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The global outbreak of COVID-19 has emerged as one of the most devastating and challenging threats to
humanity. As many frontline workers are fighting against this disease, researchers are struggling to
obtain a better understanding of the pathways and challenges of this pandemic. This paper evaluates
the concept that the transmission of COVID-19 is intrinsically linked to temperature. Some complex non-
linear functional forms, such as the cubic function, are introduced to the empirical models to understand
the interaction between temperature and the ‘‘growth” in the number of infected cases. An accurate
quantitative interaction between temperature and the confirmed COVID-19 cases is obtained as
log(Y) = -0.000146(temp_H)3 + 0.007410(temp_H)2 –0.063332 temp_H + 7.793842, where Y is the periodic
growth in confirmed COVID-19 cases, and temp_H is the maximum daily temperature. This equation
alone may be the first confirmed way to measure the quantitative interaction between temperature
and human transmission of COVID-19. In addition, four important regions are identified in terms of max-
imum daily temperature (in Celsius) to understand the dynamics in the transmission of COVID-19 related
to temperature. First, the transmission decreases within the range of �50 �C to 5.02 �C. Second, the trans-
mission accelerates in the range of 5.02 �C to 16.92 �C. Essentially, this is the temperature range for an
outbreak. Third, the transmission increases more slowly in the range of 16.92 �C to 28.82 �C. Within this
range, the number of infections continues to grow, but at a slower pace. Finally, the transmission
decreases in the range of 28.82 �C to 50 �C. Thus, according to this hypothesis, the threshold of
16.92 �C is the most critical, as the point at which the infection rate is the greatest. This result sheds light
on the mechanism in the cyclicity of the ongoing COVID-19 pandemic worldwide. The implications of
these results on policy issues are also discussed concerning a possible cyclical fluctuation pattern
between the Northern and Southern Hemispheres.
� 2022 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction tinues, some strange patterns in the transmission of COVID-19
1.1. Emerging facts

Global climate change and urban development are hotly
debated topics. The unexpected outbreak and spread of COVID-
19 around the world have added fuel to this debate. From the time
of the outbreak of the SARS-CoV-2 virus, later formally named for
the disease of COVID-19, the globally confirmed cases by December
16, 2021, exceeded 272 million and are still growing rapidly. As
medical experts and other frontline workers fight this global
threat, researchers have struggled to understand and the pathways
and challenges of COVID-19 (Keener, 2020). As the pandemic con-
have emerged.
Theoretically, the spread of COVID-19 can be described as a cir-

cle, or nearly a circle, with the center as the outbreak epicenter. For
the case of China in its early-stage transmission of COVID-19 in
early 2020, the epicenter is Wuhan. However, the geographic illus-
tration of transmission indicates that the situation might be more
complex. As Fig. 1 shows, transmission outside Hubei Province is
centered at 30� north latitude (as of February 16, 2020). This fact
suggests that the spread of the epidemic is geographically shaped
like a belt, rather than a circle. Economically, this finding is coun-
terintuitive. Wuhan is in the center of China, and the high-speed
railway as well as other types of mass transportation from the
north to the south that cross Wuhan are more advanced than from
east to west across the country. Thus, the transmission of the virus
should be distributed more equally from both the social and eco-
nomic perspectives. As a result, we would expect a rectangular
region as shown in Fig. 1.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gr.2021.12.010&domain=pdf
https://doi.org/10.1016/j.gr.2021.12.010
mailto:liulu@swufe.edu.cn
https://doi.org/10.1016/j.gr.2021.12.010
http://www.sciencedirect.com/science/journal/17517311
http://www.elsevier.com/locate/gr


Fig. 1. COVID-19 Transmission versus Latitude (without Hubei province). Fig. 2b. AVG_temp_H versus Latitude (without Hubei province) for the period T31.
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As is well known, the area at 30� north latitude is a mysterious
geological belt, and this latitude is closely linked with temperature.
As Figs. 2(a) and 2(b) illustrate, the transmission of COVID-19 out-
side Hubei is almost centered at a maximum daily temperature of
around 12 �C. In addition, in Figs. 3(a) and 3(b), the transmission at
the lowest daily temperature is centered at roughly 2 �C. Moreover,
the latitude of Wuhan is around 30.52� north, which leads to a
similar temperature. These facts suggest that the transmission of
COVID-19 may be related to temperature, a hypothesis that is
further tested in the latter part of this study.

The situation in China became relatively stable around February
20, 2020, but in other parts of the world, the outbreaks got worse.
Here we give a five-day daily temperature comparison of four cities
Fig. 2a. COVID-19 Transmission versus AVG_temp_H (without Hubei province) for
the period T31.

Fig. 3a. COVID-19 Transmission versus AVG_temp_L (without Hubei province) for
the period T31.
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(regions) outside China, in Japan, South Korea, Iran, and Italy,
respectively, which had the most confirmed cases of COVID-19
outside China during that period. In fact, this is the other counter-
intuitive issue identified in this study.

As Table 1 shows, the maximum daily temperature in the four
cities (regions) is around 12 �C on February 26, 2020, when the
media all over the world began to raise concern, and even the US
stock market was affected. This temperature is similar to the max-
imum daily temperature in the Chinese cities where COVID-19
initially broke out and spread very rapidly.

This might be seen as a mere coincidence. Therefore, we need to
conduct a thorough investigation of the role of temperature on the
dynamics of transmission of COVID-19 in its early stage.



Fig. 3b. AVG_temp_L versus Latitude (without Hubei province) for the period T31.
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1.2. Related studies

The interaction between climate change and human activity has
a long history. The surface temperature on Earth is so important
that it determines many critical issues in our daily life (Mills et
al., 2019). Earlier classical discussion is seen on the fall of Rome
as a consequence of climate change (Huntington 1917). Discussion
of the relationship between climate change and migration as well
as the local population is also a common topic in this strand of
research in modern times (Haurin, 1980; Oliveira and Pereda,
2020). In addition, climate change is linked to the consumption
of energy, such as fossil fuels (Newell et al., 1999). Climate change
is also studied concerning deforestation as well as biodiversity in
tropical regions (Burgess et al., 2012). Furthermore, climate change
has also caused great concern in management, in which supply
chain management (Jira and Toffel, 2013) as well as catastrophic
climate risk (Berger et al., 2017) are studied. The influence of cli-
mate change on both agricultural and manufactured commodities
has also been studied (Lewis and Witham, 2012a, 2012b).

The correlation between climate change and infectious disease
is also a popular topic (Shope, 1991; Semenza et al., 2012), and stu-
dies on the health impact of climate change (McMichael et al.,
2012; Polivka et al., 2012; José et al., 2018) are emerging. However,
although since its outbreak studies on the transmission of COVID-
19 are in focus (Li et al., 2020; Wang et al., 2020; Wu et al., 2020),
Table 1
Daily temperature in some cities with the emerging pandemic outside China.

Yokohama (Japan) Daegu (South Korea)

Date Highest
temperature
(�C)

Lowest
temperature
(�C)

Highest
temperature
(�C)

Lowest
temperature
(�C)

22-Feb 16 10 10 2
23-Feb 15 10 9 0
24-Feb 13 7 14 1
25-Feb 15 9 8 6
26-Feb 10 8 12 5

Source: https://www.timeanddate.com/weather/.
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insights into the possible connection between temperature and the
spread of the virus are rare at the initial stage of the disease.

