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Integrating gene expression and clinical data to
identify drug repurposing candidates for
hyperlipidemia and hypertension
Patrick Wu 1,2, QiPing Feng 3, Vern Eric Kerchberger 1,4, Scott D. Nelson 1, Qingxia Chen 1,5,

Bingshan Li 6,7, Todd L. Edwards 7,8,9,10, Nancy J. Cox7,11, Elizabeth J. Phillips12,13,14,15, C. Michael Stein3,11,13,

Dan M. Roden1,11,13, Joshua C. Denny16,17 & Wei-Qi Wei 1✉

Discovering novel uses for existing drugs, through drug repurposing, can reduce the time,

costs, and risk of failure associated with new drug development. However, prioritizing drug

repurposing candidates for downstream studies remains challenging. Here, we present a

high-throughput approach to identify and validate drug repurposing candidates. This

approach integrates human gene expression, drug perturbation, and clinical data from pub-

licly available resources. We apply this approach to find drug repurposing candidates for two

diseases, hyperlipidemia and hypertension. We screen >21,000 compounds and replicate ten

approved drugs. We also identify 25 (seven for hyperlipidemia, eighteen for hypertension)

drugs approved for other indications with therapeutic effects on clinically relevant bio-

markers. For five of these drugs, the therapeutic effects are replicated in the All of Us

Research Program database. We anticipate our approach will enable researchers to integrate

multiple publicly available datasets to identify high priority drug repurposing opportunities for

human diseases.
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Developing a new drug is expensive, often fails, and takes a
long time. Drug repurposing aims to address these issues
by finding new indications for existing drugs1. Repur-

posing existing drugs can decrease the cost and shorten the
duration of drug development because many of the preclinical
and safety studies have already been completed. Drug repurpos-
ing can also improve the success rate of drug development
because existing drugs often have well-characterized safety pro-
files. Examples of successfully repurposed drugs include ritux-
imab for rheumatoid arthritis2 and sildenafil for erectile
dysfunction3. However, there have also been many drug repur-
posing candidates that have failed in clinical trial testing due to
lack of efficacy1,4.

To address this challenge, researchers have developed high-
throughput approaches leveraging human genetic data to identify
effective repurposing candidates5,6. These methods are supported
by the finding that drugs are more likely to pass clinical trials if
their targets overlap with hits from human genetics studies7,8. An
emerging approach using human genetic data to identify repur-
posing candidates is based on the hypothesis that a drug that
reverses the molecular state of disease would also be an effective
treatment for the disease9,10. To represent the molecular state of a
disease, this approach calculates a gene expression signature using
summary statistics from a genome-wide association study
(GWAS) for the disease11,12. The disease gene expression sig-
nature is then used to search for drugs that reverse the disease-
associated gene expression changes13,14. While these studies
generate many repurposing signals, it remains a challenge to
determine which of the repurposing candidates have the highest
likelihood of passing clinical trials with commonly used valida-
tion methods (Supplementary Fig. 1).

To validate drug repurposing candidates, researchers com-
monly use animal models and in vitro assays, but these methods
have two major limitations. First, these validation tools are sub-
optimal representations of human disease, so evidence generated
using these tools often serve as unreliable predictors for drug
response in humans. There are instances of repurposing candi-
dates that were effective in animal models10 but subsequently
failed to work in humans4,15. A second limitation is that using
these methods to test most of the repurposing candidates iden-
tified from human genetic data is both time- and cost-prohibitive
(e.g., a recent study identified 210 drug repurposing candidates
for hypertension14), so researchers can only test a handful of
repurposing candidates. Consequently, among the repurposing
candidates not tested, there may be a drug that is effective at
treating the disease of interest. In contrast, generating reliable
evidence to predict drug response in humans for many repur-
posing candidates can be done quickly and cost-effectively using
clinical data from electronic health records (EHRs)16,17.

