)i − 1

rE − rS′
if rS and rE in Ωi

( − 1)i − 1

rE − rS
else rS in Ωi and rE in Ω3 − i or on Ψ,

(10)

where i ∈ {1, 2}, S′ at rS′ is the mirrored image source, i.e., (rS + rS′)/2 ∈ Ψ. Substituting 

(10) into (8), we can find that rS on Ψ and when rS in Ωi, rE in Ω3−i or on Ψ share the same 

1st-order electrical potential model U(1) rE , namely
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U(1) rE =

I
4πγi

1
rE − rS

+ Γ ( − 1)i − 1

rE − rS′
if rS and rE in Ωi

I
2π γ1 + γ2 rE − rS

else.
(11)

Using (9) we can also find transient potential propagating model u(1) rE, t .

4.2. Case study 2: spherical boundary model

Here we study the effect of a spherical boundary between tissues Ψ on recorded EMG. 

This model is an abstraction of fat deposition within the muscle as can be seen in chronic 

neurogenic muscle for example. In this case, the source S can be placed either on the 

spherical surface Ψ (Figure 4 A) or in domain Ω{1,2} (Figure 4 B). The electrical potential 

recording electrode E can be placed anywhere else in Λ. Point C at rC is the center 

of the spherical surface Ψ. According to (7) and Lemma 2 in Part B of Supplementary 

Information, we have the 1st-order geometrical parameter KΨ
(1) rE, rS  for framework U(1) rE

in case study 2 as

KΨ
(1) rE, rS =

b
RSRE

∑
n = 0

∞ 2n
2n + 1

b2

RSRE

n
Pn cos θC if RS > b, RE ≥ b

1
RS

∑
n = 0

∞ 2n
2n + 1

RE
RS

n
Pn cos θC if RS > b, RE < b

− 1
RE

∑
n = 0

∞ 1
2n + 1

b
RE

n
Pn cos θC if RS = b, RE ≥ b

− 1
b ∑

n = 0

∞ 1
2n + 1

RE
b

n
Pn cos θC if RS = b, RE < b

− 1
RE

∑
n = 0

∞ 2n + 2
2n + 1

RS
RE

n
Pn cos θC if RS < b, RE ≥ b

− 1
b ∑

n = 0

∞ 2n + 2
2n + 1

RSRE
b2

n
Pn cos θC else RS < b, RE < b

(12)

where distance b is the radius of spherical surface Ψ, distance RS ≔ |rS − rC| is the distance 

between the current source and center of the sphere, distance RE ≔ |rE − rC| is the distance 

between voltage recording electrode and the center of the sphere, θC ≔ cos−1 ((rS − rC) · 

(rE − rC)/(|rS − rC||rE − rC|)) is the angle between line segment |SC| and |EC|, Pn(x) are 

Legendre polynomials. Substituting (12) into (8), one can obtain 1st-order electrical potential 

model U(1) rE . Using (9), we can also yield transient potential spatial propagation model 

u(1) rE  for case study 2.
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5. Materials and methods

5.1. Numerical potential spatial propagation

Domain Ω1 and Ω2 in case case study 1 and 2 are considered as skeletal muscle and fat, 

respectively. As shown in Figure 5 A, an experimentally recorded action current recorded 

by voltage clamp (Hernández-Ochoa & Schneider 2012) is considered as a current source 

S in Ω1. The recording potential stimulated by sinusoidal current (I = 20 nA at 1 kHz) and 

membrane current (Figure 5 A) are computed in MATLAB (The Mathworks, Natick, MA, 

USA) using (8) and (9), respectively. The conductivity and relative permittivity of muscle 

and fat tissues (Figure 5 B) are obtained from an online dataset (Gabriel et al. 1996). Of 

note, the conductivity and relative permittivity of muscle are geometrical mean values of 

longitudinal and transverse electrical property in anisotropic skeletal muscle.