Before the outbreak of COVID-19, at least one study discusses
the relationship between disease (in this case, schizophrenia in
particular) and temperature (Watson, 1984). In some early studies,
the effect of temperature on infection is explored—for example,
infection and mortality in pectinophora gossypiella larvae within
the range of 15.6 �C–38.0 �C (Henneberry et al., 1996). Research
that is closer to the present study discusses the local temperature
and infection with West Nile disease (Ruiz et al., 2010, Defelice et
al., 2018). However, West Nile is spread by mosquitoes, rather than
directly from person to person. In fact, before the current pan-
demic, the interaction between climate change and infectious dis-
eases was already attracting scholarly attention (Wu et al., 2016).
Currently, although laboratory-level evidence on isolated virus
samples of temperature and mortality has been presented (China
National Health Commission, 2020), to our knowledge, studies on
the possible connection between temperature and transmission
of COVID-19 at a citywide level are not well understood.

Although the relationship between climate and COVID-19 can
be very complex (Kassem, 2020; Rosenbloom and Markard,
2020), this relationship has been a hot topic in the environmental
science community since April 2020. As noted, sensitivity analyses
of the role of ambient temperature on the transmission of COVID-
19 have been conducted worldwide, but the direction of the effects
is not definitive. Even within the same study area, such as China,
some provinces have a positive interaction while others have a
negative relationship (Shahzad et al., 2020), and still, others have
a neutral relationship between the daily average temperature
and daily increase in confirmed cases (Iqbal et al., 2020).

In particular, some studies focus on the decrease in COVID-19
along with the increase in temperature, covering a wide range of
countries. Other than China (Shi et al., 2020), this negative correla-
tion is also identified in Iran (Ahmadi et al., 2020). The northern
provinces in Iran with less exposure to solar radiation (and hence
low temperature) have a higher rate of transmission. However, a
positive relationship has been identified in some other regions.
For example, research using data on New York City shows a posi-
tive correlation (Bashir et al., 2020). In addition, the data from
Jakarta also suggest a positive correlation (Tosepu et al., 2020).

In addition, some scholars assert that it is unclear whether tem-
perature affects the infection rate, using the data on Japan (Ujiie et
al., 2020). Others draw the same conclusion using data on Spain
(Briz-Redón and Serrano-Aroca, 2020). A study using data on Iran
shows low sensitivity between temperature and transmission as
well (Jahangiri et al., 2020). In fact, similar inconclusive results
are seen in studies on many different regions.

1.3. Research gap

In this study, we focus on the related studies at the early stage
of the outbreak, many of which become highly cited articles later,
Tehran (Iran) Lombardia (Italy)

Highest
temperature
(�C)

Lowest
temperature
(�C)

Highest
temperature
(�C)

Lowest
temperature
(�C)

16 8 13 3
17 9 16 3
18 10 16 3
13 11 14 8
11 4 13 4

https://www.timeanddate.com/weather/
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to better demonstrate how the pandemic has evolved. However,
there are also many recent studies, some typical examples of which
are Abraham et al. (2021), Chew et al. (2021), among others.

Now, if we consider the role of temperature on the transmission
of COVID-19 as a puzzle, currently an increasing number of scat-
tered pieces of this jigsaw puzzle are emerging as new findings
increase, but the overall general theory that can assemble these
pieces and thus solve the puzzle remains unclear. In fact, even if
we could simulate the interaction between the COVID-19 outbreak
and local temperature at the citywide level, it is extremely difficult
or even impossible to do so in the lab. It is essential to resort to
computer-based simulation and other means.

Researchers are asked to examine the uncharted field of the
ongoing pandemic (Fauci et al., 2020), so this study is a timely
attempt to examine the neglected but crucial topic of temperature
to contribute to knowledge about the pandemic. The purpose of
this study is not only to provide an accurate quantitative represen-
tation of the specific functional form of COVID-19 propagation for
certain ambient factors, such as temperature, but also to gain
insight into the mechanism of the role of temperature in the
dynamics of transmission of COVID-19 theoretically.
2. Methods

2.1. Data sources and assumptions

Although it is possible to include COVID-19 data from cities out-
side China, to obtain the maximum systematic homogeneity, this
study employs only data on cities in mainland China. In addition,
to better study the transmission pattern, we exclude data on cities
in Hubei where COVID-19 was the most severe in the early-stage
transmission in China. On February 25, 2020, mainland China
had 406 newly confirmed COVID-19 cases, of which only 5 were
in cities outside Hubei. Therefore, as the spread of the disease out-
side Hubei stabilized in late February, the data from cities outside
Hubei are more useful for this study.

The spread of the COVID-19 epidemic in China can be divided
into three critical phases.

The first critical date is January 24, 2020. On January 23, Wuhan
was officially sealed off. Therefore, the increase in confirmed infec-
tions in regions outside Hubei can be treated as cases of local trans-
mission thereafter.

The second critical date is January 30, 2020. This is the last day
of the planned national holiday, and many people were expected to
return to their work location on this day. However, because of the
pandemic, the return to work after the holiday was postponed to
February 3, and in many provinces, to February 10; some compa-
nies even extended it further, to February 17.

The third critical date is February 16, 2020. As noted earlier, in
most places except Hubei, people went back to work on February
17. The overall rate of return to work in mainland China is esti-
mated at more than 60%, and in some places at more than 80%.

Based on these three critical dates, we designate three corre-
sponding periods. T31 is defined as the period between the first cri-
tical date and the third critical date. This is the full period. In
addition, we designate two subperiods: the period from the first
critical date to the second critical date and the period from the sec-
ond critical date to the third critical date. In fact, the reported num-
ber of confirmed infections in mainland China became stable after
February 20, 2020. Thus, the division of such time periods sounds
reasonable.

These periodic divisions are essential for this study. Many
related studies use new confirmed cases as the dependent variable
in the regression. However, because it is common to see a lag in
reporting on the daily confirmation of COVID-19 cases worldwide,
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the use of the number of daily confirmed cases is not the most
accurate choice (Liu, 2020). Therefore, we use the periodic growth
in confirmed cases, a number that is much more stable and hence
reliable for this work. Because the purpose of this paper is to study
the role of temperature on the transmission of COVID-19, we are
more interested in the ‘‘growth” of the number of infections.
Hence, we need to match the corresponding periodic data on tem-
perature as well, raising a technical issue as to how the data can be
matched.

As original data on the highest and lowest daily temperature
recorded from January 24 to February 16, 2020, are available, it
is straightforward to calculate the periodic mean average value
and the standard deviation of the highest and lowest temperature.
In addition, it is possible to calculate the average daily temperature
as well as the daily difference between the highest and the lowest
temperature. These two results can yield the other two periodic
mean average values and the standard deviation of the daily aver-
age and difference in temperature. Thus, we obtain eight represen-
tations of the temperature for each period.

In this paper, temperature data on all the Chinese cities comes
from the website called Weather China (Weather China, 2020). In
addition, we obtain original data on confirmed COVID-19 cases
from the medical website named Dingxiang Yuan (DingXiang
Yuan, 2020), and we calculate the ‘‘growth” in the number of infec-
tions in each period ourselves. Finally, we match some data of
urban characteristics from the China City Statistical Yearbook
2018 (China National Bureau of Statistics, 2019). The summary sta-
tistics on the temperature variables as well as some other control
variables are presented in Table 2.

