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Abstract

In vivo electrochemistry is a vital tool of neuroscience that allows for the detection, identification, 

and quantification of neurotransmitters, their metabolites, and other important analytes. One 

important goal of in vivo electrochemistry is a better understanding of progressive neurological 

disorders (e.g., Parkinson’s disease). A complete understanding of such disorders can only be 

achieved through a combination of acute (i.e., minutes to hours) and chronic (i.e., days or 

longer) experimentation. Chronic studies are more challenging because they require prolonged 

implantation of electrodes, which elicits an immune response, leading to glial encapsulation of 

the electrodes and altered electrode performance (i.e., biofouling). Biofouling leads to increased 

electrode impedance and reference electrode polarization, both of which diminish the selectivity 

and sensitivity of in vivo electrochemical measurements. The increased impedance factor has 

been successfully mitigated previously with the use of a counter electrode, but the challenge 

of reference electrode polarization remains. The commonly used Ag/AgCl reference electrode 

lacks the long-term potential stability in vivo required for chronic measurements. In addition, the 

cytotoxicity of Ag/AgCl adversely affects animal experimentation and prohibits implantation in 

humans, hindering translational research progress. Thus, a move toward biocompatible reference 

electrodes with superior chronic potential stability is necessary. Two qualifying materials, iridium 

oxide and boron-doped diamond, are introduced and discussed in terms of their electrochemical 

properties, biocompatibilities, fabrication methods, and applications. In vivo electrochemistry 

continues to advance toward more chronic experimentation in both animal models and humans, 

necessitating the utilization of biocompatible reference electrodes that should provide superior 

potential stability and allow for unprecedented chronic signal fidelity when used with a counter 

electrode for impedance mitigation.
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Introduction

Understanding the brain and nervous system via electrical measurement has become an 

essential scientific tool since the mid-seventeenth century, when Jan Swammerdam first 
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induced the contraction of a frog leg muscle by stimulating its adherent nerve [1]. Today, 

there are two major methods of electrical measurement in neuroscience: electrophysiology 

and electrochemistry. In general, electrophysiological methods measure the synaptic and 

firing activity of neurons (i.e., electrical communication), whereas electrochemical methods 

measure the release of neurotransmitters, metabolites, and other analytes (i.e., chemical 

communication). Many in vivo electrochemical methods rely upon the measurement of 

redox reactions (e.g., voltammetry, amperometry), while others rely upon galvanostatic, 

impedimetric, or potentiometric measurements (e.g., potentiometry with ion-selective 

electrodes). While electrophysiology and electrochemistry differ in the brain systems that 

they probe, they are similar in practice. With the exception of surface electrophysiological 

techniques (e.g., electroencephalography), both electrophysiology and electrochemistry 

in vivo involve the implantation of electrodes, allowing for highly spatially resolved 

measurements of brain communication events.

The invasive act of electrode implantation triggers an immune response in the brain 

that alters electrode performance over time, an effect generally referred to as biofouling. 

Biofouling causes two major changes in the properties of the implanted electrodes: 

(1) increased impedance, which affects all implanted electrodes, and (2) polarization, 

specifically of the reference electrode. The increase in impedance can have adverse 

effects on the recording quality of implanted electrodes, both in electrophysiology and 

electrochemistry. As a result, numerous successful efforts have been made toward both 

reducing the native impedance of implantable electrodes and mitigating the increase in 

impedance that occurs after implantation [2–5]. The other major consequence of biofouling 

is reference electrode polarization, defined herein as a change in the reference electrode 

potential from its original value. This reference electrode polarization is particularly 

detrimental to in vivo electrochemistry, as the selectivity and sensitivity of the technique 

depend on the accuracy of the applied potentials. To date, no efforts to mitigate biofouling-

induced reference electrode polarization have yielded success for longer than 4 weeks [6–8]. 

Mitigating reference electrode polarization over longer periods of time (e.g., months to 

years) would allow for more accurate measurements in studies that benefit from long-term 

experimentation, such as those on progressive neurological disorders (e.g., Parkinson’s 

disease).

