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Abstract

Background: Chronic pancreatitis (CP) is an inflammatory disease of the pancreas with loss of 

exocrine/endocrine functions as well as development of fibrosis. Dysbiosis of gut microbiome has 

been shown to be involved in the pathogenesis of many disease processes. Therefore, we aim to 

investigate the alteration in gut microbiome associated with CP in caerulein-induced mouse model.

Methods: CP was induced in C57Bl/6 by using caerulein injections (50 μg/kg/h, i.p., x7, twice 

weekly for 10 weeks). Stool samples were collected either one week after end of injection 

(10-week CP) or 6 weeks (16-week CP). DNA was extracted from stool samples and V4 region of 

16S rDNA was sequenced for microbiome analysis.

Results: CP was strongly associated with the alteration in the composition of the gut 

microbiome, evidenced by differences in α and β diversity. When β diversity was measured 

using both weighted and unweighted UniFrac distances, stool from control mice is significantly 

different from mice on 10-week or 16-week CP (q < 0.01). The α-diversity measured by 

Faith’s phylogenetic diversity was lowest in stool from healthy control and highest in stool from 

mice with 16-week CP (p < 0.001). Bacteria taxa differentially enriched in CP samples were 

detected using linear discriminant analysis. Bacteria from genus Bifidobacterium, Akkermansia, 

and Desulfovibrio were enriched in samples from 10-week CP mice. Bacteria from genus 

Allobaculum, Prevotella, and Bacteroides were enriched in samples from 16-week CP mice.

Conclusion: Together, these analyses reveal pronounced alteration in the gut microbiome 

composition, diversity, and function when mice develop CP.
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Introduction

Pancreatitis is an inflammatory disease of the pancreas leading to significant morbidity, 

mortality, and hospitalization1. Within the US alone, over 300,000 patients are hospitalized 

every year for pancreatitis and over $2 billion is spent on their care2. Acute pancreatitis 

(AP) is the most commonly occurring form of pancreatitis1 and is caused by premature 

intra-acinar activation of trypsinogen and other proteolytic enzymes, resulting in pancreatic 

acinar injury and an inflammatory response3. Long-term and recurrent AP can progress to 

chronic pancreatitis (CP). CP is characterized by recurrent process of inflammation with 

concurrent sequelae of an acute episode and progressive inflammatory and fibrotic changes, 

along with the destruction of pancreatic structures, leading to impaired functions of exocrine 

and endocrine4 pancreas. CP typically develops the clinical features of abdominal pain, 

pancreatic exocrine insufficiency (PEI), and diabetes4, 5. Pain and pain-associated disability 

distinctly reduces patients’ quality of life and ultimately leads to early death. Known causes 

of CP include long-time exposure to alcohol and smoking, metabolic and vascular diseases, 

autoimmune or genetic disorders. However, in a significant proportion of CP cases, the 

underlying cause remains unclear, and they are labeled as sporadic or idiopathic4–6.

In pancreatic-related diseases, gut microbiota alterations are associated with acute 

pancreatitis, chronic pancreatitis, and pancreatic cancer6–9. The normal pancreas is not in 

direct contact with gut microbiota and was previously considered devoid of any microbiome. 

However, gut microbiota have since been found to be associated with intestinal barrier 

dysfunction in many diseases, including pancreatitis7, 10. Patients with CP are more likely 

to suffer from small intestinal bacterial overgrowth (SIBO) due to reduced synthesis of 

antimicrobial peptides and bicarbonate as well as impaired motility11–13. SIBO treatment 

has also been found to benefit patients with PEI14, 15. Antimicrobial peptides secreted 

by pancreatic acinar cells can help maintain gut microbiota homeostasis and barrier 

function12, 16,17. The gut microbiome change associated with CP has been investigated 

in several clinical and preclinical studies. Decreased alpha diversity and shifts in beta 

diversity have been reported in CP patients vs healthy control. Decrease in bacteria from 

Proteobacteria and increase in Bacteroidetes and Faecalibacterium have also been reported 

in CP patients7, 18–20. In CP mice, Han et al reported depletion of Lachnospiraceae 
and Ruminiclostridium and increase of Bacteroides and Alloprevotella genera in CP 

model induced by ethanol and caerulein combination21. In the current study, we use a 

caerulein-induced mouse model to investigate the caerulein-associated alteration in diversity, 

composition, and function of gut microbiota in CP.