In case study 1, the recording electrode E is simulated in Ω1 (Figure 6 A) and Ω2 (Figure 6 

B). Length hS, hE are the distances from source S, electrode E to boundary Ψ, respectively, 

while dSE is the distance between S and E. The geometrical parameters are set as hS = [1, 

9] mm, hE = [0, 10] mm, dSE = [1, 19] mm. In case study 2, the recording electrode E is 

simulated in Ω1 (Figure 7 A) and Ω2 (Figure 7 B). Length RS, RE are the distances from 

source S, electrode E to spherical center C, respectively, while θC is the angle between line 

segment |SC| and |EC|. The radius of spherical volume b is configured as b = 5 mm. Other 

geometrical parameters are set as RS = [6, 15] mm, RE = [0, 15] mm, θc = [0°, 180°] mm.

5.2. Finite element model simulations

FEM simulations were performed in Comsol Multiphysics (Comsol, Inc., Burlington, MA, 

USA) to determine the potential spatial propagation generated by a sinusoidal current (I = 

20 nA at 1 kHz). The simulating region was 50 × 50 × 50 m3 with current sink and zero 

potential reference at opposite vertexs of this cubic region (see Figure 6 C and Figure 7 C). 

Simultaneously, the current source S and potential recording electrode E are placed in the 

central area of cube, where we are interested to study the electrical potential distribution. 

The conductivity and the relative permittivity at 1 kHz are 4.31 × 10−1 S/m, 8.67 × 105 

(dimensionless) for Ω1, 2.25 × 10−2 S/m and 2.48×104 (dimensionless) for Ω2 (Gabriel et al. 

1996). Adaptive mesh was used, where the maximum and minimum mesh element size are 

configured as 103 mm and 10−3 mm, respectively. The maximum element growth rate is set 

as 1.2 and the curvature factor is 0.2. The number of degrees of freedom are 534,570 in case 

study 1 and 535,054 in case study 2.

6. Results

Figure 8 shows the electrical potential obtained with analytical and FEM models changing 

the voltage electrode position. The isopotential lines are plotted for case study 1 (Figure 8 

A and E) and case study 2 (Figure 8 I and M). Unlike a homogeneous volume conductor, 

the distribution of potential lines are distorted by the vicinity of Ω2 with different electrical 

properties than Ω1. Also, the spacing between adjacent isopotential lines is smaller in Ω2 

than that in Ω1. For case study 1, the magnitude and phase of the electrical potential with 

the voltage recording electrode in Ω1 is shown in Figure 8 B, C, D; and Ω2 in Figure 8 F, 
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G, H. Similarly for case study 2, the magnitude and phase of the electrical potential with 

the voltage recording electrode in Ω1 is shown in Figure 8 J, K, L; and Ω1 in Figure 8 N, 

O, P. Overall, theory and FEM predicted magnitude and phase of electrical potential are in 

good agreement. Interestingly, when potential recording electrode is positioned in Ω2 in case 

study 1 (see Figure 8 F, G, H), the phase of measured potential is a constant wherever the 

electrode is, and the magnitude is only determined by the distance between current source 

and electrode.

Figure 9 shows the electrical potential normalized by the sinusoidal current source (i.e., 

units of electrical impedance) changing the frequency from 10 Hz to 10 kHz, that is the 

frequency bandwidth of the EMG signal. Overall, the theoretical prediction does agree with 

FEM simulation. As expected, the frequency response of the tissue filtering characteristics is 

that of a low pass filter, with a minimum of the phase value at the frequency of 100 Hz.

Figure 10 illustrates the transient potential waveform excited by membrane current and 

recorded at different positions in case studies. The evaluating electrode can be placed in 

muscle and fat in case study 1 (Figure 10 A and B) and in case study 2 (Figure 10 C and D). 

respectively. As expected, the waveform amplitude decreases with distance from recording 

electrode to current source. However, the waveform recorded in muscle attenuates faster 

than that in fat.