In this review, we describe the causes and effects of chronic electrode biofouling, 

particularly with respect to reference electrodes and in vivo electrochemistry. Special 

attention is given to biocompatible reference electrodes, as the cytotoxicity of the widely 

used Ag/AgCl reference electrode [9–12] exacerbates the immune response to implantation, 

intensifies the resultant biofouling and polarization, and prohibits the use of Ag/AgCl 

in humans. Promising biocompatible reference electrode materials (e.g., iridium oxide, 

boron-doped diamond) are introduced and discussed in detail. The field of in vivo 

electrochemistry is moving toward a greater emphasis on chronic experiments. To maximize 

the success, validity, and safety of these experiments, a move toward more widespread use 

of biocompatible reference electrodes is critical. These electrodes should reduce the extent 

to which the brain is perturbed by implantation and enable high-fidelity measurements 

over longer periods of time. The goals of this review are to bring attention to the 

longstanding challenge of biofouling in chronic in vivo electrochemistry, suggest and 
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describe biocompatible reference electrode materials that can mitigate chronic biofouling, 

and encourage further characterization of these electrodes.

Immune response to electrode implantation in the brain

The introduction of an electrode into the brain causes acute injury. The tissue suffers 

mechanical strain and tearing, the blood–brain barrier (BBB) is ruptured, and the movement 

of signaling molecules is impeded, both sterically and via diminished perfusion [13, 14]. 

Nearby glial cells (e.g., microglia, astrocytes) are immediately activated by the BBB 

rupture-induced influx of blood–serum proteins (e.g., albumin) [13, 14]. Kozai et al. used 

two-photon microscopy in mice to better understand the timeline of the immune response 

to electrode implantation and found that, within 1 h of implanting a four-shank Michigan 

probe, activated microglia extended processes at an approximate rate of 1.6 μm/min toward 

the injury site and began encapsulation of the probe with lamellipodia [15]. After 12 to 24 h, 

activated microglia become motile and the cell bodies migrate toward the probe for further 

encapsulation [13, 15, 16]. This is followed by encapsulation by reactive (i.e., activated) 

astrocytes and, by 2 to 4 weeks post-implantation, the probe is encapsulated by a glial sheath 

that becomes more compact and tightly networked over time [16–18]. The general timeline 

of the immune response to electrode implantation in the brain is illustrated in Fig. 1 [19].

Impedance and its impact on in vivo electrophysiology

The encapsulating glial sheath from the immune response to electrode implantation (vide 

supra) acts as a diffusion barrier [20] that limits ionic exchange and electron transfer 

between the electrode and surrounding media, altering electrode performance over time 

(i.e., biofouling). One major consequence of biofouling is increased electrode impedance 

[5, 21–25], which can adversely affect both electrophysiological and electrochemical 

measurements in vivo, though the extent to which it affects the performance of 

electrophysiological electrodes (e.g., signal-to-noise ratio) is debated. Several studies show 

that electrophysiological electrode performance is inversely related to electrode impedance 

(i.e., low-impedance electrodes exhibit better performance) [2–4, 26–31]. This is often 

attributed to the fact that thermal noise, one of the main noise sources in microelectrode 

recordings, is proportional to the square root of the real component of electrode impedance 

(Eq. 1).

V rms
th = 4kBTZrealΔf (1)

In Eq. 1, V rms
th  is the root mean square thermal noise, kB is Boltzmann’s constant, T 

is temperature, Zreal is the average of the real component of impedance, and Δf is the 

bandwidth over which the measurements are made. Counterarguments assert that electrode 

impedance is not a major determinant of performance as long as the impedance falls 

within the range of standard polytrodes (~ 100 kΩ to 2 MΩ) [32]. This dichotomy may 

be explained by variations in the electrode types and amplifiers used across studies that 

investigate this relationship. The type of electrode is a key factor that influences the extent 

to which impedance determines electrode performance. Shunt capacitance, a combination 
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of all capacitances from electrode tip to amplifier input, is strongly related to electrode 

type. For electrode designs with relatively long, thinly insulated electrode wires (e.g., single 

microwires, tetrodes), shunt capacitance is a significant source of signal degradation that 

can be mitigated by reducing electrode impedance [33]. In contrast, shunt capacitance is 

much lower for silicon polytrodes [34], rendering electrode impedance less influential on 

performance in such cases.

Another important factor is the input impedance of the amplifier. An electrode connected to 

an amplifier effectively forms a voltage divider and the signal loss due to this effect can be 

calculated with Eq. 2.