Materials and methods

Experimental animals

Wild-type (WT) mice (C57BL/6; 4–6 weeks) were purchased from the Jackson Laboratory 

(Bar Harbor, Maine, USA). Animals were housed and maintained three to five per cage and 

maintained on a 12-h light/dark cycle, constant temperature (72 ± 1 °F) and 50% humidity. 

Food and tap water were available ad libitum. All animal experimental protocols were 

approved by the Institutional Animal Care and Use Committee at the University of Miami. 
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All procedures were conducted in line with the guidelines set forth by the National Institutes 

of Health Guide for the Care and Use of Laboratory Animals.

Animal model for chronic pancreatitis

C57BL/6J mice were first randomly divided into 3 groups with 5 to 8 mice per 

group [Control (n=8), CP10 (n=7) and CP16 (n=5)]. Mice in the CP group were 

given an intraperitoneal injection of sterile phosphate-buffered saline (PBS) containing 

caerulein (50μg/kg BW, Bachem, USA), while mice in the control group were injected 

intraperitoneally with the same volume of PBS. Caerulein was injected 7 times, at hourly 

intervals, twice a week for 10 weeks to induce chronic pancreatitis (CP10). One week after 

continuous administration of caerulein for 10 weeks, was euthanized (CP10) while other 

group of mice was kept for 6 more weeks (CP16). Mice kept in the same group were 

randomized (group-wise) to discount the cage effect in microbiome studies. Animals were 

euthanized at different time points according to protocols approved by University of Miami 

Animal Care Committee. Gut contents were collected aseptically. Pancreas tissues were 

formalin-fixed for paraffin embedding and histochemical analysis. The severity of CP and 

regeneration were compared between groups.

Histology

Control, CP10, and CP16 mouse pancreases were fixed in 10% formalin and embedded in 

paraffin. The sections (5 μm) were cut using microtome and stained with hematoxylin and 

eosin, and slides were assessed using microscope (Leica microsystems, Germany) at original 

magnification 10 × 10 and processed in Adobe Photoshop.

Sirius red staining and measurements

Tissue sections were stained using picrosirius red staining solution (Chondrex Inc, WA, 

USA) according to the manufacturer’s instructions. The sirius red-stained area was 

quantified using ImageJ software by selecting stained fibers in five fields at a magnification 

of ×20 under a light microscope.

16S rRNA gene sequencing

Stool samples were collected under aseptic conditions from all mice after sacrificing. DNA 

was isolated using DNeasy 96 PowerSoil Pro QIAcube HT Kit with QIAcube HT liquid-

handling machine (Qiagen, Maryland, USA). Two extraction controls were included to 

remove potential contamination from samples. Sequencing was performed by the University 

of Minnesota Genomics Center. The hypervariable regions V4 region of 16S rRNA gene was 

PCR amplified using the forward primer 515F (GTGCCAFCMGCCGCGGTAA), reverse 

primer 806R (GGACTACHVGGGTWTCTAAT), Illumina adaptors, and molecular barcodes 

to produce 427 base pair (bp) amplicons. Amplicons were sequenced with the Illumina 

MiSeq v.3 platform, generating 300-bp paired-end reads. The extraction controls could not 

be PCR amplified and were therefore excluded from the sequencing process.
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Bioinformatic analysis

Demultiplexed sequence reads were clustered into amplicon sequence variants (ASVs) with 

the DADA2 package (version 1.16.0)22 implemented in R (version 4.0.3) and RStudio 

(version 1.4.1106). The steps of the DADA2 pipeline include error filtering, trimming, 

learning of error rates, denoising, merging of paired reads, and removal of chimeras. 

On average, 26761 sequence reads per sample were kept after error filtering and other 

steps (Supplemental Table S1). During trimming, the forward and reverse reads were 

truncated at positions 230 and 180 to remove low-quality tails. During the learning of 

error rates, the nbases parameter was set to 1e08. The ASV table generated by DADA2 

was imported into the QIIME2 pipeline for diversity analyses and taxonomic assignment23. 

