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Abstract

Viral RNAs are susceptible to co-translational RNA decay pathways mediated by the RNA 

helicase Upstream frameshift 1 (Upf1). Upf1 is a key component in nonsense-mediated decay 

(NMD), Staufen1-mediated mRNA decay (SMD), and structure-mediated RNA decay (SRD) 

pathways, among others. Diverse families of viruses have features that predispose them to Upf1 

targeting, but have evolved means to escape decay through the action of cis- or trans-acting viral 

factors. Studies aimed at understanding how viruses are subjected to and circumvent NMD have 

increased our understanding of NMD target selection of host mRNAs. This review focuses on 

the knowledge gained from studying NMD in viral systems as well as related Upf1-dependent 

pathways and how these pathways restrict virus replication.

INTRODUCTION

Upf1 is an ATP-dependent RNA helicase that is required for several RNA quality control 

pathways and is highly conserved across eukaryotic systems [1–4]. Nonsense-mediated 

decay (NMD), the most extensively studied Upf1-dependent pathway, targets aberrant 

transcripts containing a premature termination codon (PTC) to prevent the production of 

truncated proteins with potentially detrimental effects [5, 6]. Phosphorylation of Upf1 is 

necessary for NMD [7–9] and inhibiting NMD results in increased steady-state levels 

of ~10% of cellular transcripts in multiple eukaryotic systems, demonstrating that NMD 

effectively regulates a considerable amount of gene expression post-transcriptionally [10–

14]. mRNAs that do not contain PTCs make up a portion of cellular transcripts targeted 

by Upf1 and these transcripts often have upstream open reading frames (uORFs) [15] or 

introns in their 3’ untranslated region (3’ UTR) [16]. Upf1 predominantly binds 3’ UTRs 

and translocates over long distances using its RNA helicase activity, efficiently displacing 

bound proteins [17]. Transcriptome-wide mapping experiments revealed that Upf1 binding 

is enhanced in GC-rich regions, possibly as a result of reduced translocation [18–20]. The 
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elevated levels of Upf1 binding to highly-structured, GC-rich 3’ UTRs regions [19] increases 

the likelihood that phosphorylated Upf1 will interact with a terminating ribosome and 

initiate mRNA decay [21]. The multi-cistronic organization of viral genomes predisposes 

viruses to NMD targeting since internal stop codons are perceived as PTCs by the host. 

Furthermore, viral 3’ UTRs are often GC-rich and highly structured for recruiting host 

factors [22] and/or components of the translation machinery [23], which also predisposes 

viral RNAs to NMD. As such, diverse families of viruses are targeted by NMD [24, 25], 

which the virus can evade through the presence of either specific cis-acting RNA sequences 

or viral proteins [26, 27]. In addition to NMD, Upf1 is essential for additional RNA 

degradation pathways that are initiated by various host factors (Fig. 1A) [21]. However, the 

roles of additional Upf1-dependent pathways in restricting viruses are poorly understood.

Diverse viruses are Upf1 targets for NMD

Both animal and plant viruses have been used for studying NMD. Studies using the 

retrovirus Rous sarcoma virus (RSV) were the first to demonstrate that Upf1 can 

target unspliced viral RNAs for NMD in a co-translational manner [28]. Interestingly, 

Upf1 is a component of the HIV-1 ribonucleoprotein (RNP) and positively regulates 

retrovirus replication (Table 1) [29–31]. The first evidence that NMD broadly inhibits RNA 

viruses came from studies demonstrating that NMD restricts Semliki forest virus (SFV) 

accumulation in mammalian cells [32] as well as Potato virus X (PVX) and Turnip crinkle 
virus (TCV) in plants [33]. Interestingly, the potyvirus Turnip mosaic virus was not targeted 

by NMD, which was attributed to its polyprotein expression strategy that prevents Upf1 

accumulation along the viral mRNA [33]. These findings are in agreement with studies that 

demonstrate Upf1 is displaced by the translating ribosome and therefore only accumulates 

in 3’ UTRs [34]. NMD also targets several flaviviruses including Hepatitis C virus (HCV) 

[35] and Zika virus (ZIKV) [36], and the coronavirus Murine hepatitis virus (MHV) [37]. 

The DNA virus Kaposi’s sarcoma-associated herpesvirus (KSHV) was the first DNA virus 

determined to be targeted by Upf1 and NMD [38]. pre-mRNA splicing in the KSHV 

transcriptome results in retention of several introns downstream of termination codons that 

in turn predispose KSHV transcripts to NMD [39].