V out = V inZ2
Z1 + Z2

(2)

In Eq. 2, Vin is the voltage sensed by the electrode, Z1 and Z2 are the impedances of 

the electrode and amplifier, respectively, and Vout is the measured voltage. Ideally, the 

amplifier input impedance is much higher than that of the electrode to minimize signal 

loss due to this voltage divider effect. For example, Intan Technologies RHD2000-series 

amplifier microchips have an input impedance of 13 MΩ at 1 kHz [35]. Using such 

an amplifier to record neural activity from an electrode with an impedance of 100 kΩ 
would result in a relatively negligible signal loss of 0.8% from the voltage divider effect. 

However, using the same amplifier to record from an electrode with an impedance of 2 MΩ 
would result in a much more evident signal loss of 13%. An amplifier with a lower input 

impedance would exacerbate this effect. Thus, variation in the electrode types and amplifiers 

used across different studies likely complicates direct comparisons of the extent to which 

electrode impedance influences electrophysiological recording performance. Nevertheless, 

since in vivo electrode impedance changes are an indicator of the immune response to 

implantation, reduction of in vivo electrode impedance is typically an indicator of improved 

biocompatibility. This is a positive outcome, even in cases where performance enhancements 

are minor.

Efforts toward improving electrophysiological electrode performance are typically focused 

on the working (i.e., sensing) electrode, with less attention given to the reference electrode. 

This is also generally the case for in vivo electrochemistry, despite the fact that chronic 

reference electrode potential stability is imperative. Electrochemical measurements rely 

on accurately applied potentials, which depend on a stable reference electrode potential. 

Chronic polarization of the reference electrode is a major result of biofouling that diminishes 

the selectivity and sensitivity of in vivo electrochemistry [5, 7]. We now shift focus 

from electrophysiology to electrochemistry and highlight the importance of long-term 

stabilization of the reference electrode potential in vivo.

Effects of biofouling on chronic in vivo electrochemistry

Fast-scan cyclic voltammetry (FSCV) is one of the most widely used electrochemical 

methods for neurotransmitter detection in vivo. There are numerous review articles that 

explain the principles behind FSCV [36–39]. To date, the majority of in vivo FSCV studies 
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have been acute (i.e., minutes to hours), but there have been chronic (i.e., days or longer) 

studies that have pushed the temporal boundaries of in vivo neurochemical measurements. 

The timescales of acute and chronic studies described throughout this review refer to 

the time over which the electrodes are implanted and used to make measurements. By 

this definition, a month-long study involving the implantation of new electrodes for each 

measurement would not be considered a chronic study. Chronic dopamine detection via 

FSCV was performed by Clark et al. in rats and mice over the course of months [40], by 

Schwerdt et al. in non-human primates for months [41], and by Schwerdt et al. in rats for 

over a year [42]. Recordings on this timescale are vital to better understanding progressive 

neurological disorders, as they typically develop gradually over months or years.

A large background signal is generated from FSCV due to non-Faradaic contributions 

from the high scan rate and Faradaic contributions from the redox of electroactive species 

on and around the electrode [43]. When a change in the concentration of the analyte of 

interest (e.g., dopamine) occurs, the background signal is subtracted, resulting in a cyclic 

voltammogram specific to that analyte. Accuracy in the potentials of the signal is paramount, 

as the background-subtracted cyclic voltammogram serves as a chemical identifier of the 

analyte. Thus, the potentials of the FSCV background signal must be accurate and stable 

over the course of the study for reliable analyte identification and quantification.

The potentials of the FSCV background signal do not shift appreciably on the timescale 

of acute studies, but biofouling over the course of chronic studies results in substantial 

background signal potential shifts that worsen over time and diminish analyte selectivity 

and sensitivity [5, 7]. This chronic potential shift is often compensated for by applying 

a potential offset to the FSCV waveform [40–42]. The value of the applied potential 

offset (typically + 100 to 300 mV) varies across laboratories, researchers, animals, and 

implantation time, as it is chosen qualitatively. In practice, when a shift in the FSCV 

background signal is apparent, the potential offset is applied and the shape of the FSCV 

background signal is evaluated. If necessary, the value of the offset is changed until a desired 

