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Background: Cholangiocarcinoma (CCA), which consists of intrahepatic CCA (iCCA), perihilar CCA 
(pCCA), and distal CCA (dCCA), is an aggressive malignancy worldwide. PCCA and dCCA are often 
classified as extrahepatic CCA (exCCA). However, the differences in mutational characteristics between 
pCCA and dCCA remain unclear. 
Methods: Deep sequencing targeting of 450 cancer genes was performed for genomic alteration detection. 
The tumor mutational burden (TMB) was measured by an algorithm developed in-house. Correlation 
analysis was conducted using Fisher’s exact test.
Results: FGFR2 and ERBB2 mutations mainly occurred in iCCA and exCCA, respectively. In exCCA, the 
frequencies of PIK3CA, FAT4, KDM6A, MDM2, and TCF7L2 mutations were significantly higher in pCCA 
compared to dCCA, while the frequencies of TP53 and KRAS mutations were markedly lower in pCCA than 
those in dCCA. The prognosis-related mutations were different among the CCA subtypes. NF1 mutation 
was associated with short disease-free survival (DFS) and overall survival (OS), and ERBB2 mutation was 
associated with short DFS in dCCA patients. Meanwhile, MAP2K4 mutation was associated with long 
DFS and OS, and TERT mutation was associated with short DFS in pCCA. A series of mutations in genes, 
including ARID1A, ARID2, SMAD4, TERT, TP53, and KRAS, were found to be associated with the TMB. 
Conclusions: In this study, we investigated the comprehensive genomic characterizations of CCA patients, 
identified the significant alterations in each subtype, and identified potential biomarkers for prognosis 
prediction. These results provide molecular evidence for the heterogeneity of CCA subtypes and evidence 
for further precision targeted therapy of CCA patients.
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Introduction

Cholangiocarcinoma (CCA) is an invasive malignancy 
tumor derived from bile duct epithelial cells. Early biliary 
tract cancer (BTC) has no clearly symptoms, and only a 
few BTC patients are considered as surgical resection at 
the initial diagnosis (1). BTCs originating in the bile ducts 
can be classified as intrahepatic (iCCAs), perihilar (pCCAs; 
Klatskin tumors), or distal cholangiocarcinoma (dCCAs) 
according to their anatomical location, each with distinct 
epidemiological and molecular pathological processes (2). 
PCCA and dCCA are bounded by cystic duct and common 
hepatic duct. Patients with dCCA often find gallbladder 
dilatation, intrahepatic bile duct dilatation, and extrahepatic 
bile duct dilatation, while patients with pCCA often show 
perihepatic bile duct dilatation, normal size of common 
bile duct and possible contraction of gallbladder. Both 
pCCA and dCCA are normally classified as extrahepatic 
CCA (exCCA) (2). The risk factors of iCCA and exCCA are 
different. For example, Cirrhosis, hepatitis B and C viruses, 
inflammatory bowel disease and type 2 diabetes mellitus 
were found to be more strongly association with iCCA, and 
choledochal cyst, choledocholithiasis, cholelithiasis and 
smoking were more at risk in exCCA (3). The difference 
in risk factors between pCCA and dCCA has rarely been 
reported. To date, surgery is the preferred treatment 
candidate for CCA subtypes. However, only a few CCA 
patients in early stage may receive surgical resection (4). As 
previously reported, surgical resection is associated with 
disease-free survival (DFS) in patients with iCCA (5). A high 
recurrence risk and poor survival outcomes are associated 
with iCCA surgery and liver transplantation (6). Currently, 
combination chemotherapy is the first-line treatment for 
advanced-stage CCA patients that are not suitable for 
surgical or locoregional options (7). Valle et al. reported that 
the median overall survival (OS) of gemcitabine combined 
with cisplatin was longer than that of gemcitabine alone 
(11.7 months versus 8.1 months, respectively) (8). For 
patients who progressed from first-line gemcitabine-based 
chemotherapy, second line and above antitumor treatments 
are limited. 