Diversity analyses were performed by using the qiime diversity core-metrics-phylogenetic 

script with sampling depth of 10,000. Taxonomic assignment of ASVs was done to the 

genus level using a naive Bayesian classifier24 implemented in QIIME2 with Greengenes 

reference database (13_8 99%)25. MicrobiomeAnalyst26 was also used for generating bar 

plots. LDA Effect Size (LEfSe)27 was generated by uploading the taxonomic assignment 

table to the galaxy app (https://huttenhower.sph.harvard.edu/galaxy/) to detect differentially 

abundant taxa across groups. The threshold on the logarithmic LDA score for discriminative 

features was set to 2. PICRUSt is a computational approach to predict the functional 

composition of a metagenome using 16S data with reference genomes from Greegenes25 

and IMG28 databases. Briefly, gene content was inferred with a precomputed reference 

OTU tree and a gene content table. Then the metagenome inferences algorithm utilized 

the user’s input OTU table to identify the corresponding OTU from the reference tree, 

generating a metagenome table. All prediction was implemented within galaxy app (https://

huttenhower.sph.harvard.edu/galaxy/). KEGG orthologs29 was used to predict metagenome. 

KEGG pathway was categorized to pathway hierarchy level 2. BugBase30 is a microbiome 

analysis algorithm that predicts high-level phenotypes present in microbiome samples using 

16S amplicon data (https://bugbase.cs.umn.edu/documentation.html). Briefly, precalculated 

files that specify the predicted gene content associations for each OTU were generated 

using PICRUSt. With user’s OTU table as an input file, BugBase predicts that an OTU 

possesses a phenotype based on an empirical annotation from databases (IMG28, KEGG29, 

and PATRIC31).

Statistical analysis

We determined if the within-group (α) diversity differed across treatments using a pairwise 

Kruskal-Wallis test. Additionally, we determined if between-treatment (β) diversity differed 

with a pairwise permutational multivariate analysis of variance (PERMANOVA). All other 

data were analyzed with GraphPad Prism 8. Multiple group comparison was analyzed using 

one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparisons test.

Data availability

Sequence data are available at the NCBI database under BioProject accession number 

PRJNA729715.

Tao et al. Page 4

Pancreatology. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://huttenhower.sph.harvard.edu/galaxy/
https://huttenhower.sph.harvard.edu/galaxy/
https://huttenhower.sph.harvard.edu/galaxy/
https://bugbase.cs.umn.edu/documentation.html


Ethics statement

All authors had access to all data and have reviewed and approved the final manuscript.

Results

The establishment of chronic pancreatitis (CP) model

The successful establishment of the CP model was confirmed by histology images (Figure 

S1) as previously reported32. The histology image demonstrated that 10 weeks of caerulein-

induced chronic pancreatitis caused severe damage to the pancreas. H&E staining (Figure 

S1B) showed signs of acinar loss, fibrosis, microscopic duct dilatations, tubular complexes, 

immune cell infiltration, and edema. The presence of pervasive sirius red staining of 

collagen in figure S1D showed a substantial amount of collagen, which is indicative 

of severe fibrosis. Inflammation and fibrosis persisted till 16 weeks and the pancreatic 

histology of CP16 was not significantly different from CP10 (data not shown).

Altered microbiome diversity during CP

Stool samples were collected for 16S rDNA sequencing to study the perturbation of 

the microbiome. Among all samples, 492 unique ASVs were identified (Supplemental 

Table S2). CP was strongly associated with the alteration in the composition of the 

gut microbiome, evidenced by differences in α (within-sample) and β (between-sample) 

diversity. When β diversity was measured using both weighted and unweighted UniFrac 

distances and visualized with principal-coordinate analysis (PCoA) plots, stool from control 

mice significantly clustered apart from mice on 10-week or 16-week CP (q < 0.01) (Figure 

1A, B). Stool from mice on 10-week CP was also significantly different from mice on 16-

week CP (q < 0.01) (Figure 1A, B). The α-diversity was measured by Faith’s phylogenetic 

diversity and visualized with rarefaction plot. The α-diversity was lowest in stool from 

healthy control and highest in stool from mice with 16-week CP (p < 0.001) (Figure 1C, 

D). The α-diversity was also significantly lower in stool from mice with 10-week CP 

than stool from mice with 16-week CP (p < 0.001) (Figure 1C, D). Higher α-diversity 

demonstrated that more unique bacterial taxa were present in the gut when mice developed 

CP. Together, these analyses revealed pronounced changes in the gut microbial diversity 

when mice develop CP.