shape is achieved. While this potential offset strategy is commonly utilized in chronic in 

vivo FSCV studies, it is not an ideal solution because it lacks quantitative rigor and the 

timescale and magnitude of the potential shift is variable [5]. Seaton et al. showed that there 

are two major biofouling-induced factors that contribute to chronic FSCV potential shifts 

in vivo: (1) increased electrode impedance of both the working and reference electrodes 

and (2) polarization of the reference electrode [5]. They showed that the utilization of a 

counter electrode and three-electrode potentiostat improves chronic FSCV signal fidelity in 

vivo by mitigating the increase in impedance, but reference electrode polarization remains 

an issue. Polarization of the reference electrode is typically not measured directly in chronic 

in vivo FSCV studies, and the potential offset strategy (vide supra) is used qualitatively 

to compensate for the combined effect of increased impedance and reference electrode 

polarization. A more comprehensive solution to the chronic FSCV background signal shift 

is thus necessary, ideally involving a counter electrode for impedance mitigation and a 

biocompatible reference electrode for polarization mitigation.

As with most other current in vivo electrochemical techniques, FSCV most commonly 

utilizes the Ag/AgClpseudo-reference electrode [36, 44, 45]. Unlike a commercial Ag/AgCl 
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reference electrode, which is unsuitable for in vivo use due to its size and required 

maintenance, the Ag/AgClpseudo-reference electrode is composed of a AgCl-coated Ag 

wire with no internal solution compartment. Such an electrode can be fabricated by soaking 

Ag wire in sodium hypochlorite (i.e., bleach), though electroplating and other methods 

of chloridizing the Ag wire are also common. The Ag/AgClpseudo-reference electrode is 

referred to as Ag/AgCl throughout this review for ease of reading, and it is characterized by 

the following reaction:

AgCl s + e− Ag s + Cl− (3)

Equation 4 describes the dependence of the Ag/AgCl electrode potential on chloride ion 

activity.

E = E0 − RT
F ln aCl− (4)

In Eq. 4, E is the potential of the Ag/AgCl electrode, E0 is the standard potential of the 

Ag/AgCl electrode, R is the ideal gas constant, T is temperature, F is Faraday’s constant, 

and aCl− is chloride ion activity. Since the chloride concentration in vivo does not fluctuate 

appreciably, there exists a stable chloride equilibrium between a freshly implanted Ag/AgCl 

electrode and the surrounding media. This is the basis for the stability of the Ag/AgCl 

reference electrode potential over the course of acute studies. However, the biofouling that 

occurs during chronic studies results in decreased surface chlorine on the Ag/AgCl electrode 

[5–7]. This can be seen in Fig. 2, which shows the encapsulation of a Ag/AgCl reference 

electrode after 3 weeks of brain implantation [5].

The chloride equilibrium required for Ag/AgCl potential stability is disrupted by the 

encapsulating sheath, resulting in chronic polarization of the electrode [5, 6, 8]. While 

there have been successful efforts toward mitigating chronic Ag/AgCl reference electrode 

polarization in vivo, none have been successful for longer than 4 weeks [6–8]. In addition, 

Ag and AgCl are highly cytotoxic in the brain and other tissue [9–12], exacerbating the 

immune response to implantation and prohibiting the use of Ag/AgCl in humans. Due to 

its favorable electrochemical properties and simplicity of fabrication, Ag/AgCl is currently 

the most commonly used reference electrode for FSCV. However, the issues of cytotoxicity 

and chronic potential instability in vivo warrant the investigation of other reference electrode 

materials. Replacing the Ag/AgCl reference electrode with a stable, biocompatible reference 

electrode should mitigate reference electrode polarization and provide a chronically stable, 

high-fidelity FSCV signal when utilized in a three-electrode configuration for impedance 

mitigation (vide supra). The importance of such a reference electrode is not limited to FSCV, 

as any in vivo electrochemical technique involving prolonged electrode implantation will 

benefit from enhanced reference electrode potential stability and biocompatibility.
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Toward reference electrodes with superior biocompatibility and potential 

stability

One of the most important aspects shaping the future of in vivo electrochemistry is 

the improvement of chronic measurements. In addition, there is an increasing interest in 

performing these measurements in humans. Thus, a shift toward the use of biocompatible 

reference electrodes that are non-toxic and provide potential stability over the course 

of long-term experimentation is imperative. There are several implantable, biocompatible 

reference electrodes that have shown promise in vitro and in vivo. The most prominent 

candidates, iridium oxide and boron-doped diamond, are discussed in detail below.