Importantly, as one of the most heterogeneous tumors 
in terms of molecular features, survival prognosis and 
therapeutic responses are varied in BTC patients. Recently, 
more and more molecularly targeted therapies have been 
investigated in early CCA clinical trials (9). Comprehensive 
whole-exome and transcriptome analysis based on large 
BTC cohort had revealed potentially targetable genetic 

driver alterations (10). The specific mutations include 
IDH1, MCL1, PBRM1, FGFR2, and FGFR 3/4/19 in iCCA, 
and FBXW7, ERBB2, and RBM10 in exCCA (10,11). 
Previous studies have also shown the genomic heterogeneity 
of CCA subtypes, potentially affecting future therapy  
trials (12). Waseem et al. reported that the mean survival 
of pCCA is lower than that of dCCA, but is similar to  
iCCA (13). However, few studies isolated pCCA and 
focused on its genomic characteristics.

To identify the underlying genomic targets with 
clinical translational significance, we systemically analyzed 
270 CCA samples from Chinese populations.  We 
comprehensively analyzed the genomic mutational profiling 
and distinguished the molecular features between pCCA 
and dCCA. We present the following article in accordance 
with the REMARK reporting checklist (available at https://
dx.doi.org/10.21037/jgo-21-776).

Methods

Patient selection and review 

A total of 270 CCA patients who received surgical treatment 
between 2014 and 2019 were enrolled. The study was 
conducted according to the guidelines of the Declaration of 
Helsinki (as revised in 2013). Written informed consent for 
tumor genomics profiling was obtained from each patient. 
The study protocol was approved by the Institutional Ethics 
Review Committee at Shandong Provincial Hospital (ethics 
approval number: LCYJ: No. 2019-081). Informed consent 
was obtained from all subjects involved in the study. The 
clinical data and follow up information were obtained from 
the electronic medical record or by telephone inquiry. 

Next-generation sequencing (NGS)

Genomic alterations were detected by using the YuanSu 
450 panel in the OrigiMed, a College of American 
Pathologists (CAP)-accredited and Clinical Laboratory 
Improvement Amendments (CLIA)-certified laboratory 
(Shanghai OrigiMed Co., Ltd, Shanghai, China),. At 
least 50 ng of cancer tissue DNA was extracted from each  
40 mm3 formalin-fixed, paraffin embedded (FFPE) tumor 
sample using a DNA extraction kit (QIAamp DNA FFPE 
Tissue Kit, Qiagen, Hilden, Germany) according to the 
manufacturer’s protocol. YuanSu 450 panel cover the all 
coding exons of 450 tumor-related genes and the selected 
introns of 39 commonly rearranged genes in solid tumors. 

https://dx.doi.org/10.21037/jgo-21-776
https://dx.doi.org/10.21037/jgo-21-776
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The genes were captured and sequenced, with a mean 
coverage of 900× for FFPE samples and 300× for matched 
paracancerous samples, using Illumina NextSeq-500 
(Illumina Inc., San Diego, CA). Genomic alterations 
including single nucleotide variants (SNVs), short and 
long insertions/deletions (Indels), copy number variations, 
and structural variants of gene rearrangement/fusion were 
further analyzed. 

Tumor mutational burden (TMB) calculations

The TMB was caculated by counting the somatic mutations, 
including SNVs and Indels, per megabase of the sequence 
examined for each patient. Driver mutations and known 
germline alterations were not counted.

Statistical analysis

Data analyses were performed with SPSS statistical software 
(version 22.0; IBM, USA). Comparisons between the groups 
were performed using the χ2 test when appropriate. A 
multinomial logistic regression model was used to estimate 
the odds ratio. Kaplan-Meier curves were applied to present 
the survival probability of different patients. P<0.05 was 
considered statistically significant.