7. Discussion

This paper provides a framework to model monopolar EMG recordings in a 

nonhomogeneous conductor volume. The key contribution of our approach is that it is 

geometrically generic to model a changing distance between the current source and the 

voltage recording electrode. The framework (6) is based on perturbation theory, where 

the reflection coefficient Γ acts as the perturbation parameters. We then apply the first 

order approximation of our model (8) to study the nonhomogeneous potential spatial 

propagation. We analyzed the electrical potential distribution and confirmed the usefulness 

of our framework performing numerical and FEM simulations in two simplified cases 

considering a planar and spherical boundary between muscle and fat. We found the accuracy 

of our theoretical predictions is dependent on Γ, namely the difference between muscle and 

fat electrical properties. We validated the accuracy to be ≤ 0.5% even when with tissue 

properties differing by two orders of magnitude (Sanchez et al. 2020, Nagy et al. 2019) 

(Supplementary information).

Our work extends the existing scientific knowledge by modeling the effect of changing 

the distance between current source and electrode affecting LFPs in a nonhomogeneous 

measurement including the frequency-dependence of both tissues’ electrical properties 

conductivity and permittivity. There are also several additional observations worth 

discussing. Of note, if one simplifies the curvature of the boundary between domains to 

a plane (and neglects the permittivity property), our framework provides the same potential 

model as the principle of image charges used in (Ness et al. 2015). Also, if one assumes the 

conductivity is zero and the permittivity equals vacuum permittivity in one of the domains, 

then our framework equips the reader with the electrical potential distribution within a 
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finite, homogeneous, isotropic, arbitrary volume surrounded by vacuum. In this case, if the 

boundary surface is a plane, our framework then provides the well known electrical potential 

in a half space domain.

Our work has several limitations. First, the framework developed assumes the current 

sources are point-like. In practice, motor unit in skeletal muscle has finite size which 

can be modeled as a “moving” point (Duchene & Hogrel 2000), line source (Stegeman et 

al. 2000), curved fiber (Roth & Beaudoin 2003) and other specific geometries (Merletti, 

Conte, Avignone & Guglielminotti 1999, Merletti, Roy, Kupa, Roatta & Granata 1999, 

Farina & Merletti 2001). Of note, our framework can be extended to model a line source 

using multiple discrete point-like sources with delaying waveform to consider the dimension 

(length) of the muscle fiber. Another limitation is the fact that the size of EMG recording 

electrode is not considered (Moffitt & McIntyre 2005). Further, the tissues’ electrical 

properties are assumed to be isotropic, i.e., the same in all directions, whereas muscle is 

known to be anisotropic. In general, these are spatially-dependent as in the case of fusiform 

muscle with different values along and perpendicular to the major myofiber direction (Nagy 

et al. 2019). To account for this simplification in our framework, the anisotropic dependence 

is calculated in an average sense based on the geometrical mean of longitudinal and 

transverse electrical properties (Kwon et al. 2017, Kwon, Guasch, Nagy, Rutkove & Sanchez 

2019, Kwon, de Morentin, Nagy, Rutkove & Sanchez 2019). Also, our model assumes that 

the electrical properties do not change within the tissues considered while a more realistic 

model will also include this spatial dependency. However, to the best of our knowledge, the 

authors are not aware of any experimental dataset available that has measured the spatial 

dependence of the electrical properties in diseased muscle. Finally, the framework only 

contemplates a domain model including two tissues and therefore the number of boundaries 

is limited to one. We are currently working to circumvent this limitation and extend the 

framework to model multiple nonhomogeneities with a larger number of tissues within the 

domain.