Iridium oxide

Iridium oxide (IrOx) is a biocompatible material used to construct neural stimulation 

and recording electrodes, pH sensors, and reference electrodes. Below, we describe the 

electrochemical properties, biocompatibility, fabrication methods, and applications of IrOx. 

The IrOx electrode is primarily characterized by the following reaction:

2IrO2 + 2H+ + 2e− Ir2O3 + H2O (5)

Equation 6 describes the dependence of the IrOx electrode potential on proton activity.

E = E0 − RT
F ln aH+ (6)

In Eq. 6, E is the potential of the IrOx electrode, E0 is the standard potential of the IrOx 

electrode, R is the ideal gas constant, T is temperature, F is Faraday’s constant, and aH+

is proton activity. IrOx electrodes have a theoretically Nernstian dependence on pH. In 

practice, the pH response ranges from Nernstian (− 59 mV/pH unit) to super-Nernstian (ca. 

− 80 mV/pH unit), depending on the fabrication method and resultant oxidation state and 

thickness of the IrOx film [46]. Due to this pH sensitivity, IrOx electrodes are commonly 

used as pH probes, both in vitro and in vivo [47–56]. In addition, the high charge injection 

capacity of IrOx electrodes has led to their frequent use in neural stimulation and recording 

[57–66]. While scarce in comparison, there are reports on the use of IrOx as reference 

electrodes [67–72]. The strict regulation of pH in vivo, particularly in the brain (7.2 to 7.4) 

[73], provides the environment for a stable IrOx reference electrode potential.

The biocompatibility of IrOx is well-documented and is one of the most important 

advantages IrOx holds over Ag/AgCl for use in vivo [74–79]. Unlike Ag/AgCl, IrOx 

releases no toxic elements into the body. Additionally, IrOx is known to catalyze the 

decomposition of hydrogen peroxide, which is commonly produced at metal surfaces during 

corrosion and has an inflammatory effect on biological tissue [74, 80]. The ability of IrOx to 

promote the conversion of hydrogen peroxide into water and oxygen has been proposed as a 

key factor in its biocompatibility [74]. In contrast to the toxicity of Ag/AgCl, which causes 

biofouling-induced disruption of the chloride equilibrium between electrode and media 
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(vide supra), the biocompatibility of IrOx should minimize proton equilibrium disruption, 

resulting in a chronically stable reference electrode potential in vivo. There are four common 

methods of IrOx electrode fabrication: thermal, sputtered, activated, and electrodeposited 

IrOx film. The method and relevant parameters of IrOx electrode fabrication determine 

the surface morphology of the IrOx film (Fig. 3) [81–84], which in turn determines the 

electrochemical properties of the electrode. These IrOx fabrication methods are described 

below.

The process for producing thermal IrOx film (TIROF) generally involves dipping an 

electrode into an iridium salt solution, drying at room temperature or slightly higher, then 

annealing at high temperature (> 300 °C) [85]. This process can be repeated several times 

to produce a multilayered IrOx film. The annealing step for the final layer is typically 

done for several hours. Fig. 3A shows TIROF on a Ti electrode prepared to investigate 

the effects of various coatings on the performance of stimulating electrodes [81]. It was 

found that the exceptional charge storage capacity of IrOx stimulating electrodes could be 

further improved by the integration of nickel into the film. TIROF offers a tradeoff between 

simplicity and tunability: it is the simplest IrOx fabrication method and does not require 

expensive instrumentation (e.g., sputtering system, potentiostat), but it does not provide the 

same level of film customization as other methods.

In contrast to the relative simplicity of TIROF is sputtered IrOx film (SIROF), produced 

by reactive sputtering of Ir onto an electrode in oxygen-rich plasma [86]. The equipment 

required for SIROF is expensive and sophisticated, but it provides the capability to fine-tune 

the film. Fig. 3B shows SIROF deposited onto Ti–Pt in a study investigating the effects of 

changing carrier gas flow and pumping speeds on the morphological and electrochemical 

properties of SIROF [82]. These tunable sputtering parameters allow for control over 

the extent of oxygen integration in the film, which has a substantial influence on the 

morphology and electrochemical characteristics of the SIROF [82, 87].