Here, we describe a proof-of-concept approach integrating
imputed human disease gene expression signatures, drug per-
turbation data, and clinical EHR data to identify and validate
repurposing candidates. The four major steps of this approach are
(1) imputing human disease gene expression signatures using
S-PrediXcan11,12 and GWAS summary statistics, (2) searching for
drugs that reverse the disease gene expression signatures in drug
perturbation databases using the Integrative Library of Integrated
Network-based Cellular Signatures (iLINCS) platform18,19, (3)
validating iLINCS repurposing candidates, using clinical data
stored in the Synthetic Derivative (SD), the de-identified EHR
database at Vanderbilt University Medical Center (VUMC), and
(4) replicating repurposing candidate signals using clinical data
stored in the National Institutes of Health (NIH) All of Us
Research Program database (Fig. 1a)20,21. We applied this
approach to find repurposing candidates for two diseases,
hyperlipidemia and hypertension. We chose these diseases to test

this proof-of-concept approach because they have several known
US Food and Drug Administration (FDA)-approved drugs and
robust biomarkers to measure drug efficacy. The data used in this
study, except for individual-level clinical data in the VUMC SD,
are all stored in publicly available databases. We have also made
the software tools available in open source for researchers to
apply this drug repurposing approach for their diseases of
interest.

Results
Using gene expression to find drug repurposing candidates. We
developed a novel approach integrating disease gene expression
signatures, drug perturbation data, and clinical data, to identify
and validate drug repurposing candidates. To compute the gene
expression signature for each disease, we searched a public
database with disease-associated gene expression changes22,23.
These disease-associated gene expression changes were imputed
using each disease’s GWAS summary statistics24,25 and
S-PrediXcan11,12. For both disease signatures, the direction of
gene expression changes for known disease-associated genes was
concordant with existing knowledge. For example, in the gene
expression signature for hyperlipidemia, PCSK926 was upregu-
lated and LDLR27 was downregulated (Supplementary Data 1), as
expected. In the gene expression signature for hypertension,
ADRB1 and ACE were both upregulated (Supplementary Data 1),
as expected. We then uploaded each disease’s gene expression
signatures to iLINCS (Supplementary Data 2–5). In iLINCS, we
found 149 and 178 drugs with perturbation signatures that
reversed the disease gene expression signatures for hyperlipide-
mia and hypertension, respectively (Fig. 1b and Supplementary
Data 6 and 7).

Validating drug repurposing candidates with clinical data.
Next, we performed clinical validation studies to test the ability of
the signature-based approach to rediscover known approved
drugs and to identify new candidate drugs not currently approved
for treating the diseases of interest. We performed these valida-
tion studies using clinical data stored in the VUMC SD28, which
contained de-identified EHRs for >3.2 million individuals at the
time of the study. We tested prescription drugs with at least
twenty individuals in the clinical validation cohort (Supplemen-
tary Fig. 2) using a self-controlled case series (SCCS) study
design29 (Fig. 2a). Consider, for example, the clinical validation
study of valproate as a repurposing candidate for hyperlipidemia.
In this experiment, we measured the change in low-density
lipoprotein cholesterol (LDL-C) levels due to valproate exposure
in the outpatient setting. For each individual, we defined an
observation period composed of two parts, a baseline period
(before valproate exposure) and a treatment period (after
valproate exposure). The baseline and treatment periods were
divided by the index date, defined as the first date each individual
was exposed to valproate. We calculated the outpatient median
LDL-C measurements for both baseline and treatment periods,
respectively. To adjust for potential confounding by indication,
we excluded individuals who were exposed to any known FDA-
approved lipid-lowering drugs during the observation period
(Fig. 2b). To determine whether individuals experienced statisti-
cally significant reductions in LDL-C after valproate exposure, we
used a linear mixed model.