Virus evasion of NMD

Both cis-acting RNA sequences and trans-acting viral proteins can disrupt NMD and 

are summarized in Figure 2. Many viruses require ribosome recoding to produce C-

terminally extended proteins and maximize coding potential [40, 41]. Viral ribosome 

recoding sequences (i.e., readthrough or frameshifting) just downstream from termination 

codons confer NMD-resistance in several plant viruses [42] as well as mammalian viruses 

like Moloney murine leukemia virus (MoMLV)[43, 44], likely as a result of ribosome 

displacement of Upf1 when the termination codon is by-passed [45].

Ribosomes terminating at the gag stop codon in retroviral mRNAs can leave a 3’ UTR that 

is greater than 7 kb in length, predisposing retroviruses to Upf1 targeting. However, NMD-

resistance is conferred by RNA stability elements (RSEs; about 400 nt) located downstream 

of the gag stop codon, which are strongly conserved among retroviruses [46–49]. Human 
T-cell leukemia virus type 1 (HTLV-1) expresses Tax, a viral protein that directly binds 
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Upf1 and INT6, a factor associated with eukaryotic initiation factor 3 (eIF3) and NMD [50]. 

Intricate studies have demonstrated that Tax binding to Upf1 inhibits Upf1 helicase activity 

and reduces RNA binding, thus effectively inhibiting NMD [51]. Upf1 activity is also 

antagonized by the SFV helicase and nsP3 in viruses in the Togaviridae [32]. Additionally, 

the HTLV-1 Rex protein has been proposed to protect both viral and host transcripts against 

NMD [52], however the mechanism remains unclear.

The NMD pathway is disrupted during HCV infection as a result of the viral core 

protein interfering with the interaction between Within bgcn homolog (WIBG) and the exon-

junction complex (EJC) components Y14 and Magoh [35]. Y14, Magoh, and PYM1, an 

additional EJC component, are antiviral towards ZIKV, West Nile virus (WNV), and Dengue 
virus (DENV) as a result of Y14 directly binding viral RNA in a Magoh- and PYM1-

dependent manner [53]. The WNV capsid inhibits interactions between PYM1, Magoh, and 

Y14, and WNV infection causes mis-localization of EJC components [53]. The ZIKV capsid 

interacts with nuclear Upf1 which leads to Upf1 degradation by the proteasome [36]. The 

targeting of cytoplasmic RNA viruses by the EJC is somewhat surprising since EJC proteins 

are largely associated with spliced mRNAs that form in the nucleus [54, 55]. However, 

studies in Drosophila have revealed that Y14 and Magoh can bind intronless transcripts [56] 

making it possible that EJC components could associate with viral RNAs promiscuously.

Studies using plant viruses have uncovered additional cis- and trans-acting viral elements 

that can thwart NMD. The long-distance p26 movement protein from Pea enation mosaic 
virus 2 (PEMV2) confers resistance to both viral and non-viral 3’ UTRs [57]. RNA-seq 

analyses revealed that both an NMD inhibitor and PEMV2 infection resulted in a high 

degree of overlap between down- and up-regulated transcripts, suggesting that PEMV2 

severely impairs the NMD pathway [57]. The transactivator protein (TAV) from Cauliflower 
mosaic virus (CaMV), a DNA virus, disrupts the VARICOSE decapping complex and 

confers NMD resistance to host transcripts, but it remains unknown if CaMV transcripts 

are themselves subjected to NMD [58]. A short unstructured region (USR) immediately 

downstream of the TCV subgenomic RNA termination codon confers NMD resistance to 

both viral and non-viral NMD targets [42]. Introducing a 2-nt mutation downstream of the 

USR that forces the USR to form a stable hairpin abolishes NMD protection, demonstrating 

that the unstructured RNA is inherently NMD-resistant.

Viral RNA sequences provide insight into NMD target selection

The discovery of cis-acting viral RNA sequences that confer NMD-resistance has shed 

light on how cellular transcripts with NMD-inducing features evade NMD surveillance. The 

RSV RSE has long been studied for its role in conferring stability and NMD-resistance 

[49, 59]. Polypyrimidine tract binding protein 1 (PTBP1) binds polypyrmidine tracts 

within the RSV RSE [60], promoting Upf1 dissociation from NMD targets [61]. Nearly 

200 human NMD targets are protected by PTBP1 and these transcripts are enriched for 

polypyrimidine hexamers downstream of their termination codons that bind PTBP1 and 

confer NMD-resistance [60]. Similar findings have revealed that hnRNP L protects cellular 

transcripts with long 3’ UTRs against NMD by binding to 3’ UTRs with CA repeats [62].
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Interestingly, highly unstructured RNA sequences immediately downstream of the 

termination codon, as is found in TCV, are over 4-fold enriched in NMD-resistant human 

transcripts when compared to target transcripts [19, 42]. Another study identified several 

NMD-inhibiting termination-proximal cis elements in human mRNAs that were enriched for 

A/U nucleotides (~70%) in the first 200-nt downstream of the stop codon and lack stable 

secondary structures [63].