Activated IrOx film (AIROF) is produced by electrochemical oxidation of an Ir electrode 

[88]. The process involves the application of a potential waveform to an Ir electrode in 

a solution such as phosphate-buffered saline (PBS), Na2HPO4, or H2SO4. Fig. 3C shows 

AIROF, produced by sweeping the potential of an Ir electrode from − 1.0 to 1.0 V vs. Ag/

AgCl at 0.05 Hz in 0.9% NaCl, in an analysis on how the number of activation cycles affects 

the electrochemical properties of AIROF [83]. The study found that AIROF charge storage 

capacity increases, and impedance decreases, as the number of activation cycles is increased. 

Other factors that influence AIROF morphology and the resultant electrochemical properties 

are the activation solution components and the shape, potential limits, and frequency of the 

applied waveform.

Like AIROF, electrodeposited IrOx film (EIROF) is produced electrochemically. Whereas 

AIROF involves the oxidation of an Ir electrode, EIROF is produced by electrodeposition 

of IrOx from an Ir-containing solution onto a non-Ir electrode [89]. The electrodeposition 

parameters and solution components vary across studies and allow for customization of 

the EIROF. Fig. 3D shows EIROF produced by applying a constant potential (0.6 V vs. 

Ag/AgCl) to a Pt electrode in an IrCl4 solution to investigate how the combination of 
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nano-structures and coatings can improve the performance of stimulating electrodes [84]. It 

was found that applying a nanocone-shaped Pt gray coating to the Pt electrode, prior to IrOx 

electrodeposition, increased the surface area of the electrode and allowed for better IrOx 

adhesion during electrodeposition. This resulted in superior mechanical and electrochemical 

properties (e.g., higher charge storage capacity, lower impedance) of the IrOx/Pt gray 

composite electrode, compared to bare Pt, Pt gray, or IrOx alone.

Two of the most common implantable electrode designs, the Utah array and Michigan 

probe, include IrOx electrodes fabricated with SIROF and AIROF, respectively. Given 

the morphological differences between SIROF and AIROF (Fig. 3B, C), differences in 

their electrochemical properties should be expected. These differences were investigated by 

Franklin et al., who compared the impedance and potential stability of SIROF and AIROF 

electrodes [71]. AIROF electrodes were activated by applying a 1-Hz square wave between 

− 0.85 and + 0.9 V vs. SCE for 200 cycles in either PBS or Na2HPO4. The 1-kHz impedance 

and open circuit potential of the electrodes were measured periodically as they soaked in 

PBS. While the SIROF electrodes exhibited the least variation in impedance over time, the 

AIROF electrodes (both PBS- and Na2HPO4-activated) were superior in terms of potential 

stability, making them more attractive for use as reference electrodes.

The Na2HPO4-activated AIROF electrodes had the highest potential stability during the PBS 

soak test (3.2 mV drift per day, over 8 days) and were thus employed as reference electrodes, 

with Pt working and counter electrodes, for in vitro dopamine measurement via cyclic 

voltammetry (Fig. 4) [71]. Figure 4A contains cyclic voltammograms for 10 mM dopamine 

in PBS at scan rates ranging from 50 mV/s to 10 V/s. The same setup was used at a scan 

rate of 1 V/s to measure dopamine ranging from 0.1 to 10 mM (Fig. 4B). A linear calibration 

curve was generated, and the dopamine sensitivity was calculated to be 5.85 nA/mM. While 

this sensitivity is insufficient for in vivo dopamine detection, a higher scan rate (e.g., 400 V/s 

for FSCV) would considerably enhance sensitivity. It is unknown whether scan rates higher 

than 10 V/s were attempted.

