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Abstract

Background: Artificial intelligence (AI)-enabled analysis of 12-lead electrocardiograms (ECGs) 

may facilitate efficient estimation of incident atrial fibrillation (AF) risk. However, it remains 
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unclear whether AI provides meaningful and generalizable improvement in predictive accuracy 

beyond clinical risk factors for AF.

Methods: We trained a convolutional neural network (“ECG-AI”) to infer 5-year incident AF 

risk using 12-lead ECGs in patients receiving longitudinal primary care at Massachusetts General 

Hospital (MGH). We then fit three Cox proportional hazards models, each composed of: a) 

ECG-AI 5-year AF probability, b) the Cohorts for Heart and Aging in Genomic Epidemiology AF 

(CHARGE-AF) clinical risk score, and c) terms for both ECG-AI and CHARGE-AF (“CH-AI”). 

We assessed model performance by calculating discrimination (area under the receiver operating 

characteristic curve, AUROC) and calibration in an internal test set and two external test sets 

(Brigham and Women’s Hospital and UK Biobank). Models were recalibrated to estimate 2-year 

AF risk in the UK Biobank given limited available follow-up. We used saliency mapping to 

identify ECG features most influential on ECG-AI risk predictions and assessed correlation 

between ECG-AI and CHARGE-AF linear predictors.

Results: The training set comprised 45,770 individuals (age 55±17 years, 53% women, 2,171 

AF events), and the test sets comprised 83,162 individuals (age 59±13 years, 56% women, 2,424 

AF events). AUROC was comparable using CHARGE-AF (MGH 0.802, 95% CI 0.767–0.836; 

BWH 0.752, 95% CI 0.741–0.763; UK Biobank 0.732, 95% CI 0.704–0.759) and ECG-AI (MGH 

0.823, 95% CI 0.790–0.856; BWH 0.747, 95% CI 0.736–0.759; UK Biobank 0.705, 95% CI 

0.673–0.737). AUROC was highest using CH-AI: MGH 0.838, 95% CI 0.807–0.869; BWH 0.777, 

95% CI 0.766–0.788; UK Biobank 0.746, 95% CI 0.716–0.776). Calibration error was low using 

ECG-AI (MGH 0.0212; BWH 0.0129; UK Biobank 0.0035) and CH-AI (MGH 0.012; BWH 

0.0108; UK Biobank 0.0001). In saliency analyses, the ECG P-wave had the greatest influence 

on AI model predictions. ECG-AI and CHARGE-AF linear predictors were correlated (Pearson r 
MGH 0.61, BWH 0.66, UK Biobank 0.41).

Conclusions: AI-based analysis of 12-lead ECGs has similar predictive utility to a clinical 

risk factor model for incident AF and both approaches are complementary. ECG-AI may enable 

efficient quantification of future AF risk.
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Atrial fibrillation (AF) is a common and morbid arrhythmia.1–4 Identification of individuals 

at elevated AF risk is a clinical imperative since modifying lifestyle and behavioral factors 

may prevent AF,5,6 and since cardiac rhythm monitoring may identify individuals with 

undiagnosed AF thereby enabling prevention of strokes.7–9

Recent work highlights the potential for artificial intelligence (AI) to predict AF from a 

12-lead electrocardiogram (ECG).10–12 Yet several important knowledge gaps exist. First, 

existing models have not explicitly incorporated event-free survival or censoring, which 

is important for accurately estimating absolute risk.11,12 Second, it is not clear whether 

AI complements, or extends, well-validated clinical risk factor models for AF that do not 

require ascertainment of an ECG for risk prediction such as the Cohorts for Heart and Aging 

Research in Genomic Epidemiology AF (CHARGE-AF) score.13–17 Third, it is unclear what 

ECG features influence AF risk estimates from ECG-based AI models, which is critical to 
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assessing potential bias and promoting clinician confidence. Fourth, previous models are 

proprietary and have not been subjected to rigorous external validation.11,12

In the current study, we trained a convolutional neural network to explicitly predict time to 

incident AF (“ECG-AI”), within a sample of over 40,000 individuals receiving longitudinal 

primary care at Massachusetts General Hospital (MGH). We validated this model in over 

80,000 individuals from three independent test sets including additional individuals from 

MGH, individuals receiving longitudinal primary care at a separate healthcare institution 

– the Brigham and Women’s Hospital (BWH), and a prospective cohort study – the UK 

Biobank. We then compared the predictive accuracy of ECG-AI to CHARGE-AF and 

examined the performance of a model including both ECG-AI and CHARGE-AF (“CH-

AI”). We further examined what regions of the ECG most influenced the ECG-AI model 

performance for predicting AF.