2.2. The model

The basic model specification used in this paper is simple, as
follows:

Yi ¼ b0 þ b1f ðtemp xiÞ þ b2Xi þ ei ð1Þ
In this equation, Y is the dependent variable, which is the peri-

odic difference in the confirmed COVID-19 cases, where the sub-
script ‘‘i” denotes city ‘‘i”. As noted previously, this periodic
difference is used to show the ‘‘growth” in the number of con-
firmed infections. Because some of these numbers are zeros, we
cannot take the log form of the dependent variable. f(temp_x)
stands for the potentially complex expression for temperature,
where x is various representations of temperature, as previously
discussed. As many values of the temperature variables are either
negative or zero, we cannot use the log form of the temperature
variables either. In addition, we do not know what the most appro-
priate representation and functional form are, so they are empiri-
cally tested later. Finally, X stands for the control variables,
including the distance to Wuhan as well as variables for several
urban characteristics. Although the focus throughout this paper
is temperature, we also need to control for the heterogeneity of
cities. These control variables are essential for isolating the mar-
ginal effect of temperature. Notably, the importance of including
urban characteristics in the analysis of the spread of COVID-19 is
well discussed (Liu, 2020).

Moreover, ordinary least squares regression (OLS) commonly
has endogeneity problems, which lead to inconsistent estimation
parameters. As a result, it is necessary to find appropriate instru-
mental variables (IVs) to address this issue. To our knowledge,
most related studies mentioned earlier ignore this endogeneity
issue. Therefore, their results could be inconsistent from a statisti-
cal perspective. As a result, the use of simple multivariate regres-
sion is troublesome and even problematic.

In the present study, the local transmission of COVID-19 can be
affected by several factors, some of which remain unknown. Thus,



Table 2
The summary statistics of the variables (without Hubei province, n = 295).

Variables Explanation Unit Mean Std. Dev. Min Max

AVG_temp_H The periodical average of maximum temperature of the day �C 8.508 7.595 �16.348 25.870
AVG_temp_L The periodical average of daily lowest temperature �C �0.584 9.522 �29.044 18.174
Lat Latitude Degrees north 33.031 7.1530 18.392 50.250
Dist Distance to Wuhan kilometer 1,047.034 610.310 119.200 3,263.100
Subway Length of built urban metro lines kilometer 14.592 69.429 0.000 668.640
Population_density Population density person/square kilometer 3,658.153 2,384.588 77.000 11,602.000
Wastewater Annual quantity of wastewater discharged 10,000 m3 13,846.550 26,699.770 284.000 229,526.000
Garbage Residential garbage collected and transported 10,000 ton 57.778 103.396 1.560 924.770
Greenspace Per capita public recreational green space Square meter 14.303 4.996 2.450 51.660
N_COVID-19 Number of confirmed COVID-19 cases person 41.464 70.039 1.000 551.000

Note: The data of N_COVID-19 is for the critical time on February 16, 2020. AVG_temp_H and AVG_temp_L are for the time period T31.
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using a limited number of independent variables, we may be over-
looking many important influential factors. For example, in addi-
tion to many unknown biological features, our model might need
to account for policy measures and economic and social behavior
that could affect viral transmission. Thus, the omission of these fac-
tors from the model creates a substantial risk that our estimates
suffer from omitted variable bias.

The next question concerns which IVs to choose. Because the
target endogenous variable is temperature, the ideal candidate
for an IV must be correlated with temperature and uncorrelated
with the unobservable error term. After numerous tests, we choose
latitude, which is closely related to temperature, and no clear evi-
dence suggests that the undiscovered influential factors of COVID-
19 transmission at the citywide level are correlated with this geo-
graphical term, i.e., latitude. In addition, because we use the quad-
ratic or cubic form of temperature in the regression, we need to
have two or more IVs. After testing for a long time, we found that
the best option is to use the IVs Lat, Lat2, and Lat3 at the same time.
The weak instrument diagnostics shown in Table 3 justify this
choice because the corresponding Cragg-Donald F-stat values in
Models (2), (4), and (6) are all higher than the required value of
10. Notably, we use the generalized method of moments (GMM)
in the estimation of Models (2), (4), and (6), where the estimation
weight matrix is ‘‘White”. This combination of statistical methods
gives us the best performance in the empirical models.

Later in the study, we also use several more advanced statistical
and mathematical models. But for better a logical structure, these
are discussed in the latter part of this paper.
Table 3
Estimation results with dependent variable DN_COVID-19 (without Hubei province, n = 2

Model (1) Model (2)
OLS GMM
(T31) (T31)

AVG_temp_H �1.461**
(�1.968)

�2.508***
(3.680)

(AVG_temp_H)2 0.089**
(2.258)

0.136***
(3.5450)

log(Dist) –32.998***
(�5.174)

�41.385***
(�5.373)

Subway 0.424***
(8.822)

0.433***
(4.520)

log(Population_density) 3.273
(0.425)

5.409*
(1.676)

log(Wastewater) 1.735
(0.267)

5.360
(1.196)

log(Garbage) 19.439**
(2.557)

9.961
(1.478)

log(Greenspace) �5.400
(�0.604)

�6.160
(�0.873)

Adjusted R2 0.502 0.489
Weak Instrument Diagnostics

(Cragg-Donald F-stat)
295.844

Note: The values of the constant terms are not reported. t statistics in parentheses. Inst
*** p � 0.01, ** 0.01 < p < 0.05, *0.05 < p < 0.1.
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3. Results

3.1. The insignificant linear form

The eight proxies for temperature mentioned earlier are all
found to be insignificant in our examination of the influence of
temperature on the spread of COVID-19 using the linear functional
form. Although it is not necessary to report the corresponding
results in this study, to build a complete theory, the linear func-
tional form is still discussed here. Similar results can be seen in
Iqbal et al. (2020), McConnon (2021), among others.

This finding explains why some other studies mentioned earlier
conclude that the interaction between temperature and COVID-19
infection is neutral. Now we understand that it is simply due to the
choice of model specification, in which the simple linear model is
not capable of producing valid results. Therefore, more complex
nonlinear functional forms must be introduced to explore the
hidden rules on the infectiousness of COVID-19 related to
temperature.

3.2. Preliminary results with the quadratic functional form

Here we show the empirical estimation results of the
temperature-related models using the quadratic functional form.
As shown in Table 3, in all three models with OLS estimation cor-
responding to the three periods, i.e., Models (1), (3), and (5), the
quadratic form of the periodic average of the maximum daily tem-
perature shows promise as a direction for future study.
95).

Model (3) Model (4) Model (5) Model (6)
OLS GMM OLS GMM
(T21) (T21) (T32) (T32)

0.020
(0.087)

�0.300**
(2.353)

�1.436***
(2.637)

�2.150***
(3.641)

0.010
(0.753)

0.024***
(2.802)

0.076***
(2.710)

0.108***
(3.476)

�5.458***
(�2.932)

�7.574***
(�5.095)

�27.555***
(�5.761)

–33.650***
(�5.207)

0.117***
(8.198)

0.117***
(4.113)

0.306***
(8.519)

0.314***
(4.491)

�0.055
(�0.045)

0.955
(1.312)

3.362
(1.096)

4.365
(1.637)

�0.713
(�0.369)

1.115
(1.165)

2.435
(0.500)

4.135
(1.102)

6.302***
(2.791)

1.758
(1.100)

13.130**
(2.305)

8.399
(1.567)

�1.050
(�0.397)

�1.277
(�0.747)

�4.320
(�0.644)

�4.833
(�0.847)

0.442 0.411 0.496 0.488
261.571 287.022

rumental variables are Lat, Lat2, and Lat3.
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A comparison of Models (2), (4), and (6) shows that the control
variable Dist is always statistically significant, regardless of the set-
tings. This suggests that places closer to the epicenter of the out-
break in China, i.e., Wuhan, are more vulnerable to the disease.
In addition, the subway variable is a strong indicator of viral trans-
mission. Population density is found to be significant, but only in
the full period T31. Most importantly, the quadratic form of the per-
iodic average of the maximum daily temperature is significant in
both the linear term and the second-order term.