In addition to chronic potential stability, the noise produced by the reference electrode is 

critical, as it has a direct effect on the sensitivity of the electrochemical probe. Tolosa et 

al. demonstrated that on-probe IrOx reference electrodes produce less noise than separate 

Ag/AgCl reference electrodes when used with glutamate biosensors [72]. Utilization of 

the on-probe IrOx reference electrode reduced the baseline noise at the glutamate oxidase-

modified Pt working electrode by 61% in vitro and 71% in vivo when compared to the 

utilization of a separate Ag/AgCl reference electrode. Since an on-probe reference electrode 

design inherently lowers noise, a noise comparison between IrOx and Ag/AgCl reference 

electrodes that are both on-probe, or both separate, would be even more elucidating. Overall, 

the biocompatibility, potential stability, and low noise of the IrOx electrode make it highly 

attractive for use in vivo, but the effects of chronic implantation on its performance as a 

reference electrode have yet to be studied in depth.

Metals, alloys, and semimetals (e.g., boron-doped diamond)

Metals and alloys (e.g., Pt, Pt–Ir, stainless steel) can be used unmodified as pseudo-reference 

electrodes, but unlike Ag/AgCl or IrOx, they do not have well-defined redox couples. 
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Chronic brain implantation presents further complications, as the direction and extent of 

polarization due to biofouling has not been studied for these materials. Stainless steel has 

the additional drawback of elemental composition variability, which further confounds its 

potential, though there are several reports on its use as a reference electrode in vivo for 

electrochemical measurements [90–97]. Boron-doped diamond (BDD), often referred to as a 

“semimetal”, is a highly biocompatible and customizable material with several advantageous 

electrochemical properties, including a wide potential window, low background current, and 

tunability via controllable surface termination (i.e., hydrogen- vs. oxygen-terminated BDD) 

[98]. The use of BDD in vivo is on the rise, but it is typically limited to the working 

electrode [95, 99–105]. Of the few reports on the use of BDD reference electrodes [106–

110], only one [110] has involved in vivo implantation.

Although the redox couple that defines the potential of a BDD reference electrode is 

undefined, there does appear to be a pH dependence. The BDD reference potential becomes 

more cathodic (i.e., negative) with increasing pH, but the response is non-Nernstian [106, 

109]. Thus, the BDD potential is defined in part by a proton equilibrium between the 

electrode and surrounding media. This may imply a difference in potential stability between 

hydrogen- and oxygen-terminated BDD, though we are not aware of any studies that have 

made this comparison. As with IrOx, such a pH dependence is advantageous for BDD 

reference electrodes in the brain, where pH is strictly regulated (vide supra).

Intrinsic (i.e., non-doped) diamond is a well-known biocompatible material [111–118]. In 

the case of BDD, the stability of boron dopant atoms within the diamond lattice results in 

a negligible amount of free boron [119], which is not a highly toxic element [120]. As a 

result, BDD is highly biocompatible [121–127]. In fact, a positive correlation between boron 

content and biocompatibility of diamond films (e.g., cell adhesion and viability) has been 

shown and is attributed to differences in surface potential that can influence the adsorption 

and conformation of proteins on the BDD surface [121, 122].

BDD electrode fabrication involves the use of chemical vapor deposition (CVD) or 

microwave plasma-assisted chemical vapor deposition (MPCVD) to deposit BDD film onto 

a substrate. Typical growth conditions involve plasma temperatures around 2500 K, substrate 

temperatures around 1200 K, and pressures around 25 mbar [128]. Suitable substrate 

materials are limited to those that can handle such extreme conditions (e.g., Si, Nb, Mb, 

Ti, Ta, W) [129]. BDD electrode geometry is highly customizable and dependent on the 

growth conditions. BDD is commonly left on the growth substrate as a thin film, but thicker 

BDD (> 100 μm) can be removed from the growth substrate, resulting in freestanding BDD 

that can be laser micromachined into various three-dimensional geometries [128, 129].

In addition to the geometry and surface termination, the side of the BDD (i.e., nucleation 

side vs. growth side) used for sensing has a profound effect on the electrochemical 

properties of the electrode. “Nucleation side” refers to the interface between the BDD film 

and substrate, whereas “growth side” refers to the outermost surface of the film. Methods 

for transferring BDD onto flexible substrates (e.g., polyimide, polynorbornene, parylene) 

typically allow for exposure of the BDD nucleation side only [108, 130, 131]. However, 

Fan et al. recently developed a method for BDD transfer onto Parylene C that allows for 
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exposure of the BDD growth side, which exhibits a rougher surface morphology, a higher 

sp3/sp2 carbon ratio, and better boron doping than the nucleation side (Fig. 5) [110].