Methods

Data availability

UK Biobank data are publicly available by application (www.ukbiobank.ac.uk). MGH 

and BWH data contain protected health information and cannot be shared publicly. Data 

processing scripts used to perform the analyses described herein are available at https://

github.com/shaankhurshid/ecg_ai.

Study population

We trained and validated ECG-AI in the Community Care Cohort Project, a dataset 

comprising individuals aged 18–90 years that received longitudinal primary care within 

the Mass General Brigham (MGB) network between 2000 to 2019.18 Briefly, individuals 

were included if they received ≥2 primary care visits that occurred between 1–3 years apart 

at any of seven hospitals within the Mass General Brigham (MGB) network, all of which 

were linked to a common electronic health record (EHR) database.19 Follow-up started after 

the inclusion window and comprised data ascertained from the EHR through August 31, 

2019. ECG-AI was trained among individuals with ≥1 ECG performed at MGH within three 

years prior to start of follow-up (see below). ECG-AI was then evaluated in independent test 

sets comprising 4,166 individuals from MGH (internal test set) and a separate set of 37,963 

individuals with ≥1 ECG performed at BWH within the 3-year baseline period (Figure 1). 

There was no overlap between training and test sets.

We performed additional external validation in the UK Biobank, a prospective cohort of 

502,629 participants recruited between 2006–2010.20 Briefly, approximately 9.2 million 

individuals aged 40–69 living within 25 miles of the 22 assessment centers in England, 

Wales, and Scotland were invited, and 5.4% participated in the baseline assessment. 

Questionnaires, physical measures, and biological samples were collected at recruitment, 

with diagnostic tests in a large subset. Participants are followed for health outcomes using 

national datasets (updated through 02–28-2021). We analyzed all individuals who underwent 

a standardized study-based 12-lead ECG. An overview of the analysis samples is shown in 

Figure 1.
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The UK Biobank was approved by the UK Biobank Research Ethics Committee (reference 

number 11/NW/0382). All UK Biobank participants provided written informed consent. Use 

of MGB and UK Biobank (application 7089) data were approved by the MGB Institutional 

Review Board.

ECG acquisition and ECG-AI training

ECG-AI is a convolutional neural network trained to predict 5-year AF-free survival. 

The input to ECG-AI is a single 12-lead ECG containing a time-series of 5,000 voltage 

measurements for each of 12 leads sampled at 500Hz and lasting 10 seconds in duration. A 

minority of ECGs having lower sampling rates were linearly resampled up to 500Hz, and 

ECGs having shorter durations were zero-padded to contain 5,000 measurements, resulting 

in a uniform input tensor of dimension 5,000 × 12. The raw waveform data as well as tabular 

metadata including date, time, machine type, sampling frequency, automated and physician 

reads were extracted from the MUSE Cardiology Information System (GE Healthcare, 

Chicago, IL), which stores data for all ECGs performed within MGB. All ECGs analyzed 

within MGH and BWH were performed for clinical purposes, whereas ECGs in the UK 

Biobank sample were performed prospectively as part of the study protocol. No ECGs were 

excluded from the training or test sets on the basis of particular findings.

Rather than binary classification,10,11 ECG-AI utilized an encoding and loss function21 

accounting for both time to outcome (i.e., AF) and missingness introduced by censoring 

(defined as the earliest of death or loss to follow-up). To achieve this, the ECG-AI encoding 

divided time into discrete bins in which either an AF event or a censoring event could 

occur, and the loss function optimized the negative log likelihood of predicted AF occurring 

within each time bin. In this way, censored individuals do not contribute to the loss at time 

bins occurring after censoring (further detail in the Supplemental Methods). For training, 

ECG-AI was exposed to all 12-lead ECGs performed within 3 years prior to start of 

follow-up. For evaluation, ECG-AI was tested using only the most recent ECG prior to 

start of follow-up in MGH/BWH, and the single study visit ECG in the UK Biobank. 