Results

Samples and patient clinical characteristics

A total of 270 CCA patients, including 92 iCCA, 70 pCCA, 
and 108 dCCA patients were enrolled in this study. The 
median age of patients was 61 years old (range, 18–79 
years). Among them, 30.7% (83/270) were male and 69.3% 
(187/270) were female. A total of 55.2% (149/270) were 
well to moderately differentiated, 78.9% (213/270) were 
N0 status, and 4.4% (12/270) possessed a confirmed cancer-
related family history (Table 1). Although preoperative 
evaluation showed that all tumors were surgically resected, 
25.6% (69/270) were R1/R2 resections. According to the 
American Joint Committee on cancer (AJCC) 8th edition, 
postoperative evaluation showed that 41.3% of iCCA 
patients were stage III/IV, while 25.7% and 12.0% of 
pCCA and dCCA patients were stage III/IV, respectively. 
Statistical analysis demonstrated the significant association 
between tumor stage and CCA subtypes (P<0.001). Most of 
CCA patients were hepatitis B virus/hepatitis C virus (HBV/
HCV) negative (87.8%, 237/270), and the HBV/HCV 

positivity rate was significantly higher in iCCA than that in 
exCCA (19.6% vs. 4.8%; P<0.001) (Table 1). 

Characterization of genomic alterations

A total of 1,711 mutants from 395 genes were identified in 
270 CCA samples (6.3 mutations/sample), which included 
943 somatic SNVs or small Indels (Substitutions/Indels), 
441 truncations, 258 gene amplifications, 46 fusions/
rearrangements, and 23 gene homozygous deletions  
(Table S1). No mutations were detected in eight patients in 
the 450-gene panel. The most commonly mutated genes of 
Chinese CCA patients were TP53 (56%, 151/270), followed 
by KRAS (32%, 86/270), SMAD4 (16%, 44/270), CDKN2A 
(16%, 42/270), ARID1A (15%, 41/270), ARID2 (12%, 
32/270), and TERT (12%, 32/270) (Figure 1). Functional 
pathways of the cell cycle (66%, 178/270), MAPK (50%, 
134/270), PI3K (24%, 66/270), and HRD (16%, 42/270) 
were frequently altered in CCA patients (Figure S1).

Different mutational characteristics of iCCA and exCCA

It is well known that exCCA and iCCA exhibit different 
molecular mutation characteristics. In this study, we found 
that BAP1, PBRM1, and FGFR2 mutations occurred 
frequently in iCCA, while ERBB2 and SMAD4 mutations 
occurred frequently in exCCA. Statistical analysis showed 
that BAP1, PBRM1, and FGFR2 mutations were significantly 
associated with iCCA (P=7.47×10−5, P=7347×10−5, and 
P=0.0002, respectively), and ERBB2 and SMAD4 mutations 
were significantly associated with exCCA (P=0.0088 and 
P=0.037, respectively). Nine (9.8%) iCCA patients harbored 
FGFR2 fusion in this cohort. FGFR2 fusion occurred more 
commonly in females (17% vs. 5%; P=0.08). Although TP53 
mutations occurred frequently in both iCCA and exCCA, 
they were markedly more frequent in exCCA than in 
iCCA. Meanwhile, it should be noted that IDH1 mutations 
(6.5% vs. 0%; P=0.0015) occurred specifically in iCCA  
(Figure 2A). 

Differentiation of molecular characteristics in exCCA 
subtypes

Although pCCA and dCCA are classified as exCCA, their 
molecular characteristics were different. TERT, PIK3CA, 
MDM2, FAT4, and KDM6A mutations were more prevalent 
in pCCA than in dCCA (Figure S2). Among these genes, 
the mutation frequencies of TERT and PIK3CA in pCCA 

https://cdn.amegroups.cn/static/public/JGO-21-776-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-21-776-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-21-776-Supplementary.pdf
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were similar to those of iCCA, while the mutations of 
MDM2, FAT4, and KDM6A were specifically prevalent 
in pCCA (Figure S2). Statistical analysis showed notably 
higher frequencies of PIK3CA, FAT4, KDM6A, MDM2, 
and TCF7L2 mutations in pCCA than in dCCA, and 
significantly lower frequencies of TP53 and KRAS mutations 
in pCCA than in dCCA (Figure 2B).

TMB

To investigate the potential guidance in the treatment of 

CCA, we identified the TMB value of this cohort. The 
median TMB was 3.1 muts/Mb (range, 0–50.2 muts/Mb). 
There was no significant difference in the distribution of 
the TMB among the different tumor subtypes. The 80% 
TMB of CCA was 6.2 muts/Mb; therefore, TMB values 
higher than 6.2 muts/Mb were considered as a high TMB 
(TMB-H), and TMB values lower than 6.2 muts/Mb were 
considered as a low TMB (TMB-L). 