For the hyperlipidemia clinical validation study, we quantified the
effects of 84 drugs on LDL-C levels. In this analysis, we removed
individuals who were exposed to other known FDA-approved lipid-
lowering drugs during the observation period (Fig. 2b and
Supplementary Data 8). The sociodemographic characteristics and
comorbidities of the individuals studied are shown in Supplementary
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Data 9–11, and LDL-C measurements during both baseline and
treatment periods can be found in Supplementary Data 12. Out of
the 84 drugs tested, 12 lowered LDL-C with P < 0.05 (Fig. 3a and
Supplementary Data 13). Five of the repurposing signals were statins,
the most commonly used FDA-approved lipid-lowering drugs:
fluvastatin (LDL-Cmg dL−1, point estimate [95% confidence interval
(CI)]=−18.7 [−23.5, −13.9], P= 3.50 × 10−12), pravastatin (−21.1

[−22.4, −19.9], P < 2.20 × 10−16), lovastatin (−24.8 [−26.9, −22.8],
P < 2.20 × 10−16), simvastatin (−30.5 [−31.4, −29.6],
P < 2.20 × 10−16), and atorvastatin (−34.8 [−35.7, −33.9],
P < 2.20 × 10−16). The other seven signals were drugs FDA-
approved for other diseases: acetaminophen (LDL-Cmg dL−1, point
estimate [95% CI]=−1.12 [−1.83, −0.41], P= 1.85 × 10−3),
methocarbamol (−3.18 [−6.16, −0.20], P= 0.04), valproate (−4.71
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[−9.21, −0.19], P= 0.04), risperidone (−4.93 [−9.54, −0.32],
P= 0.04), digoxin (−6.21 [−12.0, −0.45], P= 0.04), gentamicin
(−6.97 [−13.2, −0.74], P= 0.03), and tamoxifen (−11.4 [−17.6,
−5.32], P= 4.48 × 10−4). Among the 12 drugs, 6 lowered LDL-C
with P values crossing the Bonferroni threshold (0.05/
84= 5.95 × 10−4), 5 of which were known drugs approved for
treating hyperlipidemia, and one approved for treating other diseases
(Table 1).

For the hypertension clinical validation study, we quantified the
effects of 94 drugs on systolic blood pressure (SBP). In this analysis,
we removed individuals who were exposed to other known FDA-
approved antihypertensive drugs during the observation period
(Fig. 2b and Supplementary Data 8). The sociodemographic
characteristics and comorbidities of the individuals studied are
shown in Supplementary Data 9–11, and SBP measurements during
both baseline and treatment periods can be found in Supplementary