To obtain models with a better fit, the data set is ‘‘refined” by
deleting the sample of cities with extreme values, most of which
are distant and have few confirmed cases. It would be too casual
for these cities that no systematic importance is included. The
new results are in Table 4, showing that the variable for garbage
has become a significant influential factor in transmission. The sig-
nificance and the absolute value of the parameters for the tem-
perature variable both tend to be stronger. Indeed, the adjusted
R2 values are now much larger, which is a good signal of a better
fit of the model.

Because we use two periods divided by three critical dates, one
might wonder whether a structural change occurs between them.
In fact, in Tables 3 and 4 we find that the results of periods T31
and T32 do not differ much, but the results of period T21 differ sub-
stantially. Thus, we perform a Chow’s breakpoint test, in which the
calculated F value is 0.2793. This test result fails to reject the H0 of
‘‘no structural change.” As a result, we consider our estimation
coefficients stable across these periods. Perhaps, the seven-day
period of T21 is too short to have more significant results, but the
‘‘growth” pattern in the local transmission is essentially the same
as in the other period.

Because we can empirically identify a quadratic-form relation-
ship of the average of the maximum daily temperature with the
‘‘growth” in local transmission of COVID-19, we can take the next
step to see whether more information can be obtained.

In Table 4, although the parameters of Models (8) and (12) are
very similar, we choose Model (8) for period T31, because of its
slightly larger R2 as well as the t values for the key explanatory
variables. Logically, more valuable information is obtained if we
include the first period. The second-order term is positive and sig-
nificant, and the linear term is negative and significant. Then, if we
focus on the temperature variable terms in Model (8), we can con-
struct the following:
Table 4
Estimation results with dependent variable DN_COVID-19 (without Hubei province, n = 1

Model (7) Model
OLS GMM
(T31) (T31)

AVG_temp_H �4.967***
(�5.005)

�4.985
(�6.20

(AVG_temp_H)2 0.284***
(5.175)

0.291*
(6.344

log(Dist) �71.519***
(�8.667)

�71.79
(�8.18

Subway 0.469***
(9.779)

0.452*
(4.718

log(Population_density) 5.148
(0.887)

5.975
(1.286

log(Wastewater) 3.571
(0.428)

4.232
(0.644

log(Garbage) 22.418**
(2.344)

20.590
(2.437

log(Greenspace) �1.491
(�0.117)

�2.969
(�0.30

Adjusted R2 0.722 0.721
Weak Instrument Diagnostics (Cragg-Donald F-stat) 213.72

Note: The values of the constant terms are not reported. t statistics in parentheses. Inst
*** p � 0.01, ** 0.01 < p < 0.05, *0.05 < p < 0.1.
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Y ¼ 0:291 � ðtemp HÞ2 � 4:985 � temp H þ C ð2Þ

where C is a constant that we do not care about here. Recall that we
do have a constant in our regression.

The perfect square trinomial of Eq. (2) can be derived as follows:

Y ¼ 0:291 � ðtemp H � 8:565Þ2 þ C0 ð3Þ
Eq. (3) suggests a U-shaped relationship, where 8.57 �C is sup-

posed to be the minimum point for growth in local COVID-19
transmission. However, this quadratic form is not easy to under-
stand, at least not well enough. In fact, in another study, a binary
relationship is identified around 10 �C as its maximum in China,
which indicates both the usefulness and limitations of the quadra-
tic form (Shi et al., 2020). Although the quadratic form is simple,
the cubic function appears to be more attractive, which has more
desirable attributes in math.

3.3. Introducing the cubic functional form

To the best of our knowledge, only one academic study employs
a cubic function to examine the interaction between the tempera-
ture and COVID-19 (Prata et al., 2020) in the early stage, for a
model with a better fit. However, the cubic function is much more
important than ‘‘a better fit.” In fact, it is the most essential ele-
ment for understanding the hidden mechanism in the dynamics
of transmission concerning temperature.

Table 5 shows the cubic function of the temperature variable
terms. As demonstrated in Model (14), although the cubic term is
not statistically significant, it does not affect us to write down
the cubic function of temperature as follows.

Y ¼� 0:0032 � ðtemp HÞ3 þ 0:3449 � ðtemp HÞ2
� 4:6366 � temp H þ 363:0619 ð4Þ

The computer-based simulation of equation (4) is shown in Fig.
4, which shows that, when the temperature is low, the growth in
COVID-19 transmission is very high, and this suggests that the
virus might favor low temperatures. It could equally suggest that
when temperatures are low, people tend to go indoors, and we
already know that transmission is higher in confined spaces than
outdoors. So, the model can also account for this explanation. In
addition, two inflection points are clear in the figure. The most
55).

(8) Model (9) Model (10) Model (11) Model (12)
OLS GMM OLS GMM
(T21) (T21) (T32) (T32)

***
5)

�0.483
(�1.455)

�0.551***
(�3.580)

�4.333***
(�5.777)

�4.377***
(�6.028)

**
)

0.044**
(2.211)

0.047***
(4.515)

0.230***
(5.696)

0.237***
(6.072)

3***
7)

�12.202***
(�4.769)

�12.509***
(�7.597)

�58.765***
(�9.180)

�59.030***
(�7.630)

**
)

0.137***
(9.135)

0.122***
(4.434)

0.331***
(8.860)

0.329***
(4.533)

)
0.243
(0.132)

0.955
(0.782)

5.152
(1.143)

5.218
(1.275)

)
�0.090
(�0.034)

0.916
(0.623)

3.747
(0.577)

3.833
(0.673)

**
)

6.120**
(2.042)

3.882*
(1.937)

16.253**
(2.183)

16.014**
(2.287)

6)
�2.110
(�0.528)

�3.813
(�1.384)

0.964
(0.097)

0.834
(0.106)

0.644 0.628 0.703 0.703
4 174.205 201.084

rumental variables are Lat, Lat2, and Lat3.



Table 5
Estimation results with dependent variable DN_COVID-19 with cubic function (without Hubei province, n = 155).