Despite these limitations, this work allows the reader to gain physical understanding on 

volume conduction mechanisms in nonhomogeneous domains affecting monopolar EMG 

recordings. Here, we have focused mainly on the (passive) volume conduction electrical 

properties of the bulk of the muscle and the effects on a measured LFPs using an 

intramuscular electrode. Our results provide some initial insights into how the deposition 

of fat within the muscle, a common sequela of many neuromuscular disorders, may impact 

the observed electrical potentials. Modeling a prototypical membrane current waveform, 

our predictions suggest an increase (amplification) of the recorded voltage. Extending our 

analyses to include transmembrane current waveforms as seen in neuromuscular disorders is 

an obvious next step to this initial work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of extracellular local field potentials (LFPs) spatial propagation in needle 

electromyography towards a distant recording needle electrode. The LFPs are filtered 

(attenuated or amplified) by the frequency characteristics determined by the electrical 

properties (EP) of diseased muscle extracellular environment. In the figure, decreased 

conductivity illustrated by pockets of fat infiltration as seen in chronic myopathic disease 

increase the amplitude of LFPs (Fukada et al. 2010).
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Figure 2. 
Schematic illustrating a nonhomogeneous tissue containing two sub-domains Ω1 and Ω2 in 

full space Λ with isotropic admittivity γ1 and γ2, respectively. Domain Ω2 is a infinite 

open region (A, B, C) or limited closed region (D, E, F). In this model, the point Q with 

coordinates rQ ≔ (xQ, yQ, zQ) is on Ψ, the latter the surface which defines the boundary 

between Ω1 and Ω2. Vector n21 is a normal vector of Ψ at rQ, which is pointing from Ω2 to 

Ω1. A current source S at rS ≔ (xS, yS, zS) generates current in the model. Electrode E at 

rE ≔ (xE, yE, zE) records the resultant electrical potential. The current source S and voltage 

measuring electrode E are placed in the same domain (A, D) or in different domains (B, E). 

In addition, either of S and E can be on the boundary Ψ (C, F).
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Figure 3. 
Case study 1 of a nonhomogeneous EMG measurement with a planar boundary in full 

space Λ. Plane Ψ divide full space into two half space domains Ω1 and Ω2 with isotropic 

admittivity γ1, γ2, respectively. Point Q with coordinates rQ is on Ψ. Vector n21 is a normal 

vector of Ψ at rQ, which is pointing from Ω2 to Ω1. A point source S located at rS generates 

current in the model. Electrode E at rE is another point recording the electrical potential. 

Electrode S is available to be placed on plane Ψ (A) and inside a domain (B). Electrode E is 

placed at anywhere else in Λ. If rS ∉ Ψ, S′ is the mirrored point of S at rS′. They are mirror 

symmetry with respect to plane Ψ.
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Figure 4. 
Case study 2 of nonhomogeneous EMG measurement with a spherical boundary in full 

space Λ. Spherical surface Ψ divide full space into two domains Ω1 and Ω2 with isotropic 

admittivity γ1, γ2, respectively. Point Q with coordinates rQ is on Ψ. Vector n21 is a normal 

vector of Ψ at rQ, which is pointing from Ω2 to Ω1. A point source S located at rS generates 

current in the model. Electrode E at rE is another point recording the electrical potential. 

Electrode S is available to be placed on plane Ψ (A) and inside a domain (B). Electrode E is 

placed anywhere else in Λ.
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Figure 5. 
(A) Muscle transient current simulated. The membrane current waveform was recorded via 

voltage clamp in response to an 80 ms step depolarization to 0 mV from a membrane 

potential of −80 mV (Hernández-Ochoa & Schneider 2012). (B) Simulated conductivity (in 

blue color) and relative permittivity (in red color) of skeletal muscle (solid lines) and fat 

(dotted lines) tissue (Gabriel et al. 1996).
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Figure 6. 
Illustration of case study 1 applied in needle EMG recording affected by subcutaneous fat. 

A plane Ψ divide full space into two half-space domains Ω1 and Ω2 with admittivity γ1 

and γ2, which are configured as muscle and fat, respectively. A point-like current source 

S is located in muscle and potential recording electrode can be placed in skeletal muscle 

(A) or subcutaneous fat (B). Length hS, hE are the distances from point S, E to boundary 

Ψ, respectively, while dSE is the distance between S and E. A finite element model (FEM) 

is built in a 5 × 5 × 5 (×104 mm) region with current sink and zero potential reference at 

opposite vertexs of this cube (C). The interested potential disribution area determined by 

source S is located in the cubic center.
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Figure 7. 
Application of spherical boundary case in needle EMG recording affected by intruded fat. 