Fig. 1 Study design and workflow. a (1) For each disease, disease-associated gene expression changes were imputed using each disease’s GWAS
summary statistics and S-PrediXcan. Using the list of imputed disease-associated gene expression changes, the top up- and downregulated genes were
used to compute a disease gene expression signature. (2) The disease gene expression signature was then uploaded to the drug perturbation platform,
iLINCS. From iLINCS, an initial list of drug repurposing candidates was obtained; drugs in this list induced perturbations that reversed the disease gene
expression signature (see b). (3) A subset of the iLINCS drug repurposing candidates was clinically validated in the VUMC SD EHR database (Fig. 2). (4)
Drugs with significant biomarker-lowering effects in the VUMC SD were chosen for replication studies in the NIH All of Us Research Program database. b
Example of disease and drug-gene expression signature matching (second step in a). Each point represents one gene. Since simvastatin is a known lipid-
lowering drug, the simvastatin induced gene expression signature was predicted to reverse the S-PrediXcan imputed gene expression signature for
hyperlipidemia, i.e., the signatures were expected to have an inverse relationship. This inverse relationship is indicated by the blue line, which shows a
negative correlation (Pearson correlation coefficient and two-tailed test P-value) between the S-PrediXcan imputed gene expression signature for
hyperlipidemia (horizontal axis) and the iLINCS gene expression signature for simvastatin (vertical axis). As expected, the LDLR gene was downregulated in
individuals with hyperlipidemia and upregulated in simvastatin perturbation experiments. GWAS genome-wide association study, iLINCS Integrative
Library of Integrated Network-based Cellular Signatures, EHR electronic health record, LDL-C low-density lipoprotein cholesterol, SBP systolic blood
pressure, VUMC Vanderbilt University Medical Center, SD Synthetic Derivative, NIH National Institutes of Health.
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Fig. 2 Clinical validation study design. a Example of SCCS design used for clinical validation studies in EHRs. The target disease is hyperlipidemia, and the
drug repurposing candidate is valproate. The outcome is the change in median LDL-C from baseline after exposure to valproate. For each drug repurposing
candidate analysis, individuals were generally from different time periods. b Example clinical validation study cohort selection flow chart. See
Supplementary Data 8 for cohort selection numbers. VUMC Vanderbilt University Medical Center, LDL-C low-density lipoprotein cholesterol, EHRs
electronic health records, SCCS self-controlled case series.
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Data 12. Out of the 94 drugs tested, 23 lowered SBP with P < 0.05
(Fig. 3b and Supplementary Data 13). Five of the repurposing signals
were known FDA-approved antihypertensive drugs: spironolactone
(SBP mm Hg, point estimate [95% CI]=−1.41 [−1.76, −1.06],
P= 2.02 × 10−14), carvedilol (−1.54 [−2.50, −0.58],
P= 1.92 × 10−3), nadolol (−2.35 [−3.66, −1.04], P= 4.63 × 10−4),
benazepril (−3.35 [−4.51, −2.19], P= 1.74 × 10−8), and amlodipine
(−4.22 [−4.67, −3.77], P < 2.20 × 10−16). The other eighteen signals
were drugs FDA-approved for other diseases: caffeine (SBP mm Hg,
point estimate [95% CI]= (−0.23 [−0.45, −0.01], P= 0.03),
levofloxacin (−0.27 [−0.52, −0.02], P= 0.04), fexofenadine (−0.29
[−0.51, −0.07], P= 8.61 × 10−3), fluoxetine (−0.44 [−0.71, −0.17],
P= 1.28 × 10−3), celecoxib (−0.44 [−0.79, −0.09], P= 0.01),
ipratropium (−0.48 [−0.93, −0.03], P= 0.04), sertraline (−0.56
[−0.76, −0.36], P= 1.20 × 10−8), estradiol (−0.65 [−0.89, −0.41],
P= 8.26 × 10−8), escitalopram (−0.71 [−0.93, −0.49],
P= 1.26 × 10−11), fluorouracil (−0.75 [−1.42, −0.08], P= 0.03),
atorvastatin (−0.86 [−1.13, −0.59], P= 1.91 × 10−9), simvastatin
(−0.93 [−1.22, −0.64], P= 1.69 × 10−10), dexamethasone (−0.93
[−1.11, −0.75], P < 2.20 × 10−16), phenytoin (−1.26 [−2.16, −0.36],

P= 6.22 × 10−3), gemcitabine (−1.49 [−2.45, −0.53],
P= 2.61 × 10−3), rosiglitazone (−1.56 [−2.85, −0.27], P= 0.02),
docetaxel (−2.8 [−3.64, −1.96], P= 2.19 × 10−10), and doxorubicin
(−3.5 [−4.11, −2.89], P= 2.20 × 10−16). Among the 23 drugs, 12
lowered SBP with P values crossing the Bonferroni threshold (0.05/
94= 5.32 × 10−4), 4 of which were known drugs approved for
treating hypertension and eight drugs indicated for other diseases
(Table 1).