Model (13) Model (14) Model (15) Model (16) Model (17) Model (18)
OLS GMM OLS GMM OLS GMM
(T31) (T31) (T21) (T21) (T32) (T32)

AVG_temp_H �4.882***
(�4.583)

�4.637***
(�4.335)

�0.319
(�0.895)

�0.172
(�0.488)

�4.365***
(�5.427)

�4.332***
(�5.088)

(AVG_temp_H)2 0.307***
(2.635)

0.345***
(2.826)

0.087**
(2.189)

0.098**
(2.120)

0.221**
(2.563)

0.244***
(2.887)

(AVG_temp_H)3 �0.001
(�0.225)

�0.003
(�0.500)

�0.003
(�1.253)

�0.004
(�1.190)

0.0004
(0.111)

�0.0004
(�0.104)

log(Dist) �70.864***
(�8.074)

�69.137***
(�6.698)

�11.622***
(�4.479)

�10.911***
(�4.969)

�59.051***
(�8.536)

�58.600***
(�6.665)

Subway 0.468***
(9.730)

0.468***
(4.645)

0.136***
(9.020)

0.135***
(4.681)

0.331***
(8.830)

0.331***
(4.418)

log(Population_density) 5.069
(0.869)

5.124
(1.029)

0.169
(0.092)

0.258
(0.1893)

5.183
(1.144)

5.125
(1.219)

log(Wastewater) 3.580
(0.428)

3.633
(0.536)

�0.139
(�0.053)

�0.169
(�0.095)

3.740
(0.574)

3.813
(0.665)

log(Garbage) 22.403**
(2.335)

22.185**
(2.443)

6.264**
(2.092)

6.289**
(2.233)

16.270**
(2.177)

16.130**
(2.267)

log(Greenspace) �0.957
(�0.074)

�0.100
(�0.009)

�1.179
(�0.291)

�0.775
(�0.202)

0.771
(0.077)

1.178
(0.137)

Adjusted R2 0.720 0.720 0.646 0.645 0.701 0.701
Weak Instrument Diagnostics

(Cragg-Donald F-stat)
107.805 84.347 98.046

Note: The values of the constant terms are not reported. t statistics in parentheses. Instrumental variables are Lat, Lat2, and Lat3.
*** p � 0.01, ** 0.01 < p < 0.05, *0.05 < p < 0.1.
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important implication is that we do not pay attention to this cubic
function itself; rather, we are more interested in its first-order
derivative, which leads to the following equation:

@Y
@temp H

¼ �0:0097 � ðtemp HÞ2 þ 0:6898 � temp H � 4:6366 ¼ 0

ð5Þ
When we solve Eq. (5), we have two results: temp_H*1 = 7.52,

and temp_H*2 = 63.40, measured in Celsius.
In Fig. 4, these two critical values for the maximum daily tem-

perature show a range within which COVID-19 transmission
increases. But this temperature belt [7.52 to 63.40 �C] covers a
wide range of countries and regions on our planet. This finding
Fig. 4. Computer-based simulation of t
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may be disappointing because almost every country is vulnerable
to the virus from this geographic perspective, especially those in
the temperate zone of the Northern Hemisphere around January.

3.4. The best result with the refined data set, log form, and Markov
chain Monte Carlo (MCMC) simulation

Is it possible to increase the accuracy of the model further to
obtain a more useful result? By refining the data set as mentioned
above, we can now take the log form of DN_COVID-19 for the per-
iod T31, but still not for T21 and T32. Table 6 shows the empirical
results with the dependent variable log(DN_COVID-19) with a
cubic function. In Models (19) and (20), the parameters are more
he cubic function of AVG_temp_H.
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significant, and the overall fitness of the model is even better.
However, after the refinement process, we only have 155 cities
as observations, it might be doubtful that the result will be ade-
quately representative. Therefore, to obtain the maximum accu-
racy for the functional form regarding the temperature, we
employ a linear Gaussian model (LGM) to simulate our results.
The sampling method used is Gibbs sampling, followed by a Mar-
kov chain Monte Carlo (MCMC) estimation. As shown in Models
(21) to (24), we try the MCMC draws for 10,000, 1 million, 10 mil-
lion, and 20 million respectively. These simulation-based estima-
tion models have very robust results. Hence the limited number
of sample cities, i.e., n = 155, is not too small for drawing a repre-
sentative conclusion. Finally, Model (24) is our best shot for the
empirical model specification. As seen, increasing the number of
MCMC draws would be meaningless. The results of Model (24)
are robust enough to yield a valid conclusion. Notably, the cubic
term of the temperature variable is now significant at around the
5% level, with a p-value of 0.0511, which makes us more confident
about using the cubic functional form. Now, the counterpart of Eq.
(4) is as follows:

logðYÞ ¼ �0:000146 � ðtemp HÞ3 þ 0:007410 � ðtemp HÞ2

� 0:063332 � temp H þ 7:793842 ð6Þ
As noted in the introduction, the understanding of the effect of

temperature on the spread of COVID-19 could be very sensitive to
data. Because in reality variation in the range of temperatures in
regions with confirmed COVID-19 data is limited compared to
the possible need for a wider range to reveal the hidden mechan-
ism in the dynamics of COVID-19 transmission, extrapolating the
temperature range from the sample data is a necessity.

The ability to extrapolate data using a linear model is very lim-
ited, so we need to use a more complex nonlinear model specifica-
tion. However, the outcome of using nonlinear models, unlike the
simple linear models, depends heavily on precise knowledge about
the functional form of the nonlinear model. Thus, accurate infor-
mation about the functional form is an essential prerequisite to
its successful application. Therefore, everything we needed to
boost our effort to the extreme could be sued.
Table 6
Estimation results with dependent variable log(DN_COVID-19) with cubic function (witho

Model (19) Model (20) Model (21)
OLS GMM LGM
(T31) (T31) MCMC draws:

10,000 (T31)

AVG_temp_H �0.064***
(�4.852)

�0.076***
(�5.469)

�0.064***
(�4.782)

(AVG_temp_H)2 0.007***
(5.121)

0.007***
(4.112)

0.007***
(5.150)

(AVG_temp_H)3 �0.000144**
(�2.145)

�0.000103
(�1.356)

�0.000145*
(�2.174)

log(Dist) �1.296***
(�11.912)

�1.372***
(�12.951)

�1.289***
(�11.750)

Subway 0.001**
(1.990)

0.001**
(2.238)

0.001*
(1.944)

log(Population_density) 0.123*
(1.701)

0.112
(1.365)

0.127
(1.767)

log(Wastewater) 0.136
(1.315)

0.136
(1.108)

0.141
(1.378)

log(Garbage) 0.518***
(4.352)

0.527***
(3.891)

0.513***
(4.365)

log(Greenspace) 0.025
(0.155)

0.008
(0.039)

0.031
(0.192)

Adjusted R2 0.782 0.781
Weak Instrument Diagnostics

(Cragg-Donald F-stat)
107.805

Note: The values of the constant terms are not reported. t statistics in parentheses of OLS
(LGM). Instrumental variables are Lat, Lat2, and Lat3.
*** p � 0.01, ** 0.01 < p < 0.05, *0.05 < p < 0.1
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Following the same approach as in Eq. (5), we can solve for two
new critical values: temp_H*1_MCMC = 5.02, and
temp_H*2_MCMC = 28.82, all in �C. This is a much more promising
result than we mentioned earlier, because the threshold value of
the upper level of the inflection point is much lower and can be
achieved more easily.

Furthermore, our next finding may be more exciting. Techni-
cally speaking, the transmission of a virus is not the same as the
initial outbreak. If the number of infections increases slowly, then
the situation can be kept under control. But, if the rate of infection
grows too quickly, then an outbreak occurs; therefore, speed is
essential. The method we use to quantify the concept of speed in
COVID-19 transmission is similar to the approach to velocity in
Physics, i.e., we take the derivative. In the dynamics of Physics,
the first-order derivative of a motion is the speed, and the
second-order derivative is its acceleration.

In addition, Eq. (5) is again a quadratic form. As simulated in Fig.
5, the inverted U-shaped curve suggests an inflection point, beyond
which the transmission speed decreases. Thus, differentiating Eq.
(6) twice, we have the following equation:

d2logðYÞ
dtemp H2 ¼ �0:000876 � temp H þ 0:014820 ¼ 0 ð7Þ

When we solve Eq. (7), we come to a core understanding of the
COVID-19 pandemic in this study: temp_H**

_MCMC = 16.92 (�C). This
result confirms our initial hypothesis that the temperature matters
not only in COVID-19 transmission but also in its outbreak. The
optimistic perspective indicated by both Fig. 5 and the solution
of temp_H**

_MCMC shows that when the temperature is higher than
the calculated critical value, the speed of urban COVID-19 trans-
mission tends to slow down, and hence the risk of outbreak
diminishes.