Altered microbiome composition during CP

Microbial composition analysis was also performed from phylum to genus levels to identify 

the bacterial taxa that are altered by the development of CP. At the phylum level, 12 bacterial 

phyla were identified, with Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria 
being the most abundant and Verrucomicrobia, Deferribacteres, TM7, and Tenericutes being 

less abundant (Figure 2A). The development of CP was significantly associated with the 

Firmicutes to Bacteroidetes ratio. The ratio was 5.24±1.183 in the control group, having 

the tendency (P = 0.07) to be higher than the ratio in the CP10 group (2.59±0.46) (Figure 

S2). The ratio in the control group was significantly higher (P = 0.01) than the ratio in 

the CP16 group (1.26±0.06) (Figure S2). No significant difference was detected between 

the CP10 and CP16 groups. A decrease of the Firmicutes to Bacteroidetes ratio indicated 
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proliferation of Bacteroidetes (yellow bar) and decline of Firmicutes (green bar), which 

can be visually confirmed in Figure 2A. LefSe (Linear Discriminant Analysis (LDA) 

Effect Size) analysis was also performed among samples to determine the bacterial taxa 

that were differentially enriched. Indeed, the plot of the LDA score has also confirmed 

that, compared to the CP10 group, phylum Firmicutes was enriched in the control group 

(Figure 3A). Similarly, phylum Bacteroidetes was more differentially expressed in CP16 

when compared to control (Figure 3B). The change was also significant at the order 

and family level. Bacteria from family Bacteroidacace, Prevotellaceae, Helicobacteraece, 

and Rikenellaceae were more abundant in the microbiome of mice from the 16-week 

CP group than the other two groups (Figure 3D, S3). Similarly, bacteria from family 

Desulfovibrionaceae were absent from the control sample but were present in high 

abundance in samples from mice in the 10-week and 16-week CP groups (Figure 3D, 

S3). In control samples, bacteria from family Lactobacillales and Turicibacteraceae were 

more abundant than the other two groups. At the genus level, more than 90 different 

genera were identified. Genera Lactobacillus, Allobaculum, Bifidobacterium, Turicibacter, 
and an unknown genus from family S24–7 were most abundant (Figure 2B). In control 

samples, Lactobacillus, Turicibacter, Oscillospira, Coprococcus, and Clostridium were 

differentially enriched when compared to samples from the CP10 group (Figure 3A). In 

contrast, Bifidobacterium, Akkermansia, Desulfovibrio, Corynebacterium, Streptococcus, 
Anaerofustis, and Christensenella were overrepresented in CP10 samples (Figure 3A). As 

compared to the control, CP16 showed a significant number of changed genera. Allobaclum, 
Prevotella, Bacteroides, Oscillospira, and Ruminococcus were among the top discriminative 

genera (Figure 3B). When comparing CP16 to CP10 group, the same group of genera 

Allobaculum, Prevotella, Bacteroides, Oscillospira, Ruminococcus, and Sutterella was more 

abundant (Figure 3C).

Altered microbial function during CP

To further characterize the impact of CP on the functional gut microbiome, the metagenome 

was predicted with PICRUSt algorithm (Phylogenetic Investigation of Communities by 

Reconstruction of Unobserved States) using 16S rRNA gene sequence, and functions 

were categorized with KEGG pathways. In the predicted gut metagenome from CP10, 

metabolism of amino acids, glycan, and vitamins were the most up-regulated functions 

of the gut microbiome when comparing to the control (Figure 4A). The biosynthesis of 

the secondary metabolites, digestive and excretory system, cell mobility were also notably 

over-represented compared to the control (Figure 4A). In contrast, membrane transport, 

replication and repair, and environmental adaption were among the most discriminative 

functions in the control group as compared to CP10 (Figure 4A). Similarly, in the predicted 

gut metagenome from CP16, amino acid metabolism, cell mobility, energy metabolism, 

metabolism of the cofactors, vitamins, glycan as well as biosynthesis of secondary 

metabolites are up regulated when comparing to the control group (Figure 4B). On the 

contrary, replication and repair, translation, metabolism of xenobiotics, cellular processes 

and signaling are the most dominant functions in the control metagenome (Figure 4B). 

There are also a few differences when comparing the metagenome between the CP10 and 

CP16 samples. Cell mobility, energy metabolism, metabolism of cofactors, and vitamins are 

over-represented in the CP16 sample (Figure 4C). On the other hand, replication and repair, 
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xenobiotics metabolism, genetic information processing, lipid metabolism, and terpenoid 

and polyketide metabolism are most abundant in the CP10 samples (Figure 4C).