External replication of clinical validation studies. To confirm
the VUMC SD clinical validation findings, we performed external
replication studies in the NIH All of Us Research Program
database20. At the time of study, All of Us had EHRs for >236,000
individuals with diverse ancestries. We tested drugs with ther-
apeutic effects (i.e., lowered LDL-C or SBP measurements at
P < 0.05) in the VUMC SD clinical validation study. The socio-
demographic characteristics and comorbidities for both hyperlipi-
demia and hypertension cohorts can be found in Supplementary
Data 9–11. For hyperlipidemia, we tested twelve drugs and found
that five lowered LDL-C at P < 0.05 (Fig. 4a and Supplementary
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2.2 × 10−16 for visualization purposes. EHR electronic health record, VUMC Vanderbilt University Medical Center, SD Synthetic Derivative, LDL-C low-
density lipoprotein cholesterol, SBP systolic blood pressure.
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Data 13). These drugs were pravastatin (LDL-C mg dL−1, point
estimate [95% CI]=−15.4 [−17.9, −12.9], P < 2.20 × 10−16),
tamoxifen (−15.5 [−21.5, −9.49], P= 7.27 × 10−6), lovastatin
(−19.3 [−23.3, −15.3], P < 2.20 × 10−16), simvastatin (−27.0
[−28.7, −25.2], P < 2.20 × 10−16), and atorvastatin (−29.7 [−31.2,
−28.3], P < 2.20 × 10−16). For hypertension, we analyzed 22 drugs
and found that six drugs lowered SBP at P < 0.05 (Fig. 4b and
Supplementary Data 13). These drugs were atorvastatin (SBP mm
Hg, point estimate [95% CI]=−0.70 [−1.23, −0.17], P= 0.01),
sertraline (−0.81 [−1.42, −0.20], P= 9.77 × 10−3), spironolactone
(−1.76 [−3.09, −0.43], P= 9.98 × 10−3), docetaxel (−2.51 [−4.45,
−0.57], P= 0.01), doxorubicin (−3.69 [−5.08, −2.30],
P= 4.38 × 10−7), and amlodipine (−5.23 [−6.27, −4.19],
P < 2.20 × 10−16). Though fewer drugs reduced biomarker mea-
surements with P < 0.05, most drugs had treatment effects in the
expected direction (i.e., negative point estimates) with 95% CIs that
overlapped with the 95% CIs from the VUMC SD clinical validation
study (Fig. 4).

Review of evidence to support novel repurposing candidates.
We used multiple databases, the literature, and domain-expert
review to confirm the treatment effects we observed for drugs
indicated for other diseases, i.e., potential repurposing candidates.
For hyperlipidemia, we found seven drugs, not approved for
treating hyperlipidemia, which had statistically significant LDL-C
lowering effects in the VUMC SD clinical validation study. For
three of these drugs, we found evidence supporting their LDL-C
lowering effects: tamoxifen30, digoxin31, and valproate32. On the
other hand, we did not find existing evidence supporting the
LDL-C lowering effects for four drugs: gentamicin, risperidone,
methocarbamol, and acetaminophen (Table 2 and Supplementary
Table 1). Since gentamicin is commonly prescribed in non-
systemic forms (e.g., ophthalmic solutions and topical ointments),
we conducted a post hoc analysis in the VUMC SD by excluding
23 individuals exposed to non-systemic forms of gentamicin. In
this subgroup composed of only 56 individuals exposed to sys-
temic forms of gentamicin, the drug no longer had a statistically
significant effect on lowering LDL-C (point estimate [95%
CI]=−5.06 [−13.4, 3.25] mg dL−1, P= 0.24).

For hypertension, we found 18 drugs that were not approved
for treating the disease, with statistically significant SBP lowering
effects (Table 2 and Supplementary Table 2). For eight of these
drugs, we found evidence to support their SBP lowering effects:

levofloxacin33, docetaxel34, rosiglitazone35, phenytoin36,
simvastatin37, atorvastatin38, fluorouracil34, and estradiol39.

Discussion
We developed an approach to identify and validate drug repur-
posing candidates, which integrates disease gene expression sig-
natures, drug perturbation data, and clinical data. For both
hyperlipidemia and hypertension, we replicated known FDA-
approved drugs and identified existing drugs approved for other
diseases that had statistically significant biomarker-lowering
effects. A substantial number of these biomarker-lowering
effects are supported by evidence from multiple databases, the
literature, and domain-expert review. Finally, we externally
replicated the clinical validation pipeline in the NIH All of Us
Research Program database, in which we observed similar drug
treatment effect sizes.