In Arabidopsis thaliana, alternative splicing generates three eukaryotic release factor 1 

(eRF1) transcripts, where eRF1–1 contains an NMD-inducing intron in the 3’ UTR [64]. 

Interestingly, the eRF1–1 termination codon is followed by a 6-nt sequence (CAAUCA) 

that is similar to the Tobacco mosaic virus (TMV) ribosome readthrough signal [64, 65] 

and readthrough of this codon confers NMD-resistance and contributes to autoregulation of 

eRF1 protein levels [66]. A human genome-wide study found that the TMV readthrough 

signal was heavily favored among transcripts that undergo ribosome readthrough when 

treated with aminoglycosides and become NMD-resistant [67]. Collectively, these examples 

demonstrate how cis-acting viral sequences that confer NMD-resistance can provide insight 

into cellular NMD target selection, a process that is not fully understood [6].

Timing and efficiency of virus inhibition by NMD

Suppressing Upf1 expression results in increased virus accumulation across eukaryotic 

systems. However, the ability of Upf1 and NMD to limit virus replication in a biologically 

significant way at the organismal level remains unknown. NMD has been proposed to 

mainly occur during the pioneer round of mRNA translation [68], however multiple studies 

have shown that NMD can occur by chance during all rounds of translation [69–71]. Using 

single-molecule imaging and tracking individual ribosomes on an NMD target, Hoek et. al. 
(2019) demonstrated that approximately 10% of terminating ribosomes induce NMD [71]. 

This inefficiency of NMD activation presents a challenge for host cells to use NMD to 

eliminate viral RNAs. NMD may be most effective at restricting virus replication during 

early stages of infection when few copies of the viral RNAs are present. After an infection 

is established, the 10% overall efficiency of NMD is unlikely to appreciably limit virus 

replication since the cell is overcome with viral RNAs. In support of this conjecture, MHV 

is most efficiently inhibited by NMD in the first five hours of infection before expression of 

the viral N protein that inhibits NMD [37].

Additional Upf1-mediated decay pathways

Staufen1-mediated mRNA decay (SMD) requires that the double-stranded RNA binding 

protein Stau1 bind the 3’ UTRs of target mRNAs [72, 73]. Stau1 then recruits Upf1 to the 

3’ UTRs of target mRNAs for subsequent target degradation [74]. Stable 3’ UTR stem-loop 

structures or intermolecular base-pairing between an mRNA 3’ UTR and long non-coding 

RNA (lncRNA) are sufficient to recruit Stau1 [75]. Knockdown of Stau1 results in the 

upregulation of 1% of human transcripts demonstrating that SMD, like NMD, can also 

regulate gene expression post-transcriptionally [76]. The efficiencies of NMD and SMD are 

inversely correlated with one another since Upf1 is required for both pathways but both 

Stau1 and the NMD factor Upf2 share binding sites within Upf1 [77, 78]. Whereas Stau1 

plays a pro-viral role in multiple virus lifecycles (see Table 1) [79–91], there is currently 
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limited evidence for Stau1 and SMD targeting viral RNAs. Importantly, Cho et. al. found 

that Influenza A virus (IAV) NS1 binding to Stau1 prevents Stau1 from interacting with 

Upf1 and initiating SMD decay of IAV RNAs [92]. Transcriptome-wide identification of 

Stau1 binding sites has revealed striking similarities to Upf1 where Stau1 preferentially 

binds long 3’ UTRs containing GC-rich secondary structures absent of specific sequence 

motifs [93–95]. Although most studies to date have focused on NMD-targeting of viruses, 

the similarities and intertwined functions of Stau1 and Upf1 suggest that SMD could also 

restrict accumulation in diverse families of viruses.