BugBase software was used to predict high-level microbial phenotypes. The control sample 

had the highest proportion of Gram-positive bacteria as compared to CP10 and CP16 

samples (p < 0.05) (Figure 5A). The relative abundance of Gram-positive bacteria did 

not differ between CP10 and CP16 samples (p = 0.4) (Figure 5A). The predicted relative 

abundance of Gram-negative bacteria had the opposite percentage as expected, with the 

control sample having a lower number than CP10 or CP16 (p < 0.05) (Figure 5B). Similarly, 

the relative abundance of Gram-negative bacteria did not differ between CP10 and CP16 

samples (p = 0.43) (Figure 5B). The CP16 sample had a higher abundance of anaerobic 

bacteria than CP10 (p < 0.01) or control (p < 0.01) (Figure 5C). The CP10 sample had a 

higher proportion of anaerobic bacteria than the control (p< 0.01) (Figure 5C). The control 

sample had higher relative abundance of facultative bacteria than CP10 (p< 0.01) or CP16 (p 

< 0.01) (Figure 5D). The CP10 sample had a higher proportion of facultative bacteria than 

CP16 (p < 0.01) (Figure 5D). In contrast, the control sample had a lower relative abundance 

of aerobic bacteria than CP10 (p < 0.05) or CP16 (p < 0.05) (Figure 5E). The CP10 sample 

had a higher proportion of aerobic bacteria than CP16 (p < 0.05) (Figure 5E). In terms of 

potential pathogenic bacteria, the CP16 sample had a higher percentage than CP10 (p < 

0.01) or control (p < 0.01) (Figure 5F). The relative abundance of pathogenic bacteria did 

not differ between control and CP10 (p = 0.12).

Discussion

In the current study, we investigated the alteration of gut microbiome when mice were 

induced CP with caerulein in 10-week and 16-week models. Mice with 10-week CP or 16-

week CP had a very distinct gut microbiome composition and higher α-diversity compared 

to control mice. Moreover, we characterized the functional gut microbiome, indicating that 

potentially pathogenic Gram-negative bacteria were enriched in mice with CP. Further, 

pathway analysis showed metabolism of amino acids, glycan, vitamins, and secondary 

metabolites were up regulated in the gut metagenome in mice with CP.

Our study findings differed from some recent work in the field. For example, a study 

using 6-week ethanol and caerulein combination to induce CP showed decreased bacterial 

richness and diversity in a mouse model21. In human patients with CP as well, a decrease 

in the sample diversity was observed when compared to healthy individuals6, 18, 19. A 

similar trend was also reported in patients with chronic alcoholic pancreatitis20. One clinical 

study reported no difference in richness or diversity between CP and normal patients 

from the pancreas sample33. One plausible explanation for the contrasting findings may 

be that the disruption of digestive enzyme secretion (pancreatic exocrine insufficiency) and 

endocrine dysfunction/diabetes in the CP model may have led to maldigestion of fat and 

other nutrients, thereby changing the availability of the nutrients to the gut microbiota4. 

Improper digestion of food components from gastrointestinal tract may have increased the 

availability of the nutrients to the gut microbiota, potentially causing the increased bacterial 

community diversity in our study. Moreover, the reduction of antimicrobial peptides secreted 

by pancreatic acinar cells can also lead to gut microbiota overgrowth, therefore increasing 
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the α diversity17. Both acute and chronic exposure to alcohol can extensively modify 

the microbiome composition, cause bacterial overgrowth, and disrupt the mucosal barrier 

function34. Bacteria from genera Lactococci, Pediococci, Lactobacilli, and Akkermansia 
muciniphila were depleted by alcohol in mice studies35–37. In human studies, bacteria from 

phyla Bacteroidetes and Proteobacteria, families Lachnospiraceae and Ruminococcaceae 
were depleted by alcohol treatment38, 39. Therefore, using alcohol in a mouse study or 

having alcohol drinkers in a human study is itself a confounding factor. The difference 

in α diversity observed between studies may be mostly dependent on the mechanism and 

reagents used to induce CP.