While statistically significant, the biomarker-lowering effects
associated with repurposing candidate exposure are not clinically
significant. The drug repurposing candidates should not be used
in place of known approved drugs for treating hyperlipidemia
and hypertension (Table 2 and Supplementary Tables 1 and 2).
As expected, known approved drugs had much larger therapeutic
effect sizes compared to drugs approved for other diseases. For
instance, individuals exposed to simvastatin (a known lipid-
lowering drug) experienced much larger reductions in LDL-C
compared to individuals exposed to valproate (−30.49 mg dL−1

vs. −4.71 mg dL−1) (Fig. 3a and Supplementary Data 13). Rather,
this study’s contribution is a proof-of-concept approach to
identify and clinically validate drug repurposing candidates.
While hyperlipidemia and hypertension have many safe and
potent drugs, there are still human diseases without effective
treatments. For many of these diseases, our approach has the
potential to identify existing drugs that may be more effective
than current therapies. For these challenging diseases, gene
expression signatures can be computed with S-PrediXcan using
GWAS summary statistics that are publicly available in the
GWAS catalog43 and UK Biobank25. At the time of writing, there
are GWAS summary statistics for 869 and 7221 unique human
conditions in the GWAS catalog and UK Biobank, respectively.

Compared to existing methods to validate repurposing candi-
dates, our approach’s first advantage is the ability to measure drug
efficacy in humans at scale. Similar to previous studies16,17, our
approach allowed us to test many drugs (84 and 94 for hyperli-
pidemia and hypertension, respectively) in human individuals,

Table 1 Summary of clinical validation study findings.

Source Hyperlipidemia Hypertension

Vanderbilt
Drug repurposing candidates tested 84 94
Therapeutic effect & P < 0.05 12 23

Drugs approved for target disease 5 5
Drugs approved for other diseases 7 18

Therapeutic effect & P < Bonferroni 6 12
Drugs approved for target disease 5 4
Drugs approved for other diseases 1 8

All of Us
Drug repurposing candidates tested 12 22
Therapeutic effect & P < 0.05 5 6

Drugs approved for target disease 4 2
Drugs approved for other diseases 1 4

Therapeutic effect means that individuals experienced reductions in biomarker measurements (LDL-C for hyperlipidemia; SBP for hypertension) after exposure to the drug repurposing candidate.
Two-tailed P values were calculated using linear mixed models.
For the clinical validation studies at Vanderbilt, we report both the number of drugs with P < 0.05 and P values that pass Bonferroni significance to correct for multiple comparisons. For the replication
studies in All of Us, we report the number of drugs with P < 0.05.
LDL-C low-density lipoprotein cholesterol, SBP systolic blood pressure.
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Hyperlipidemia drug repurposing candidate clinical validation studies
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Fig. 4 Comparison of clinical validation study treatment effects. Forest plots and treatment effect statistics for clinical validation studies in the VUMC SD
(red squares) and NIH All of Us Research Program (blue circles) databases. a Hyperlipidemia clinical validation studies. b Hypertension clinical validation
studies. Plotted are biomarker changes after drug exposure, represented as point estimates (95% CI) from linear mixed models. Drugs with point estimates
plotted to the right of 0 indicate that individuals had lower biomarker measurements after drug exposure. Drugs with point estimates plotted to the left of 0
indicate that individuals had elevated biomarker measurements after drug exposure. Two-tailed P values were calculated using linear mixed models. “**“
are drugs with replicated treatment effects in the All of Us study at P < 0.05. “*“ are drugs that reduced biomarker levels (i.e., negative point estimates) in
the All of Us study with P > 0.05 and had 95% CIs that overlapped with the 95% CIs from the VUMC SD study. VUMC Vanderbilt University Medical
Center, SD Synthetic Derivative, N number of individuals, NIH National Institutes of Health, LDL-C low-density lipoprotein cholesterol, 95% CI 95%
confidence interval.
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because it uses automated informatics software to extract, process,
and analyze EHR data. The ability to measure the magnitude of
treatment effect is important for designing clinical trials, as lack
of efficacy commonly causes clinical trials to fail44. In addition,
testing many candidates enabled us to detect both potential true-
and false-positive repurposing candidates. An example of a false-
positive is sorafenib for treating hypertension. Sorafenib, a drug
indicated for hepatocellular carcinoma, was predicted to lower
SBP, because its iLINCS perturbation data reversed the hyper-
tension gene expression signature (Supplementary Data 7). In the
VUMC SD study, however, sorafenib increased SBP (5.12 mm
Hg, P= 0.04; Fig. 3b and Supplementary Data 13), a side effect
that has been previously reported34. In contrast to our approach,
using more common validation strategies, like animal models and
in vitro assays9,10, to test a similar number of drugs would have
been cost- and time-prohibitive.

