Skip to main content
. 2021 Dec 24;11(1):87. doi: 10.3390/jcm11010087

Table 2.

Performance metrics of the Machine Learning models and comparisons with conventional Logistic Regression for the prediction of Critical Care Unit admission following cytoreductive surgery for advanced high grade serous ovarian cancer.

Predictors Model Set Accuracy Sensitivity Specificity F-Score
All variables
(n = 13)
KNN
(K = 4)
Train 0.94 0.78 0.97 0.86
CV LOO 0.94 0.78 0.97 0.86
Test 0.80 0.45 0.92 0.60
ANN Train 0.97 0.96 0.97 0.96
CV LOO 0.88 0.85 0.88 0.86
Test 0.82 0.86 0.81 0.83
LDA Train 0.97 0.96 0.97 0.96
Test 0.90 0.93 0.89 0.91
QDA Train 0.97 1.00 0.97 0.98
Test 0.93 0.93 0.93 0.93
LR Train 0.96 0.85 0.98 0.91
Test 0.84 0.59 0.93 0.72
Selected *
Variables
(p < 0.05)
KNN
(K = 6)
Train 0.94 0.89 0.95 0.92
CV LOO 0.94 0.89 0.95 0.92
Test 0.86 0.69 0.92 0.79
ANN Train 0.90 0.89 0.90 0.99
CV LOO 0.89 0.89 0.89 0.89
Test 0.76 0.79 0.74 0.76
LDA Train 0.97 0.96 0.97 0.96
Test 0.89 0.93 0.88 0.90
QDA Train 0.89 0.96 0.87 0.91
Test 0.75 0.97 0.68 0.80
LR Train 0.95 0.78 0.98 0.87
Test 0.82 0.55 0.92 0.69

* Surgical complexity score; pre-surgery albumin; blood loss; operative time; bowel resection with stoma. KNN; k-Nearest Neighbors, ANN; Artificial Neural Network, CV-LOO; Leave-one-out-cross-validation; LDA; Linear Discriminant Analysis, QDA; Quadratic Discriminant Analysis, LR; Logistic Regression.