Since sinus rhythm ECGs among individuals with a diagnosis of AF may contain useful 

training signal (i.e., they provide an example of AF-related changes in sinus rhythm)10 we 

included individuals with a history of AF in model training. However, we evaluated ECG-AI 

only among individuals without a history of AF. In addition to incident AF prediction, 

we trained ECG-AI to perform three related tasks (estimation of age, classification of sex, 

and identification of AF in the tracing) because we observed that the multi-task approach 

improved AF prediction performance compared to other model-building approaches we 

considered during model derivation (Table I in the Supplement). Further details of ECG-AI 

training are described in the Supplemental Methods. ECG-AI architecture is summarized 

in Figure I in the Supplement. Learning curves are shown in Figure II in the Supplement. 

Performance of ECG-AI for secondary tasks is shown in Figure III in the Supplement. 

ECG-AI performance varied modestly when training was performed utilizing alternative 

training and validation splits (Table II in the Supplement).
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Clinical factors

We calculated CHARGE-AF, a validated AF prediction tool, for all individuals.13,14,17 

Baseline age, sex, race, height, weight, and blood pressure values were obtained from 

the EHR.18 Anti-hypertensive use was determined using medication lists.14 Tobacco use 

was categorized as present or absent. Race was classified as white or non-white, as 

performed previously using CHARGE-AF.14,22 The presence of heart failure, diabetes, and 

myocardial infarction were ascertained using previously published sets of diagnostic codes 

and medications (e.g., anti-glygemics), having a reported positive predictive value for each 

diease of ≥85% in MGH and BWH.14,23 We utilized a complete case approach in all 

analyses (Figure 1).

Outcomes

The primary outcome was incident AF. Atrial flutter was considered equivalent to AF. 

In MGH and BWH, incident AF was defined using a previously published AF algorithm 

comprising combinations of diagnostic and procedural codes, and electrocardiogram reports 

(“Modified AF Algorithm”), with a reported positive predictive value of 92% for AF.24 In 

the UK Biobank, AF was defined using a previously published set of self-reported diagnoses 

and inpatient diagnostic and procedural codes. Although direct validation is not possible in 

the UK Biobank, the AF definition has been previously assessed in an external dataset with 

a reported positive predictive value of 92%.25 The details of each AF definition are shown in 

Table III in the Supplement.”

Statistical analysis

Consistent with prior work including the original CHARGE-AF derivation study,13 we 

defined the outcome of incident AF at 5 years in the MGH and BWH datasets. Due to 

limitations in available follow-up (median 2.8 years [quartile 1: 1.9, quartile 3: 4.3]), we 

could not assess 5-year AF in the UK Biobank and instead utilized a 2-year AF outcome. 

ECG-AI was trained to generate 5-year AF risk estimates. We calculated 5-year AF risk 

estimates for CHARGE-AF using the equation: 1 − 0.9718412736exp(score−12.58156),13 where 

score is the individual’s CHARGE-AF score. To compare ECG-AI to CHARGE-AF (a score 

derived as a Cox proportional hazards model) we fit Cox proportional hazards models in 

the MGH training set with incident AF as the outcome and a) ECG-AI probability, and b) 

ECG-AI probability and CHARGE-AF, as covariates (“CH-AI”). ECG-AI probability was 

logit-transformed to achieve an approximately linear relationship with the log hazard.12 We 

also fit an analogous model including only age and sex. Although ECG-AI and CHARGE-

AF were correlated in the training set, the strength of correlation was only moderate 

(Pearson r=0.68, 95% CI 0.67–0.68). We utilized the CHARGE-AF score rather than fitting 

the individual score components given that the score has been validated across multiple 

settings.13,14,16,17 However in secondary analyses we also fit a version of CH-AI in which 

each CHARGE-AF component was included as an individual covariate. Given low death 

rates within the time window of interest (MGH training set: 4.6%, MGH test set 3.2%, BWH 

2.8%, UK Biobank 0.4%), we did not account for death as a competing risk. We compared 

the age and sex, CHARGE-AF, ECG-AI and CH-AI models in each test set. The linear 

predictors of age and sex, ECG-AI, and CH-AI were converted to predicted probabilities 
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of AF using the equation: 1 − s0
exp(∑βX − ∑βY ) where s0 is the average AF-free survival 

probability at the window of interest in the MGH training set, ∑βX is the individual’s score 

value, and ∑βY is the average score in the MGH training set. Values of s0 and ∑βY are 

provided in Table IV in the Supplement.

Within each test set, we assessed AF discrimination using the area under the time-dependent 

receiver operating characteristic curve (AUROC).26 Since AUROC may be misleading 

for relatively uncommon outcomes, we also assessed discrimination using time-dependent 

average precision (AP).27 Both AUROC and AP estimates were calculated using inverse 

probability of censoring weights to account for potential bias introduced by censoring.28,29 

We calculated AUROC and AP in one year increments after ECG until the window of 

interest. Standard errors were estimated using 500-iteration bootstrapping, which were used 

to calculate 95% confidence intervals and perform pairwise Z-testing.