We investigated the correlation between the most 
commonly mutated genes and the TMB. The results 
showed that ARID1A (P=0.025), ARID2 (P=0.005), SMAD4 

Table 1 Clinicopathological features of Chinese CCA patients

Characteristics dCCA (n=108) iCCA (n=92) pCCA (n=70) Total (n=270) P value

Age (years), median 61 59 62 61 0.091

Gender, n (%) 0.143

Male 31 (28.7) 35 (38.0) 17 (24.3) 83 (30.7)

Female 77 (71.3) 57 (62.0) 53 (75.7) 187 (69.3)

Disease stage, n (%) <0.001

0–2 95 (88.0) 54 (58.7) 50 (71.4) 199 (73.7)

3–4 13 (12.0) 38 (41.3) 18 (25.7) 69 (25.6)

NA 0 (0) 0 (0) 2 (2.9) 2 (0.7)

Differentiation, n (%) 0.286

Well or moderate 59 (54.6) 51 (55.4) 39 (55.7) 149 (55.2)

Poor 48 (44.4) 35 (38.0) 28 (40.0) 111 (41.1)

NA 1 (1.0) 6 (6.6) 3 (4.3) 10 (3.7)

N status, n (%) 0.145

0 90 (83.3) 68 (73.9) 55 (78.6) 213 (78.9)

≥1 18 (16.7) 22 (23.9) 12 (17.1) 52 (19.3)

NA 0 (0) 2 (2.2) 3 (4.3) 5 (1.9)

Family history, n (%) 0.058

Yes 5 (4.6) 7 (7.6) 0 (0) 12 (4.4)

No 98 (90.8) 84 (91.3) 69 (98.6) 251 (93.0)

NA 5 (4.6) 1 (1.1) 1 (1.4) 7 (2.6)

HBV/HCV, n (%) <0.001

Yes 2 (1.9) 18 (19.6) 2 (2.9) 22 (81.5)

No 104 (96.2) 71 (77.2) 62 (88.6) 237 (87.8)

NA 2 (1.9) 3 (3.3) 6 (8.6) 11 (8.6)

CCA, cholangiocarcinoma; dCCA, distal CCA; iCCA, intrahepatic CCA; pCCA, perihilar CCA; NA, not available.

https://cdn.amegroups.cn/static/public/JGO-21-776-Supplementary.pdf
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Figure 1 Most common genomic alterations of 270 CCA samples. Each column represents a case sample. Partial mutated genes of samples 
are listed on the left side. The top bar graph represents the TMB of each sample, and the right bar graph represents the mutational 
frequency of corresponding mutated gene. Different colors show mutational types at the right side of panel. CCA, cholangiocarcinoma; 
TMB, tumor mutational burden.

(P=0.046), TERT (P=0.004), and TP53 (P=0.001) mutations 
were significantly associated with TMB-H, while the KRAS 
(P=0.001) mutations were notably associated with TMB-L 
(Figure 3).

Analysis of DFS and OS in patients

To exclude the influence of advanced tumor on DFS 

and OS, 199 early CCA patients with tumor stage I/II 
were selected for further study. The DFS and OS data 
from 143 and 135 patients, respectively, were collected 
for further analysis. Of the 143 patients with effective 
DFS information, there were 67 dCCAs, 36 iCCAs, 
and 40 pCCAs; the median DFS was 11 months (range, 
1–53 months), 4.5 months (range, 2–31 months), and  
11 months (range, 2–72 months), respectively. Statistical 
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analysis showed significantly longer DFS of dCCA and 
pCCA compared to iCCA (P=0.002) (Figure 4A). Of the 
135 patients with effective OS information, there were 60 
dCCA, 33 iCCA, and 42 pCCA; the median OS was 17.5, 9, 
and 16 months, respectively. Statistical analysis showed that 
the survival rate of dCCA was significantly higher than that 
of iCCA (P=0.036) (Figure 4B). No significant differences 
were detected between pCCA and dCCA patients for both 
DFS and OS.