Table 7 compares the dynamics of COVID-19 transmission
related to the temperature using different models. As discussed
previously, the best result is in the last column of Table 7. This
study identifies four important temperature zones (in Celsius) to
enable us to understand the dynamics of COVID-19 transmission
and its relationship to temperature. First, in the temperature range
ut Hubei province, n = 155).

Model (22) Model (23) Model (24)
LGM LGM LGM
MCMC draws:
1,000,000 (T31)

MCMC draws:
10,000,000 (T31)

MCMC draws:
20,000,000 (T31)

�0.063***
(�4.819)

�0.063***
(�4.822)

�0.063***
(�4.822)

0.007***
(5.149)

0.007***
(5.142)

0.007***
(5.146)

�0.000146*
(�2.189)

�0.000146*
(�2.186)

�0.000146*
(�2.189)

�1.288***
(�11.922)

�1.288***
(�11.929)

�1.288***
(�11.929)

0.001*
(1.983)

0.001*
(1.982)

0.001*
(1.983)

0.128
(1.783)

0.128
(1.781)

0.128
(1.781)

0.141
(1.372)

0.141
(1.369)

0.141
(1.369)

0.513***
(4.334)

0.513***
(4.329)

0.513***
(4.330)

0.033
(0.207)

0.033
(0.206)

0.033
(0.206)

and GMM models. Posterior t values in parentheses of the Linear Gaussian Models



Fig. 5. Computer-based simulation of the first-order derivative of the cubic function of AVG_temp_H.
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of �50 to 5.02, transmission decreases. Second, in the range of 5.02
to 16.92, transmission accelerates. Essentially, this is the tempera-
ture range for an outbreak. Third, in the range of 16.92 to 28.82, the
transmission still increases but more slowly. Finally, in the range of
28.82 to 50, transmission decreases, and the pandemic gradually
dies out. In addition, it is important to understand the critical value
of 16.92 �C. Based on our analysis of the speed and acceleration,
this temperature can be considered the most dangerous, i.e., the
temperature with the highest rate of infection.

Recall that this is the maximum daily temperature, so the cor-
responding average daily temperature is lower. For example, in a
typical Chinese city where the maximum daily temperature is
around 35 �C in the summer, the recorded average daily tempera-
ture is usually from 25 �C to 30 �C.

Although the calculation results presented here appear to be
novel, other studies are also available that support these results.
Using data on China, some scholars find that, with an average tem-
perature range of < 3 �C, when the temperature increases, the con-
firmed daily cases increase (Xie and Zhu, 2020). In our calculation,
the infection starts to increase when the maximum daily tempera-
ture is above 5.02 �C. Moreover, a descriptive study using global
data shows that the temperature range of 5 �C to 15 �C covers
about 60.0% of infections, which is considered the ‘‘optimal tem-
perature zone” for the spread of the virus. The most confirmed
cases are in the maximum temperature range of 5 �C to 30 �C
(Huang et al., 2020). This is again an interesting coincidence. As
we can see, the results of computer-based simulation in this study,
Table 7
Comparison of the dynamics of transmission of COVID-19 related to the temperature usin

Corresponding model Model (14)
GMM
(T31)

Description GMM without the log
of DN_COVID-19

Transmission decreases (�50, 7.52)
Transmission increases in the acceleration manner [7.52, 35.46]
Transmission increases in the deceleration manner (35.46, 63.40]
Transmission decreases (63.40, 100)
Unit �C

Note: All the temperature values mentioned above are the maximum temperature of th
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which are also solutions to an estimated function, match the
reality.

In addition, a study using data on Barcelona, Spain, shows that
60% of the cases occur when the maximum daily temperature is in
the range of 12.2 �C to 22.8 �C, in which the negative connection is
identified (Tobías and Molina, 2020). Notably, an interesting study
using data on Brazil shows a critical temperature range between
16.8 �C and 25.8 �C, in which a negative linear relationship exists
between the temperature and new cases. Moreover, going beyond
the threshold of 25.8 �C, the correlation curve becomes flat, hence
even higher temperature does not decrease transmission (Prata et
al., 2020). Is this 16.8 �C another coincidence? Based on the novel
theory proposed in this study, we calculate a critical value of
16.92 �C, beyond which the transmission increases with the max-
imum daily temperature up to 28.82 �C but more slowly. Therefore,
in a more general sense, the temperature range between 16.8 �C
and 25.8 �C proposed in the other study does not really proxy for
the negative linear relationship. Instead, it should correspond to
the negative relationship in the dimension of the second-order
derivative.

In addition to the temperature range issue, the speed or velocity
of COVID-19 spread is also noted in some emerging studies. For
example, in France, the speed of infection decreases with the tem-
perature at the initial stage of the pandemic, but seasonal fluctua-
tion with temperature is unknown (Demongeot et al., 2020).
Another study indicates that countries with a higher average tem-
perature in February have a slower spread at the early stage of the
g different models.

Model (20)
GMM
(T31)

Model (24)
LGM
(T31)

form GMM with the log form
of DN_COVID-19

MCMC draws: 20,000,000

(�50, 6.31) (�50, 5.02)
[6.31, 22.60] [5.02, 16.92]
(22.60, 38.88] (16.92, 28.82]
(38.88, 50) (28.82, 50)
�C �C

e day.
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pandemic (Holtmann et al., 2020). In fact, all these findings can be
unified by a more general theory proposed in this study.
4. Discussion

4.1. Supporting evidence from Wuhan, China

On February 13, 2020, the maximum daytime temperature in
Wuhan reached 17 �C. From February 20 to February 25, the local
temperature began to rise, and at the same time, the rate of growth
in new COVID-19 infections began to slow compared to the rate
before this period.
4.2. The coincidence of the shifting outbreak line in latitude

Growing evidence from around the world supports our hypoth-
esis. For example, in Italy, the outbreak of infection started in the
north, rather than the south, where the temperature is higher. In
India in early March 2020, the new infections were mostly in the
north. In addition, the outbreaks in Germany and the UK in early
March 2020 might be linked to the temperature.

Moreover, geographic evidence shows that all these cities out-
side China with outbreaks of infection from late February to early
March 2020 are at approximately 35 to 45� latitude north. For
example, Yokohama (Japan), Daegu (South Korea), and Tehran
(Iran) are all at around 35� latitude north. Some European coun-
tries with the COVID-19 outbreak are at around 40 to 45� latitude
north. In fact, because of the effect of ocean currents, in winter-
time, western European countries are typically warmer than coun-
tries in eastern Asia at a similar latitude.