We assessed calibration using: 1) adaptive hazard regression30 curves of predicted versus 

observed AF risk, 2) calibration slopes, where a value of one indicates optimal calibration,31 

and 3) integrated calibration index (ICI), the average prediction error weighted by the 

empirical risk distribution.30 Since initial 2-year AF estimates from ECG-AI and CH-AI 

substantially overestimated risk in the UK Biobank (Figure IV in the Supplement), and since 

the CHARGE-AF score was designed to predict 5-year AF,13 we recalibrated each score 

based on the observed 2-year AF incidence in the UK Biobank.32

We then quantified time-dependent net reclassification improvement (NRI).33 We assessed 

reclassification at standard risk thresholds (i.e., 5-year AF risk <2.5%, 2.5–5%, and ≥5% 

in MGH/BWH, and 2-year AF risk <0.5%, 0.5–1%, and ≥1% in the UK Biobank), at high 

risk thresholds (i.e., 5-year AF risk <20% versus ≥20% in MGH/BWH, and 2-year AF 

risk <2% versus ≥2% in UK Biobank), and using continuous risk values. Standard risk 

thresholds were chosen to mirror previous thresholds used when deriving the CHARGE-AF 

score,13 and high risk thresholds were chosen to reflect higher levels of AF risk which may 

be more clinically actionable. Prior to estimating NRI, models were recalibrated using the 

methods described above, with or without additional adjustment for the calibration slope as 

required32 to obtain well-calibrated scores (ICI range: 7.1×10−5 to 0.0129). We then plotted 

the cumulative risk of AF across high risk strata defined using ECG-AI and CHARGE-AF. 

To assess ECG-AI behavior, we produced saliency maps depicting areas of the ECG in 

which changes in voltage had the greatest influence on ECG-AI predicted risk estimates. We 

also plotted the median ECG waveforms for individuals at high estimated AF risk (≥5%) 

versus low estimated AF risk (<2.5%) for 1,000 randomly selected individuals within each 

stratum from the BWH test set, with cutoffs mirroring our standard risk thresholds.13 Further 

details of saliency map and median waveform analysis are described in the Supplemental 

Methods.

We performed several secondary analyses, described in detail in the Supplemental Methods. 

We considered two-sided p-values <0.05 statistically significant. Analyses were performed 

using Python v3.834 and R v4.0.35
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Results

Training and Validation Samples

Overall, 45,770 individuals in the MGH sample were eligible for analysis (mean age 55, 

53% female), and were divided into training (n=36,081) and validation (n=9,689) sets 

for ECG-AI. Characteristics of participants are displayed in Table 1. The training set 

included 100,954 12-lead ECGs (median ECGs per individual: 1 [quartile-1: 1, quartile-3: 

3]). Following ECG-AI training, we fit Cox proportional hazards models in the full MGH 

sample of 45,770 individuals. When fitting CH-AI, both ECG-AI probability (hazard ratio 

[HR] 1.85 per 1-SD increase, 95% CI 1.75–1.95) and CHARGE-AF score (HR 1.97 per 

1-SD increase, 95% CI 1.84–2.11) were associated with incident AF, without interaction 

(p=0.60).

We assessed each model in three independent test sets: MGH (n=4,166), BWH (n=37,963), 

and UK Biobank (n=41,033). AF incidence rates were substantially higher in MGH (12.8 

per 1,000 person-years, 95% CI 11.0–14.5) and BWH (12.9, 95% CI 12.3–13.4) as 

compared to the UK Biobank (4.2, 95% CI 3.7–4.7). Median follow-up for analysis was 

5.0 years (quartile-1: 2.6, quartile 5.0) in MGH, 5.0 years (2.6, 5.0) in BWH, and 2.0 years 

(1.9, 2.0) in the UK Biobank. A sample overview is depicted in Figure 1 and baseline 

characteristics are shown in Table 1. Predicted AF risk distributions are shown in Figure V 

in the Supplement.