We selected genes with >10% mutation frequency for 
further correlation analysis. For CCA patients, the NF1 
mutation was associated with a short DFS and OS, while 
the MAP2K4 mutation was associated with a long DFS  
(Figure 5A). For CCA subtypes, we found that NF1 
mutations were associated with a short DFS and OS, 
and ERBB2 mutations were associated with short DFS in 

dCCA patients (Figure 5B). Also, MAP2K4 mutations were 
associated with a long DFS and OS, and TERT mutations 
were associated with a short DFS in pCCA (Figure 5C). 
Furthermore, RBM10 mutations were associated with a 
short DFS and OS, and KRAS mutations were associated 
with a short DFS in iCCA (Figure 5D). Interestingly, no 
mutated genes associated with DFS or OS of two or more 
CCA subtypes were detected.

Discussion

CCA is a malignant tumor originating from bile duct 
epithelium, which has a complex etiology and atypical 
clinical characteristics. Surgical incision is an effective 
therapy for early CCA. However, clear classification of 
CCA subtypes is helpful for further treatment. With the 
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development of NGS detection technology, numerous 
studies have investigated the molecular characteristics 
of CCA subtypes. Similar to previous studies (14,15), we 
found that the IDH1, BAP1 and FGFR2 mutations were 
most common in iCCA, and TP53, SMAD4, and ERBB2 
mutations were most common in exCCA. These findings 

indicate that the profiling of CCA is similar between 
Chinese patients and Western patients. Available drug 
targets in CCA include FGFR2 and IDH1. Our results 
supported that patients with iCCA have more opportunity 
to benefit from targeted therapy than those with exCCA.

In this study, we distinguished pCCA from dCCA 
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in exCCA by identifying the characteristic molecular 
alterations between them. Our results showed more 
frequent mutations of TP53 and KRAS in dCCA, and FAT4, 
KDM6A, MDM2, and TCF7L2 in pCCA. Although pCCA 
is classified as exCCA, its location is closer to iCCA, which 
makes it difficult to classify accurately to some extent. In 
addition to the specific frequently occurring FAT4, KDM6A, 
and MDM2 mutations in pCCA, the mutational frequencies 
of SMAD4, ARID2, ARID1A, and ERBB2 were similar 
to dCCA, while the mutational frequencies of TERT and 
PIK3CA were similar to iCCA. These results highlight the 
complex mutation characteristics of pCCA. Although CCA 
subtypes were not distinguished at the molecular level yet, 
it will greatly promote the development of CCA precision 
medicine in the future. 

Based on prognosis analysis,  we also identified 
different potential biomarkers in both pCCA and dCCA. 
Interestingly, our results showed that NF1 mutation was 
associated with poor prognosis in dCCA, while MAP2K4 
mutation was associated with better prognosis in pCCA. 
NF1 is reported as a tumor suppressor gene and is 
associated with poor prognosis in tumors (16). MAP2K2 
is involved in multiple cellular processes, including cell 
differentiation, apoptosis, and proliferation (17). High 
expression of MAP2K2 is reportedly associated with poor 
OS in breast cancer (18), implying an association between 
MAP2K2 mutation and good prognosis. Together with our 
results, we therefore conclude the potential predictive role 
of NF1 and MAP2K2 in the prognosis of dCCA and pCCA, 
respectively. These results also illustrated the different 
molecular characterization between pCCA and dCCA. 

In addition, we also detected the association between 
ERBB2 mutation and DFS in dCCA, and the association 

between TERT mutation and DFS in pCCA. Previous 
studies have reported the association between TERT and 
ERBB2 and prognosis in non-small cell lung cancer and 
CCA (14,19). This supported that both ERBB2 and TERT 
could be potential biomarkers for prognosis prediction. 
More importantly, our results emphasized that the 
correlation exists only in one subtype of exCCA, which 
demonstrates the importance of accurate classification 
for further treatment and prognosis prediction, and also 
supported the necessity of NGS detection for precision 
treatment of CCA. 