As mentioned above, the cities in China with earlier outbreaks
are centered at 30� latitude north. Over time, between January
and March, the temperature in the Northern Hemisphere rises,
and the line of the outbreak in eastern Asia shifts from 30� north
to 35� north, which is roughly comparable to the temperature at
40� to 45� in western Europe. This can help clarify the outbreak
outside China in early March 2020.
4.3. More emerging evidence worldwide in March 2020

The temperature records on March 9, 2020, in some European
cities were Paris (6–12 �C), London (5–11 �C), Milan (4–9 �C), Rome
(0–14 �C), and Berlin (5–11 �C)—all in the temperature range con-
sistent with the viral outbreak as calculated in this study. Thus, the
rapidly increasing rate of infection in the western European coun-
tries in early March 2020 corresponds with the temperature range
[5.02 �C to 16.92 �C], at which transmission accelerates, as
hypothesized. Similarly, in the US, the temperature on March 11,
2020, was 4–10 �C in Seattle and 2–12 �C in New Rochelle, NY—
two cities that experienced a rapid increase in the infection on that
day. Three days later, when the confirmed COVID-19 cases in Italy
approached 20,000, the temperature in Milan was 7–11 �C, which
is very similar to the temperature in Wuhan in early February
2020, at the time of its outbreak.

Still more evidence to support our theory is given by the tem-
perature in some Asian cities. On March 9, 2020, the temperature
in Yokohama was 9–18 �C, in Daegu 3–17 �C, and in Tehran 6–
14 �C; this shows that the rate of infection began to slow in South
Korea and Japan that day but accelerated in Italy, France, and Ger-
many, offering strong evidence of the threshold value of 16.92 �C.
In particular, a comparison of South Korea and Iran shows that
on March 9 the temperature was lower in Iran than in South Korea,
and the rate of infection correspondingly accelerated more quickly
in Iran.
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Over time, some counties in western Europe at higher latitudes
faced a greater risk of infection, but at the same time, South Amer-
ica as a whole had only 98 reported COVID-19 cases, and all of
Oceania has only 122 as of March 11, 2020. This supports the the-
ory implied by this study: in March 2020, when the Northern
Hemisphere largely remained cold, the Southern Hemisphere was
much less vulnerable to infection with COVID-19 because it had
moderate and high temperatures. This is a pattern that reversed
with the seasons, as seen later.

The week from March 16 to March 22, 2020, provides still more
evidence. The pandemic suddenly worsened in many places, with a
daily increase in infection that reached its maximum to that point
in many countries. Table 8 compares the maximum daily tempera-
ture and the evolution in the pandemic that week in many cities
worldwide. In most of these examples, the temperature range for
an outbreak as well as the critical value of 16.92 �C, which corre-
sponds to the maximum acceleration in the growth of the infec-
tion, can help explain the patterns in the pandemic. Table 8 has
too many coincidences that we cannot ignore. In the following
week (i.e., the week ending March 30, 2020), conditions in both
Europe and the US were out of control. The temperature records
in those regions correlate well with the temperature range for an
outbreak outlined above.
4.4. Later lines of evidence in 2020

Still more persuasive events emerged in April, May, and June
2020 that emphasize the role of temperature.

The first was in Canada and Mexico, which are both next to the
US. The temperature is much lower in Canada than in Mexico, and
the rate of infection accelerated more in Canada, especially in April.

Second, in Italy and Spain, in the week of April 15, 2020, the
temperature is higher in Italy than in Spain (above 17 �C), and
the growth rate in infection is lower in Italy than in Spain. The
situation is similar in Turkey.

The third is Russia, which presents robust evidence for our the-
ory. In March 2020, infections in western Europe accelerated
rapidly, yet in Russia, the spread seemed rather low. At that time,
the highest daily temperature in Moscow is slightly below 5 �C, just
below the temperature range for an outbreak hypothesized in our
model. Later, when the temperature rose, Russia experienced a
massive outbreak. Russia had taken precautionary activities begin-
ning in late January, so imported infections were not widespread.
But, beginning in late March, infection rates accelerated. From
May 13 to 25, the maximum daily temperature in Moscow was
below 15 �C, and the daily increases in infection in Russia remained
high.

The fourth is the UK. Around the week of May 7, the daily
increase in the confirmed caseloads gradually slowed in many Eur-
opean countries, yet it rose in the UK. The temperature records for
London show that the maximum daily temperature for several
days was around 17 �C, which is consistent with the value calcu-
lated in this paper as the height for acceleration in viral transmis-
sion. In terms of the daily increase, this result suggests that the
daily increase in infection was at its height during this temperature
range, precisely the situation in the UK.

The fifth is China. Although the COVID-19 outbreak was largely
contained in China, the risk of a second round was still high in its
northeastern regions in April and May. Most of the new infections
were imported, so why were they centered in the northeastern
regions, not the southern regions, which had much more interna-
tional interaction? One reason is that the temperature is lower in
northeastern China than in the southern regions. Shulan, in Jilin
Province, experienced a small-scale outbreak, which resulted in a
long chain of local transmission (Chinanews, 2020). On May 23,



Table 8
The ‘‘crazy” week of March 16 to March 22, 2020: some evidence about the temperature and the COVID-19 outbreak.
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2020, the maximum daily temperature there was 17 �C, the critical
level, as calculated in this study.

The sixth is a few Latin American countries. From May 18 to 28,
2020, Santiago, Chile, has colder weather, with a maximum daily
temperature from 29 �C to 12 �C, and infections with COVID-19
there increased very rapidly. The other emerging epicenter in
South America during that period was Peru, which had a sharply
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increasing number of infections in May. In Lima, the capital, in
the week from May 17 to 28, the maximum daily temperature
was around 19 �C. In Ambato, in the middle of Ecuador, another
emerging epicenter in South America, the maximum daily tem-
perature in the week of May 27 was around 17 �C. Moreover, in
Buenos Aires, Argentina, the maximum daily temperature from
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May 21 to 28 was around 17 �C, just when it had a substantial
increase in the rate of infection.

The seventh relates to frozen food. In June 2020, new evidence
emerged. Our analytical model employs a temperature range
(-50 �C to 5.02 �C) that we have difficulty explaining. According
to the model and its results, the SARS-CoV-2 virus is supposed to
be very active at this low-temperature range, but it was difficult
to find global evidence. Then, more new reports began to appear.
In June 2020, during a resurgence in infection in Beijing, frozen sal-
mon was suspected to be a potential carrier (China Daily, 2020a).
Experts believe that the virus might be able to survive for 20 years
at a temperature of �20 �C (Xinhua News, 2020a). In addition, in
Germany, meat processing plants (i.e., slaughterhouses) experi-
enced 770 infections (China Daily, 2020b), and Australia had a high
jump in cases during that period as well (Xinhua News, 2020b),
when some experts said that the virus could even survive at a tem-
perature of �80 �C (National Business Daily, 2020). These new
cases support our findings and results, which explain why infection
outbreaks are easily linked with scenarios such as wholesale mar-
kets with frozen food and slaughterhouses in which the tempera-
ture spans from freezing to normal. The threshold temperature in
the model is 5.02 �C. The temperature for cold storage in the free-
zers is normally set at 4 �C. When meat is taken out and attains a
normal indoor temperature, if it contains the frozen virus, the
infection can occur.

Returning to Argentina, the daily number of new infections in
September grew to around 10,000. From September 8 to 16,
2020, the maximum daily temperature in Buenos Aires was around
17 �C. In addition, the second wave of infection in Europe shows
strong evidence to support our proposed theory. For example, dur-
ing the week of September 29, 2020, the highest daily temperature
in Moscow was around 17 �C when the daily increase in infection
dramatically accelerated again. The same thing also happened in
London after September 28 (around 17 �C), Paris after September
29 (around 17 �C), and Madrid after October 2.

4.5. The ‘‘exception” of tropical regions

In March 2020, the number of infections in South American
countries also increased but much more slowly, because of the
temperature there. In addition, Australia experienced more infec-
tions, but more than 80% were imported.