Discrimination

ECG-AI demonstrated moderate AF discrimination (AUROC MGH: 0.823, BWH 0.743, 

UK Biobank: 0.705), comparable to the full CHARGE-AF score (Table 2) (0.802, 0.752, 

0.732). Compared to CHARGE-AF, CH-AI had consistently higher AUROC point estimates 

(0.838, 0.777, 0.746), although the difference was not statistically significant in the UK 

Biobank (p<0.05 for MGH and BWH, p=0.28 for UK Biobank) (Table 2). Improvements 

in discrimination were more prominent according to AP, where ECG-AI (0.27, 0.19, 0.06) 

and CH-AI (0.30, 0.21, 0.06) were favorable compared to CHARGE-AF (0.21, 0.17, 0.02) 

(ECG-AI: p=.06, p<0.05, p<0.05, respectively; CH-AI p<0.05 for all). Overall patterns 

in model discrimination were generally consistent for events occurring between 1 to 5 

years, although discrimination for CH-AI and CHARGE-AF tended to increase with longer 

prediction windows while that using ECG-AI tended to remain constant (Figure 2 and Table 

V in the Supplement). When assessed at specific thresholds, ECG-AI and CH-AI tended to 

provide greater precision at higher specificity. For example, at 95% specificity, precision was 

substantially greater using ECG-AI (MGH: 17.3%, BWH: 12.6%, UK Biobank 4.12%) and 

CH-AI (17.9%, 14.6%, 4.85%) versus CHARGE-AF (11.0%, 12.0%, 3.28%) (Table VI in 

the Supplement).

Calibration

CH-AI was well-calibrated in MGH (integrated calibration index 0.012) and BWH (0.019), 

but overestimated risk in the UK Biobank (0.068) (Figure IV in the Supplement). Given 

a near-optimal calibration slope (1.01, 95% CI 0.92–1.10), overestimation was likely 

attributable to a greater average 2-year AF risk in the MGH training set (1.48%) versus 
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UK Biobank (0.56%). Accordingly, calibration of CH-AI in the UK Biobank was excellent 

after recalibration to the average 2-year AF hazard in the UK Biobank (integrated calibration 

index 7.1×10−5, Figure 3). Cumulative risk of AF was greatest among individuals classified 

as high risk using both CHARGE-AF and ECG-AI, lowest among individuals classified 

as low risk using both CHARGE-AF and ECG-AI, and intermediate among individuals 

classified as high risk using CHARGE-AF alone or ECG-AI alone (Figure 4). Cumulative 

risk of AF stratified by estimated risk using CH-AI is shown in Figure VI in the Supplement.

Model Behavior

Saliency maps demonstrated that the P wave and surrounding regions had the greatest 

impact on ECG-AI AF risk (Figure 5). Median waveform analysis demonstrated specifically 

that individuals with high estimated AF risk tended to have a longer P wave duration, as well 

as slightly wider QRS and a flatter ST segment (Figure 5).

Reclassification and Subgroup Analyses

Compared to CHARGE-AF, CH-AI demonstrated favorable NRI using standard risk 

thresholds, high risk thresholds, and continuous risk values (Tables VII–IX and Figure VII 

in the Supplement). Use of ECG-AI compared to CHARGE-AF did not result in favorable 

NRI using standard risk thresholds or continuous risk values, but did result in favorable 

reclassification at high risk thresholds (Tables VII–IX and Figure VII in the Supplement). 

Receiver operating characteristic and precision-recall curves are shown in Figure VIII in the 

Supplement.

Improvements in model performance using CH-AI versus CHARGE-AF were generally 

consistent among individuals with prevalent heart failure and stroke (Table X in the 

Supplement), and were more prominent within subgroups of age (Figure IX in the 

Supplement). Using models developed using only lead I, and separately lead II – vectors 

typical for single lead ECGs – CH-AI continued to provide greater discrimination 

than CHARGE-AF, although discrimination using ECG-AI was lower (Table XI in the 

Supplement). Performance of CH-AI and ECG-AI for 2-year AF risk in MGH and BWH 

were similar to that observed for 5-year AF risk (Table XII in the Supplement). When ECG-

AI was fit sequentially along with covariate terms for sex and individual components of 

the CHARGE-AF score, we observed that inclusion of age and sex improved discrimination 

over ECG-AI alone, with even further improvement observed when additional CHARGE-AF 

components were added (Table XIII in the Supplement). A model fit using ECG-AI, sex, 

and each individual component of the CHARGE-AF score resulted in nearly identical 

discrimination to CH-AI, with worse calibration in the UK Biobank (Table XIII in the 

Supplement). Saliency maps across strata of CHARGE-AF and ECG-AI risk are shown 

in Figure X in the Supplement. The linear predictors of ECG-AI and CHARGE-AF were 

consistently correlated (Pearson r MGH 0.61, BWH 0.66, UK Biobank 0.41, p<0.01 for all).