KRAS mutational frequency is different between iCCA 
and exCCA (20), and is greatly valued for improving the 
prognosis of iCCA (21). RBM10 has been reported to 
regulate the Notch pathway by interacting with NUMB 
in cancer (22), and the Notch pathway can predict the 
prognosis of many cancers. In this study, we identified an 
association between KRAS and RBM10 and DFS or OS in 
iCCA, which supported that KRAS and RBM10 mutation 
may be potential biomarkers for prognosis prediction 
in iCCA. In this study, nearly 10% of FGFR2 fusions/
rearrangements were detected in iCCA, but we failed to 
identify an association between FGFR2 fusion and DFS 
in iCCA. This is inconsistent with previously reported 
association between FGFR2 fusion and improved OS in 
iCCA (23). We deduced that the small number of patients 
or the limited follow-up data may be potential limitations in 
this study, or may be due to regional differences. However, 
this requires confirmation by further research.

TMB reflects the number of somatic mutations in 
the genome sequence. Tumors with TMB-H are well 
recognized as having more non-selfantigens or neoantigens, 
to be potential ly recognized by the host immune 
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system more frequently. TMB is an effective biomarker 
that can further guide patients to choose checkpoint  
inhibitors (24). Different cancer types have different 
distributions of TMB values; however, TMB-H is 
associated with improved survival in most patients who 
receive immune checkpoint inhibitors treatment. Previous 
study showed that the median TMB of CCA was only  
1.23 mutations/Mb (25). Zhang et al. showed CCA patients 
(one iCCA and two dCCAs) with TMB-H well benefited 
from immune checkpoint inhibitors (26). Weinberg et al.  
reported that TMB in iCCA was higher than that in  
exCCA (27). In this study, we did not find a significant 
difference in the TMB between CCA subtypes. Therefore, 
we analyzed the TMB-related gene mutations in the whole 
CCA cohort. Our results showed that ARID1A, ARID2, 
SMAD4, TERT, and TP53 mutations were associated with 
TMB-H, while the KRAS mutations were associated with 
TMB-L, which implied a potential opportunity for CCA 
patients with/without these mutations. 

Numerous studies have demonstrated the association 
between ARID1A mutation and poor prognosis in many 
cancer types (28). High SMAD4 levels can predict a 
better prognosis in colorectal cancer (29), while the loss 
of SMAD4 mutations is associated with poor prognosis 
in colorectal cancer (30). TERT and TP53 mutations are 
reportedly associated with poor prognosis in many cancer 
types (19,31). Moreover, KRAS mutation is reportedly 
associated with poor prognosis in patients with different 
cancer types (32). In this study, except for the association 
between KRAS mutation and poor prognosis in iCCA, we 
did not identify any associations between the mutations of 
these genes and prognosis, which suggests that predicting 
prognosis using TMB levels in CCA would be difficult. 

Surgery is the preferred treatment option for CCA 
patients. However, the prognosis is different among 
CCA subtypes. Based on a study of 564 patients with R0-
resections, the median survivals of iCCA, pCCA, and dCCA 
were 80, 30, and 25 months, respectively (33). Although 
we selected patients with early tumor stage (stage I/II) for 
prognosis analysis, the results showed that the prognosis 
of iCCA was worse than that of exCCA, and there was 
no significant difference in the prognosis between pCCA 
and dCCA. This may be largely affected by tumor stage. 
Most patients in our study were diagnosed early, and 
postoperative pathology showed a higher proportion of 
advancement in iCCA compared to exCCA. This implies 
that early iCCA has the potential to progress faster. In 
addition, patient survival rates may vary by country or 1.
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region. Anyway, with the development of tumor precision 
medicine, clinical studies of combined therapy based on 
NGS technology are expected to improve the survival of 
CCA patients.

In summary, we investigated the comprehensive genomic 
characterizations of 270 CCA patients and identified 
the significant alterations in each subtype. These results 
suggest different molecular features between pCCA and 
dCCA. Furthermore, prognosis analysis identified potential 
biomarkers for prognosis prediction, such as MAP2K4 
mutations in pCCA and NF1 in dCCA. Together, our study 
provides evidence for further precision targeted therapy of 
CCA patients.
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