In accordance with most clinical and preclinical studies6, 18, 19, we also discovered 

significant changes in beta diversity when mice develop CP. Thomas et al. reported no 

clustering at the genus level by principle coordinate analysis between healthy pancreas and 

CP, however pancreas tissue was processed rather than fecal sample33. Additionally, we 

also showed that the change in microbiome caused by CP is still progressing even after 6 

weeks without caerulein injection (Figure 1A, B). More potentially pathogenic bacteria were 

predicted in CP16 (Figure 4F) indicated that the microbiome is not recovering to the original 

status. Inflammation and fibrosis persist and there was no significant difference in terms 

of pancreatic histology between groups CP10 and CP16 despite the change in microbiome, 

suggesting that there was no recovery in pancreatic tissue. The surplus of nutrients available 

to the lower gut microbiota could be one of the driving factors for the proliferation of 

pathogenic bacteria. These suggested the change in the microbiome associated with CP has 

long-term consequences with persistent pathogen enrichment. Moreover, lower α diversity 

itself may not be the sole indicator or predictor for worse outcomes since our study had the 

opposite outcome with higher α diversity and still more pathogenic bacteria.

Further, our findings showed that the intestinal microbial community of mice with CP was 

significantly altered from normal mice on various taxonomic levels. On the phylum level, 

we have observed a decrease in Firmicutes to Bacteroidetes ratio, which was consistent 

with a previous mice study21. The impact of CP at the phylum level showed mixed 

responses in human studies. Zhou et al. reported lower Firmicutes abundance in the gut 

microbiome of the CP group than control group19. However, another study observed an 

increase in the Firmicutes to Bacteroidetes ratio in CP patients18. In patients with chronic 

alcoholic pancreatitis, Bacteroidetes were less abundant in patients than control20. It is 

worth noting that, in the human study, patients often take other prescriptions that might 

affect the microbiome. In the alcoholic pancreatitis study, different patient groups have a 

different proportion of proton pump inhibitors users that could change the gut environment. 

Moreover, alcohol consumption itself could change the Firmicutes to Bacteroidetes ratio34.

On the genus and species level, the reported bacteria that were affected were inconsistent 

across studies that among pre-clinical and clinical studies. From the 6-week CP model study 

in mice, the relative abundances of Bacteroides and Alloprevotella genera were increased 

in the CP sample21. We discovered a different, and a much longer list of bacteria genera 

that were over-represented by CP, including Bifidobacterium, Akkermansia, Desulfovibrio, 
Corynebacterium Streptococcus, Anaerofustis, Christensenella in CP10 and Allobaclum, 
Prevotella, Bacteroides, Oscillospira, Ruminococcus in CP16. In human patients, discordant 
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distinguishing organisms were reported between studies. The abundances of Escherichia-
Shigella genus were high in human gut microbiomes in the CP group whereas that 

of Faecalibacterium was lower in CP group19. Similarly, there was a reduction in the 

abundance of Faecalibacterium prausnitzii and Ruminococcus bromii from controls to 

CP patiens18. Frost et al. reported the group of facultative pathogenic bacteria including 

Citrobacter, Enterobacter, Enterococcus and others showed a 2.8-fold increase in CP patients 

samples when compared with controls6. Eight genera were more frequent in patients with 

chronic alcoholic pancreatitis with Klebsiella, Enterococcus and Sphingomonas being the 

most overrepresented20. The control group in this study were regular drinkers so that might 

have an impact on the baseline microbiome. Hamada et al reported that the proportions 

of Bacteroides, Streptococcus and Clostridium species were higher in patients with CP 

patients40. However, the comparison was made between autoimmune pancreatitis and CP.

We also predicted the function of the gut microbiome with 16S sequencing and PICRUSt 

predictive algorithm. As a result of the changing availability of nutrients to the gut 

microbiota, metabolism of amino acid, glycan, vitamins were more active in both CP10 and 

CP16 samples when comparing to control. Increased activity of secondary metabolites and 

cell mobility also indicated increased nutrient supply to the gut bacteria due to maldigestion 

caused by insufficient digestive enzyme secretion. Our phenotype prediction also showed 

a higher percentage of Gram-negative bacteria, aerobic bacteria as well as potential 

pathogenic bacteria. Han et al. had reported a similar prediction in alcohol and caerulein 

induced CP mice study21. In human studies, lipopolysaccharide biosynthesis and bacterial 

invasion of epithelial cells were predicted to be enriched in the CP group18, 19, indicating 

Gram-negative pathogenic bacteria were more prevalent in CP associated microbiome. 