Discussion

We developed ECG-AI, a deep learning model that explicitly predicts time to incident AF 

using 12-lead ECG data. ECG-AI was trained using roughly 100,000 ECGs from over 
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40,000 individuals within a primary care cohort. CH-AI, a model that combined both 

ECG-AI and CHARGE-AF demonstrated improved performance across multiple prognostic 

model metrics as compared to CHARGE-AF within three independent test sets including 

over 80,000 individuals whose clinical characteristics varied substantially. AF risk estimates 

from ECG-AI alone demonstrated comparable discrimination when compared to the 11-

component CHARGE-AF score. We further observed that ECG-AI and CHARGE-AF were 

highly correlated, suggesting that much of the predictive utility of ECG-AI may reflect 

electrocardiographic manifestations of established clinical risk factors for AF. On balance, 

our findings suggest that deep learning-derived ECG-based risk signals provide comparable 

predictive utility to clinical risk models for prediction of incident AF, and that ECG-AI and 

clinical risk factors provide complementary information which augments risk prediction.

Attia et al. developed a deep learning model which was 80% accurate in the classification 

of AF status among individuals with established AF whose tracings showed normal sinus 

rhythm.10 Raghunath et al. subsequently developed a neural network to predict incident 

AF using 12-lead ECG, demonstrating good discrimination at one year, and modestly 

improved performance when compared to CHARGE-AF in a subset analysis.11 Our 

findings add substantively to previous work by introducing a deep learning model that 

explicitly incorporates survival time, and performing a rigorous epidemiologic assessment 

including quantification of discrimination, calibration, reclassification, and a broad external 

validation. We are unable to directly compare our approach to previous models given 

that the models are not available for application to our data. Even if previous models 

were available, important differences in model design (e.g., a standard c-statistic cannot be 

calculated for time-to-event models) would likely preclude direct comparison of our model 

metrics to previous models. Nevertheless, our results broadly support the notion that deep 

learning models utilizing 12-lead ECG provide important predictive utility for determining 

AF risk, and provide new evidence that risk estimates are generalizable, with predictive 

value maintained up to 5 years after an ECG is performed. Importantly, the ability to 

predict incident AF up to 5 years in the future may faciliate implementation of preventive 

interventions (e.g., alcohol cessation,5 achievement of healthy weight,6 control of high blood 

pressure36) designed to reduce risk of AF and associated complications.

Our findings demonstrate that deep learning models utilizing ECG to estimate AF risk are 

robust and valid across contrasting populations when assessed using rigorous epidemiologic 

metrics. Specifically, we assessed ECG-AI in test sets comprising independent individuals 

from: a) the same institution as the training set, b) a separate institution within the same 

healthcare network, and c) a prospective research cohort from a different continent in which 

AF risk was substantially lower. Consistent with prior findings,17 ECG-AI performed best 

in populations most closely resembling the training set, with decreasing discrimination 

across progressively different samples, underscoring the importance of widespread external 

validation of AI models for assessing clinical utility. Ultimately, we suspect that differences 

in discrimination may be related to differing sample characteristics (e.g., age, baseline 

AF risk) leading to varying relationships between specific ECG features and future AF 

risk. Nevertheless, CH-AI consistently outperformed CHARGE-AF, and ECG-AI alone 

consistently demonstrated at least moderate discrimination. Importantly, we observed 

substantial overestimation in AF risk estimates using CH-AI in the UK Biobank, a low 
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risk sample. However, simple recalibration to the baseline hazard – a process commonly 

required for traditional prognostic models37 – resulted in excellent calibration. Notably, 

CHARGE-AF had worse calibration than CH-AI even after recalibration, suggesting that 

deep learned AF risk may contribute directly to more calibrated estimates.

We note two important implications of our results on the relations between deep learning-

based ECG risk signals and traditional clinical risk factors for AF. First, clinical risk factors 

appear to manifest on the ECG in ways that are perceptible to deep learning models. 