A spherical surface Ψ divide full space into open domain Ω1 and closed domain Ω2 with 

admittivity γ1 and γ2, which are configured as muscle and fat, respectively. The spherical 

volume Ω2 centered at point C with radius b. A point-like current source S is located in 

muscle and potential recording electrode can be placed in muscle (A) or fat (B). Length RS, 

RS are the distances from point S, E to C, respectively, while θC is the angle between line 

segment |SC| and |EC|. A finite element model (FEM) is built in a 5 × 5 × 5 (×104 mm) 

region with current sink and zero potential reference at opposite vertexs of this cube (C). 

The interested potential disribution area determined by source S is in the cubic center.
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Figure 8. 
Analytical and FEM-simulated electrical potential results of case study 1 (see Figure 6) and 

case study 2 (see Figure 7) varying the electrodes position with sinusoidal current (I = 20 

nA at 1 kHz) source. Panels (A, E, I, M) show the resultant isopotential lines in case study 

1 and 2 with the source S in Ω1 and the electrode E in Ω1 and Ω2. The magnitude (in blue) 

and phase (in red) of electrical potential are compared between theoretical prediction (solid 

line) and FEM simulation (circles) changing dSE = [1, 19] mm (B), hE = [0, 10] mm (C), hS 

= [1, 9] mm (D) with dSE = 10 mm, hE = hS = 5 mm when the electrode E is in muscle for 

case study 1; changing dSE = [10, 19] mm (F), hE = [0, 10] mm (G), hS = [1, 9] mm (H) with 

dSE = 15 mm, hE = hS = 5 mm when the electrode E is in fat for case study 1 (i.e., (8) with 

geometrical parameter (10)); changing θC = [0°, 180°] (J), RE = [5, 15] mm (K), RS = [6, 

15] mm (L) with θC = 90°, RE = 8 mm, RS = 10 mm, b = 5 mm when the electrode E is in 

muscle for case study 2; changing θC = [0°, 180°] (N), RE = [0, 5] mm (O), RS = [6, 15] mm 

(P) with θC = 90°, RE = 3 mm, RS = 10 mm, b = 5 mm when the electrode E is in muscle for 

case study 2 (i.e., (8) with geometrical parameter (12)).
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Figure 9. 
Analytical (solid and dotted lines) and finite element model (circles and squares) magnitude 

(A and B for case study 1 and 2, respectively) and phase (C and D for case study 1 and 2, 

respectively) of filter impedance calculated as the ratio of recorded potential to current from 

10 Hz to 10 kHz. The potential recording electrode E is considered to be placed in muscle 

(in blue) and fat (in red). Simulation setting: (8) with geometrical parameters (10) and (12) 

in the frequency domain. Additional simulation parameters are: hSE = 10 mm, hE = 5 mm, 

hS = 5 mm, b = 5 mm, RS = 10 mm, θC = 90°, RE = 8 when the electrode is in muscle, RE = 

3 mm when the electrode is in fat.
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Figure 10. 
Simulated electrical potential propagation in nonhomogeneous muscle varying the distance 

from the potential recording electrode E to the current source S. The transmembrane current 

waveform (see Figure 5 A) is injected at S in case study 1 with the electrode E in muscle 

and hE = hS + dSE mm (A), also when the electrode E is in fat with hE = dSE − hS (B). In 

case study 2, the electrode E is in muscle with RE = RS + dSE (C) and fat with RE = RS − 

dSE (D). Simulation setting: (9) with geometrical parameters (10) and (12) in time domain. 

Additional simulation parameters: hS = 5 mm, b = 5 mm, RS = 10 mm, θC = 0°.
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