Future studies should focus on therapeutic and intervention approaches to ameliorate 

dysbiosis caused by CP. Antibiotics that are more effective to Gram-negative bacteria41 

could be used to eliminate the expansion of such pathogens in CP patients. Pancreatic 

Enzyme Replacement42 could be another direction to limit the overflow of the undigested 

nutrient to the gut, therefore, reducing the proliferation of pathogenic bacteria.

The alteration in microbiota composition, diversity, and function are not unique to CP. 

In other forms of chronic inflammation, such as inflammatory bowel disease (IBD), 

healthy control and different IBD types formed a distinct cluster in the PCoA plot. Ileal 

Crohn’s disease patients had low gut microbial richness. Enterobacteriaceae is correlated 

with ileal Crohn’s disease, Alistipes massiliensis is correlated with ulcerative colitis and 

Ruminococcaceae with healthy control43. The microbiomes of patients with IBD encode 

more oxidative stress and nutrient transport pathways and fewer pathways related to 

carbohydrate metabolism, SCFA synthesis and amino acid synthesis44.

In summary, our study has revealed pronounced alteration in the gut microbiome 

composition, diversity, and gut microbiome function when mice develop CP. Further studies 

are merited to investigate the longitudinal progression of the microbiome and the therapeutic 

approach to ameliorate the dysbiosis associated with CP.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Alpha and beta diversity of bacteria in CP stool samples
Analysis of α and β-diversity of samples within our study. Samples include control (n=7), 

CP10 (n=7), CP16 (n=5). (A) Principal coordinates analysis (PCoA) plot of weighted 

UniFrac distances (metric of β -diversity). q < 0.01 among all three groups. (B) Principal 

coordinates analysis (PCoA) plot of unweighted UniFrac distances (metric of β -diversity). 

q < 0.01 among all three groups. (C) Faith Phylogenic Diversity (metric of α-diversity) at 

sequencing depth 20000. p < 0.001 among all three groups. (D) Rarefaction plot for Faith 

phylogenetic diversity (metric of α-diversity). Error bars represent SEM.
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Figure 2. bacterial composition in stool samples
Bacterial composition in stool samples. Samples include control (n=8), CP10 (n=7), CP16 

(n=5). (A) OTU relative frequency at the phylum level. (B) OTU relative frequency at the 

genus level.
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Figure 3. LefSe (Linear Discriminant Analysis Effect Size) analysis of bacterial taxa among 
samples
LefSe (Linear Discriminant Analysis Effect Size) analysis of bacterial taxa among samples. 

(A) Top discriminative bacteria taxa between stool sample from CP10 and stool from 

control. (B) Top discriminative bacterial taxa between stool sample from CP16 and stool 

from control. (C) Top discriminative bacterial taxa between stool sample from CP10 and 

stool from CP16. (D) Cladogram representing the LEfSe results of top differential bacterial 

taxa among all stool samples. Order and family level taxa were labeled. Empty label names 

indicated unidentified taxa.
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Figure 4. The functionality of the gut microbiota was predicted using PICRUSt
The functionality of the gut microbiota was predicted using PICRUSt (Phylogenetic 

Investigation of Communities by Reconstruction of Unobserved States). Data are presented 

in a histogram with Linear LefSe (Linear Discriminant Analysis Effect Size) analysis 

between groups. (A) Between stool from CP10 and stool from control. (B) Between stool 

from CP16 and stool from control. (C) Between stool from CP10 and stool from CP16.
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Figure 5. High-level phenotypes analysis predicted by BugBase software
High-level phenotypes analysis was predicted by BugBase software. (A) predicted relative 

abundance of Gram-positive bacteria. P < 0.05 between CP10 vs control and CP16 vs 

control. Not significant between CP10 and CP16. (B) predicted relative abundance of Gram-

negative bacteria. P < 0.05 between CP10 vs control and CP16 vs control. Not significant 

between CP10 and CP16. (C) predicted relative abundance of anaerobic bacteria. P < 0.01 

among all three groups. (D) predicted relative abundance of facultative bacteria. P < 0.01 

among all three groups. (E) predicted relative abundance of aerobic bacteria. P < 0.05 among 

all three groups. (F) predicted relative abundance of potentially pathogenic bacteria. P < 0.01 

between CP16 vs control and CP16 vs CP10. Not significant between CP10 and control.
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