Specifically, ECG-AI probability and CHARGE-AF score were moderately correlated 

within each test set. Furthermore, using saliency mapping and median waveform analysis, 

we observed that ECG-AI probability was critically influenced by the period of atrial 

depolarization and repolarization (i.e., P wave and surrounding period), a reflection of 

atrial structure and function which may be affected by age and chronic conditions such as 

hypertension.38,39

Second, deep learning models appear to extract elements of AF risk that are complementary 

to clinical risk factors. CH-AI – a model combining CHARGE-AF and ECG-AI – 

consistently demonstrated superior AF discrimination, calibration, and reclassification as 

compared to either ECG-AI or CHARGE-AF alone, suggesting meaningful improvement 

in predictive utility when combining clinical risk information with AI-enabled ECG risk 

stratification as compared to either alone. Similarly, AF risk was substantially higher among 

individuals classified as high risk according to both ECG-AI and CHARGE-AF as opposed 

to either model alone. Interestingly, discrimination using CH-AI and CHARGE-AF tended 

to increase with longer prediction windows, likely relating to the cumulative effect of 

clinical risk factors over time, whereas discrimination using ECG-AI tended to remain 

relatively constant, suggesting that the relative contribution of ECG-based AF risk may 

be greatest for predicting AF events in the shorter term. Future work is needed to better 

characterize the biological correlates of increased AF risk as indicated by deep learning on 

ECG independent of clinical risk factors.

The convenience and external validity of estimating AF risk using a single modality rather 

than a complex clinical score suggests that deep learning models may be useful for clinical 

application. Although clinical factors are increasingly available, risk score functions remain 

challenging to implement given requirements for user interaction and susceptibility to 

misclassification of inputs. In contrast, models like ECG-AI may enable instantaneous AF 

risk estimation, which may facilitate rapid identification of individuals at elevated AF risk to 

guide preventive efforts, and increase the efficiency of AF screening by targeting individuals 

most likely to have AF identified with diagnostic testing.40 To this end, ECG-AI retained 

predictive utility in two populations of particular clinical interest – HF and stroke – in which 

AF risk assessment may have particular relevance considering the associated morbidity and 

high risk of stroke associated with AF. Furthermore, ECG-AI also had stable performance 

in models utilizing only a single ECG lead, suggesting that deep learning may facilitate AF 

risk estimation using wearable devices, which are commonly equipped with single-lead ECG 

capability. Future work is warranted to validate and prospectively assess the predictive utility 

of ECG-AI in different clinical settings and as applied to wearable ECGs.

Khurshid et al. Page 10

Circulation. Author manuscript; available in PMC 2023 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our study should be interpreted in the context of design. First, we trained ECG-AI on 

individuals with at least one ECG performed for clinical purposes. We also required that 

individuals have each component of the CHARGE-AF score available at baseline. Both of 

these requirements introduce potential selection bias. However, we submit that analyzing an 

EHR sample comprising individuals receiving longitudinal primary care is likely to reduce 

bias,18 and note our models continued to discriminate AF in a completely independent 

prospective cohort study. Second, our training set represented individuals from a single 

institution. Training on larger samples across multiple institutions may lead to more accurate 

and generalizable models. Third, given limited follow-up in the UK Biobank, we assessed 

a shorter prediction window of two years, as opposed to five years in MGH and BWH. 

Fourth, ECG-AI is a black box model. However, in contrast to previous AF prediction 

models10–12 we use saliency maps and median waveform analysis to demonstrate that 

biologically plausible ECG changes (e.g., longer p wave duration) had greatest influence 

on AF risk estimates. Fifth, a 5 year prediction window may represent AF risk that is less 

immediately actionable. However, we note that our models had consistent discrimination 

across shorter time windows as well. We cannot exclude that ECG-AI identifies individuals 

with preexisting undiagnosed AF. Sixth, ECG-AI and CH-AI required recalibration in the 

UK Biobank. Recalibration is frequently necessary when transferring prognostic models 

across populations,37 and simple recalibration to the observed AF incidence in the UK 

Biobank resulted in very well-calibrated estimates, suggesting that initial miscalibration was 

fully attributable to a baseline AF incidence in the UK Biobank that was roughly one-third 

that in MGH and BWH. Furthermore, CH-AI had better calibration than CHARGE-AF even 

though CHARGE-AF was similarly recalibrated in the UK Biobank.