Recently, structure-mediated RNA decay (SRD) was demonstrated to selectively degrade 

transcripts with highly-structured 3’ UTRs in a Upf1- and Ras GTPase-activating protein-

binding protein 1 (G3BP1)-dependent manner [96]. G3BP1 and Upf1 interact via base-

paired RNA sequences that do not overlap with Stau1 binding sites as determined by 

CLIP-seq [95, 96]. G3BP1 forms stress granule cores during stress leading to sequestration 

and translational repression of cellular transcripts [97–100]. G3BP1 has several pro-viral 

(Table 1) and anti-viral roles in virus lifecycles. G3BP1 inhibits Sendai virus and Vesicular 
stomatitis virus by facilitating the RIG-I antiviral response [101, 102], G3BP1 sequesters 

HIV-1 RNA transcripts [103], and G3BP1 is specifically targeted and cleaved by the viral 

proteases from several picornaviruses [104–106]. Interestingly, SRD targets non-coding 

circular RNAs (circRNAs) in addition to mRNAs [96] opening the possibility that non-

coding viral RNAs could be targeted by Upf1 and SRD.

CONCLUSIONS

The necessity of all viruses to either translate their genomes or antigenomes or produce 

mRNAs predisposes all viruses to Upf1-targeting (Fig. 1B) and future work will 

undoubtedly identify additional families of viruses subjected to Upf1-mediated decay. Most 

research to date has focused on the role of NMD in virus lifecycles, and the identification of 

cis- and trans-acting viral factors that interfere with NMD has broadened our understanding 

of NMD itself. Global inhibition of the NMD pathway has been observed during plant and 

animal virus infections and may contribute to pathogenesis. However, future work is needed 

to determine if viruses manipulate host gene expression through NMD-inhibition as a means 

to shape the transcriptome in a way that favors virus replication. Upf1’s involvement in 

additional pathways like SMD or SRD suggest that viruses are likely affected by additional 

Upf1-dependent pathways and additional studies dissecting the involvement of individual 

pathways in virus replication is needed.
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HIGHLIGHTS

• Upf1 targets viral RNAs for degradation through multiple pathways

• Viruses disrupt Upf1-mediated decay in different way through cis- and trans-

acting factors

• Viral systems have yielded insight into Upf1 target selection within host cells
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Figure 1: Upf1-dependent decay and targeting of viral mRNAs.
(A) Upf1 is essential for nonsense-mediated decay (NMD), Staufen1-mediated decay (SMD) 

and structure-mediated RNA decay (SRD). Upf1 associates with the 3’ UTRs of viral and 

host 3’ UTRs and can initiate NMD. Stau1 binds dsRNA structures in the 3’ UTRs of 

mRNAs and recruits Upf1 for subsequent SMD. G3BP1 binds highly structured regions in 

conjunction with Upf1 to target mRNAs or non-coding circRNAs for SRD. (B) All viruses 

produce mRNAs that are potential targets of Upf1. Most viruses that are known to be 

targeted by Upf1 are +ssRNA viruses. IAV (-ssRNA) is targeted by Upf1 and SMD. dsDNA 

viruses produce mRNAs that are targeted by NMD. *CaMV interferes with NMD, but direct 

evidence of susceptibility of viral RNAs towards NMD is lacking.
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Figure 2: Viruses disrupt NMD and SMD.
Both cis-acting RNA sequences and trans-acting viral proteins interfere with NMD. 

Flavivirus-mediated inhibition of NMD generally involves interfering with EJC components. 

SMD is disrupted by IAV NS1 blocking Upf1 association with Stau1.
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Table 1:

Pro-viral roles of Upf1 and associated decay factors

Protein Virus Function Refs.

Upf1 HIV-1 Required for efficient translation of pr55(Gag) [29]

Upf1 HIV-1 Upf1 incorporates into viral RNPs to promote nuclear export of HIV-1 genomic RNA [30]

Upf1 HIV-1 Upf1 helicase activity is required for HIV-1 reverse transcription and infectivity [31]

Stau1 Ebola Stau1 facilitates interactions between viral RNA and replication machinery [79]

Stau1 EV-A71 Promotes efficient viral protein translation by binding to 5’ UTR of viral RNAs [80]

Stau1 HIV-1 Disassembles stress granules to promote efficient translation and trafficking of viral RNAs [81]

Stau1 IBDV, HCV Stau1 binds viral dsRNA and interferes with type I interferon response and protein kinase R (PKR) [82, 88]

Stau1 HIV-1 Component of HIV-1 RNP and regulates HIV-1 assembly and infectivity [84–87]

Stau1 IAV Interacts with NS1 and viral ribonucleoprotein and is required for efficient replication [89–91]

G3BP1 SINV Limits polyprotein expression, possibly by sequestering viral RNAs in nsP4 replication complexes [107]

G3BP1 SFV, CHIKV nsP3 interacts with G3BP1 to sequester viral replication complexes and recruit translation factors [108]

G3BP1 MNV, HuNoV Facilitates interactions between VPg, viral RNA, and translation machinery [109]
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