Although this theory does not precisely explain the evolution of
the pandemic in every country due to several influential factors, it
works well in most situations. The most obvious ‘‘exception” is
Brazil, which is in a tropical region. Brazil had a high rate of infec-
tion as well as high temperatures, so it does not appear to be a
good case for the application of this theory. However, the COVID-
19 outbreak in Brazil can be explained by three facts.

First, some studies hold that the infections in countries in the
Southern Hemisphere comprise more imported cases (Rio and
Camacho-Ortiz, 2020). Second, studies in Brazil show that relative
humidity might be another influential factor in the transmission
rate, but it is not discussed in this paper. Third, Brazil covers a large
territory, with a wide range of latitudes. Although many parts of
Brazil are in a tropical zone, the southern part of the country is
in a subtropical zone, which is farther from the equator and hence
has lower temperatures, even much lower.

São Paulo, which had the most infections in Brazil, is in the far
south corner of the country. The temperature is much lower in São
Paulo than in Brazilian regions close to the equator. As a result, the
maximum daily temperature there is <30 �C, which is in the trans-
mission range proposed in this study. Notably, on May 23, 2020,
when the daily infections in Brazil reached a high of 16,508, the
maximum daily temperature in São Paulo was around 21 �C. Then,
on May 24, the maximum daily temperature fell to only 15 �C and
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on May 25–26 it was 19 �C. Another example is Rio de Janeiro,
which had the second-largest outbreak in Brazil and is also in
the southern corner of the country (Auler et al., 2020).

4.6. The cyclicity of the ongoing COVID-19 pandemic

This study also reveals the cyclicity of the ongoing COVID-19
pandemic worldwide. The pandemic may alternate between the
Northern and Southern Hemispheres. In addition, the official web-
site of the World Health Organization (WHO) says there is a lack of
evidence to show that people will not be infected in environments
in which the temperature is above 25 �C. This study indicates that
when the temperature is high, the urban transmission is slower, so
it is not a matter of whether infections will spread, only of the
speed of transmission.

In May 2020, as the Northern Hemisphere began to warm in the
runup to summer, the situation in the Southern Hemisphere, espe-
cially in Latin American countries, began to deteriorate. On May 23,
WHO officially declared Latin America a new epicenter (China
Daily, 2020c). Africa, which has fewer medical resources, is also
in the Southern Hemisphere. Over time, conditions there might
become more difficult. On May 25–26, when COVID-19 infections
increased very rapidly in Johannesburg, South Africa, the maxi-
mum daily temperature there was 17 �C.

4.7. The latest evidence in 2021

In early 2021, when the Delta variant and other variants of
SARS-CoV-2 developed, the story changed. This is why we focus
on the early-stage transmission of COVID-19 throughout this
paper. Nonetheless, the analytical framework proposed in this
study is still useful. The wave of transmission in China since Octo-
ber 2021 offers another clear evolutionary pattern. First, the out-
break began in northern China and then spread to the southern
part of the country when the temperature dropped there. Second,
in many cities, the outbreak started right after a period with the
highest daily temperature of around 17 �C, which fully demon-
strates the fitness of our model. A similar situation has occurred
in Europe and elsewhere since October 2021 as well.
5. Conclusions and recommendations

On March 6, 2020, the WHO official in Geneva said that ‘‘cur-
rently we are unclear about the activity and performance of
COVID-19 under different climate conditions” (Xinhua News,
2020c). The present study offers a theoretical framework to under-
stand this issue supported by several lines of evidence.

This study estimates a cross-sectional model that links the
growth rate of confirmed COVID-19 infections with linear, quadra-
tic, and cubic terms for temperature with a sample of 295 cities in
China, for the period of the initial outbreak of COVID-19 in early
2020. To identify the causal effect, it uses latitude as the instru-
mental variable for temperature. We find that 16.92 �C is a critical
point for the spread of infection, which is a novel finding. In this
study, we add complex nonlinear functions, such as quadratic
and cubic functions, to the empirical model. OLS, GMM, and LGM
models are used to obtain an accurate quantitative interaction
between the temperature and confirmed infections through con-
tinuous optimization. The results of this study are consistent with
actual conditions in the COVID-19 pandemic in many regions of
the world, even those in northern China since October 2021.

The sample data used in this study come from cities in main-
land China, which is geographically large enough to cover a wide
range of climatic conditions as well as urban patterns and a very
large urban population. The results and findings in this paper are
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adequate for drawing a general conclusion. In terms of population,
the sample cities in China are comparable to small counties in Eur-
ope, and some provinces in China with significant COVID-19 out-
breaks are comparable to large countries in Europe. This
comparison helps study the evolving pattern in the pandemic in
Europe and elsewhere. In addition, although the number of cities
used in this paper is not large enough to call it a ‘‘big data analysis,”
we use MCMC simulation for 20 million draws, and the results con-
firm the robustness of the analysis.

In view of the ongoing nature of the pandemic worldwide, this
research also has important policy implications. If people are not
fully immunized against COVID-19 in a timely fashion, mankind
will be living with COVID-19 for a long time, in the cyclical pattern
of fluctuation shown to date. The failure to pay attention to the evi-
dence revealed so far presents a great and continuing risk, espe-
cially at this critical moment in the global COVID-19 pandemic.

In the scientific community, an increasing number of research-
ers believe that transmission of this disease is associated with tem-
perature. The Centers for Disease Control and Prevention (CDC) in
the US also issued official alerts that viral transmission might
increase in the winter of 2020, which is precisely what happened.
However, a coherent theoretical base to link the temperature with
the pandemic is still absent. This paper is therefore of general
interest regarding the current COVID-19 crisis and has important
implications on the future evolution of the pandemic and how
we need to prepare for it (Walenta, 2018; Meynard et al., 2020).

The world is at a crossroads right now, and we must do every
possible before it is too late (Aleta et al., 2020; Nuñez et al.,
2020; Soong et al., 2021). The relationship between climate and
man (Billington, 1986) is being reshaped by the ongoing COVID-
19 pandemic along with climate change, which is the other type
of ‘‘weather shock” (Corno et al., 2020). The issues related to this
study are important and timely, as an increasing number of emer-
ging infections are being reported in association with frozen food.
In addition, the role of wastewater in viral transmission (Bivins et
al., 2020; Liu, 2020; Mao et al., 2020; Randazzo et al., 2020; Wang
and Liu, 2021) needs to be investigated more thoroughly.

Future studies could follow this paper by conducting further
investigations on the relationship between temperature and the
pandemic, which is an urgent response called for in recent studies
(Ma et al., 2021). The construction of an appropriate analytical fra-
mework is badly needed, and that is what we have done in this
study.

Although this study discusses the mathematical and statistical
relationship between temperature and viral transmission, the
internal mechanism in the influence of air temperature on trans-
mission is still a mystery. In addition, although this study has dis-
cussed the relationship between temperature and virus
transmission, the other parameters such as aerosol transmission,
also have impacts on the COVID-19 pandemic. Several papers have
argued the importance of the aerosol transmission of SARS-CoV-2
(Kassem, 2020; Cao et al., 2021; Shao et al., 2021; Wang and Liu,
2021). This cannot be ignored when discussing virus transmission.
However, due to data limitations, we have to leave such an issue
for future researches. But this study can still inspire the possible
interaction between temperature and aerosol transmission. More
interdisciplinary investigations from the perspective of biology,
medicine, chemistry, physics, and so on are needed to unravel that
mystery.
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