In summary, across three independent test sets spanning over 80,000 individuals, ECG-AI, 

a deep learning model that explicitly predicts time to incident AF using 12-lead ECG, 

offers comparable discrimination of 5-year AF risk when compared to the 11-component 

CHARGE-AF clinical risk score. CH-AI – a model integrating CHARGE-AF and ECG-AI 

– offers consistently superior discrimination, calibration, and reclassification. Deep learned 

ECG-based AF risk signals have the potential for broad deployment to provide accurate and 

generalizable absolute AF risk estimates up to several years after an ECG is performed.
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Non-standard Abbreviations and Acronyms

AF atrial fibrillation

AI artificial intelligence

AP average precision

AUROC area under the receiver operating characteristic curve

BWH Brigham and Women’s Hospital

CH-AI CHARGE-AF and ECG-AI

CHARGE-AF Cohorts for Aging Research and Genomic Epidemiology Atrial 

Fibrillation

ECG Electrocardiogram

ECG-AI Electrocardiogram Artificial Intelligence

EHR Electronic health record

ICI Integrated calibration index

MGB Mass General Brigham

MGH Massachusetts General Hospital

NRI Net reclassification improvement
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What Is New?

• Artificial intelligence (AI)-based analysis of 12-lead ECGs has similar 

predictive utility to an established clinical risk factor model for incident AF 

and both are complementary.

• An ECG-AI model for AF had predictive utility across independent study 

samples, discriminated risk in patients with heart failure and stroke, and was 

applicable to single-lead ECG tracings.

What Are the Clinical Implications?

• AI-based AF risk prediction models utilizing 12-lead ECGs may enable 

efficient quantification of future AF risk.

• Prediction of AF can be performed using clinical risk factors or AI-based 

analysis of ECGs, but the combination of both provides greatest predictive 

accuracy.
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Figure 1. Study overview
Depicted is an overview of the study. We trained a deep learning model to predict incident 

AF (ECG-AI) in Massachusetts General Hospital (MGH). We then developed a model 

combining ECG-AI and the CHARGE-AF clinical risk score (CH-AI) in the same training 

population. We then validated ECG-AI and CH-AI in three test sets: MGH, individuals 

from a separate hospital (Brigham and Women’s Hospital, BWH), and the UK Biobank 

prospective cohort study.
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Figure 2. Discrimination of incident AF
Depicted is discrimination of age and sex (gray), CHARGE-AF (orange), ECG-AI (green), 

and CH-AI (purple), in the MGH test set (left panels), BWH test set (middle panels), and 

UK Biobank test set (right panels). Top panels plot the average precision and bottom panels 

plot the area under the receiver operating characteristic curve (AUROC) across increasing 

length of the prediction window (x-axis). In the top panels, the black triangles represent the 

cumulative event rate (i.e., the precision of a randomly guessing model).
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Figure 3. Calibration for incident AF
Depicted are fitted calibration curves demonstrating the relationship between predicted 

event risk (x-axis) and observed cumulative event incidence (y-axis) for and age and sex 

(gray), CHARGE-AF (orange), ECG-AI (green), and CH-AI (purple). Perfect calibration is 

indicated by the hashed diagonal line, denoting perfect correspondence between predicted 

and observed risk. Curves were obtained using adaptive hazard regression30 relating 

predicted risk and observed event risk.
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Figure 4. Cumulative risk of AF stratified by predicted AF risk
Depicted is the cumulative risk of AF stratified by high predicted risk of AF as determined 

using both ECG-AI and CHARGE-AF (dark red), ECG-AI only (red), CHARGE-AF only 

(orange), or neither model (yellow). High AF risk was defined as 5-year AF risk ≥5% in 

MGH and BWH (as performed in the original CHARGE-AF derivation study),13 and 2-year 

AF risk ≥1% in the UK Biobank (approximating the top tertile of risk). The number at risk 

across each stratum over time is depicted below each plot.
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Figure 5. Representations of ECG-AI behavior
Depicted are two forms of visualizing the behavior of the ECG-AI deep learning model. 

Panel A is a saliency map of ECG-AI demarcating regions of the ECG waveform having 

the greatest influence on AF risk predictions. Blue shades depict the magnitude of the 

gradient of predicted AF risk with respect to the ECG waveform amplitude, where darker 

shades illustrate regions of the waveform exerting greater salience, or influence on AF risk 

predictions. Saliency was averaged over a random sample of 4,096 individuals in the BWH 

test set, and the red waveform depicts the median waveform in each lead among the 4,096 

individuals. Panel B displays the median waveform of a random sample of 1,000 individuals 

in the BWH test set with low predicted AF risk (i.e., 5-year AF risk < 2.5%, green) versus 

the median waveform of a random sample of 1,000 individuals in the BWH test set with 

high predicted AF risk (i.e., 5-year AF risk > 5%, red).
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