As a result of these superior surface characteristics, the growth side displayed comparatively 

lower impedance and background current, faster electron transfer kinetics, and higher 

dopamine fouling resistance. It would be reasonable to presume that the growth side would 

also exhibit better open circuit potential stability than the nucleation side, though this 

comparison was not made. Using square wave voltammetry in vitro with the flexible sensor 

consisting of BDD-growth-side working, reference, and counter electrodes, dopamine was 

successfully detected in the presence of ascorbic acid, a well-known biological interferent. 

The probe was also used in vivo to detect visual stimulus-induced neural activity. BDD is 

a promising in vivo reference electrode candidate because of its biocompatibility, favorable 

electrochemical properties, and wide range of possible electrode geometries. Future work 

should focus on better understanding the reactions that define the potential of BDD and any 

changes that occur over the course of chronic in vivo implantation.

Conclusions

Biofouling is a prevalent issue in studies that involve chronic implantation of electrodes. 

In electrochemical measurements, the increase in electrode impedance that occurs due 

to biofouling has been successfully mitigated previously, but the challenge of reference 

electrode polarization is still largely unsolved. Due to the chronic potential instability 

and toxicity of the commonly used Ag/AgCl reference electrode in vivo, a move toward 

more stable, biocompatible reference electrode materials is warranted. Two promising 

candidates, iridium oxide (IrOx) and boron-doped diamond (BDD), were highlighted and 

discussed in detail. Since neither material has been studied extensively for use as reference 

electrodes in vivo, there is much room for investigation and direct comparison. The 

tunability of both IrOx and BDD bodes well for determining optimal fabrication protocols 

for maximum potential stability. Utilizing a biocompatible reference electrode (to mitigate 

chronic polarization) in a three-electrode configuration (to mitigate increased impedance) 

should offer a stable electrochemical system for chronic in vivo measurements. As in vivo 

measurements continue to advance toward more chronic experimentation, both in animal 

models and humans, understanding and utilizing biocompatible reference electrodes will 

become increasingly crucial.
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Fig. 1. 
Electrode implantation in the brain elicits an immune response that leads to glial 

encapsulation of the electrode. Illustration of the immune response (A) prior to electrode 

implantation, (B) 12 h post-implantation—activated microglia migrate toward the electrode, 

(C) 1 week post-implantation—activated microglia have attached to the electrode and 

reactive astrocytes migrate toward the electrode, (D) 4 weeks post-implantation—the 

electrode is encapsulated by a sheath of activated microglia and reactive astrocytes, (E) 

12 weeks post-implantation—the encapsulating glial sheath continues to tighten around 

the electrode. Cross-sectional views of (C), (D), and (E) are shown in (F), (G), and (H), 

respectively. Reproduced with permission from [19]
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Fig. 2. 
The encapsulation of chronically implanted Ag/AgCl reference electrodes diminishes 

surface chlorine. (A) 400× scanning electron micrograph of Ag/AgCl electrode, 3 weeks 

post-implantation. (B) 1500× box from A; EDX spectral mapping overlay: cyan = chlorine, 

red = carbon and oxygen. Reproduced with permission from [5].
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Fig. 3. 
The surface morphology of an IrOx electrode is determined by the fabrication method 

and relevant parameters. Scanning electron micrographs of (A) thermal, (B) sputtered, (C) 

activated, and (D) electrodeposited IrOx films, adapted with permission from [81–84], 

respectively. Scale bars redrawn for consistency
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Fig. 4. 
IrOx reference electrodes provide a stable potential for in vitro dopamine detection via 

cyclic voltammetry with Pt working and counter electrodes. Cyclic voltammetry of (A) 10 

mM dopamine at various scan rates and (B) dopamine at various concentrations and a scan 

rate of 1 V/s. Adapted with permission from [71]. Axes and legends redrawn for clarity
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Fig. 5. 
The BDD growth side exhibits favorable surface characteristics compared to the nucleation 

side. Scanning electron micrographs of (A) growth side and (B) nucleation side. (C) Raman 

spectrum of growth side (blue) and nucleation side (green). Adapted with permission from 

[110]. Scale bars, axes, and peak labels redrawn for clarity
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