Our approach’s second advantage is its ease of portability.
Previous studies have developed approaches to validate repur-
posing candidates using EHR data16,17. However, replicating drug
repurposing signals from one database in a second independent
database is often labor- and time-intensive, requiring many
changes to the analysis pipeline due to institution-specific models
used for storing clinical data45. In contrast, we replicated the
VUMC SD pipeline with minor changes (essentially just changes
to database table names) in the All of Us database, in under one
week. This fast replication was possible because both databases
store clinical data using the same standardized format20, the
Observational Medical Outcomes Partnership (OMOP) Common
Data Model (CDM)46.

Our approach’s last advantages are its ease of reproducibility
and adaptability. Our analysis can be reproduced by other
researchers because we used data from publicly available resour-
ces. The one exception are the individual-level clinical data stored
in the VUMC SD. Importantly, researchers can easily reproduce
the clinical validation studies in All of Us, because it uses a cloud

computing infrastructure with data version control47. For their
drug repurposing studies, researchers can adapt the software tools
and computational notebooks that we have made publicly avail-
able (https://pwatrick.github.io/DrugRepurposingToolKit/).

Like other studies using observational clinical data, our
approach has several limitations. Using observational data to
measure treatment effects is challenging due to potential bias and
confounding. In the clinical validation studies, we were particu-
larly concerned about potential confounding by indication
resulting in false-positive findings, i.e., a drug observed to reduce
LDL-C does not truly reduce LDL-C. For instance, since indivi-
duals exposed to valproate experienced a statistically significant
reduction in LDL-C (Fig. 3a), we infer that valproate lowers LDL-
C. Another potential explanation for the LDL-C reduction is that
many individuals taking valproate were also taking known lipid-
lowering drugs, like statins. Recognizing this potential systematic
error apriori, we excluded all individuals exposed to known lipid-
lowering drugs during the observation period to reduce the risk of
confounding by indication (Fig. 2b).

Another limitation shared by EHR-based studies is the fidelity
of drug exposure data. Studies have shown that ~30–60% of
individuals do not take preventative medications as prescribed48.
One potential impact of this medication non-adherence is an
underestimation of drug efficacy. However, we are encouraged by
the replication of known drug effects in both databases that is
consistent with efficacy rates reported in the literature. EHR-
based studies can also be limited by information leakage, which
may occur when individuals seek care from multiple providers
who are not part of the study’s EHR system. For individuals
whose medical records are fragmented, we do not have a com-
pletely accurate view of the individual’s health journey49. We
reduce the effects of information leakage by requiring at least two
outpatient visits with lab measurements within a span of 2 years.

In observational studies, another factor that can bias treatment
effect estimates is that individuals are not randomly allocated to

Table 2 Review of existing evidence to confirm the therapeutic effects for drug repurposing candidates observed in clinical
validation studies.

Disease Drug Approved indication Existing evidence supports therapeutic effect

Hyperlipidemia Tamoxifen Cancer Yes30

Hyperlipidemia Gentamicin Bacterial infections No
Hyperlipidemia Digoxin Arrhythmias Yes31

Hyperlipidemia Risperidone Schizophrenia No40

Hyperlipidemia Valproate Seizure Yes32

Hyperlipidemia Methocarbamol Muscle spasms No
Hyperlipidemia Acetaminophen Pain No
Hypertension Caffeine Fatigue No
Hypertension Levofloxacin Bacterial infections Yes33

Hypertension Doxorubicin Cancer No
Hypertension Docetaxel Cancer Yes34

Hypertension Rosiglitazone Type 2 Diabetes Yes35

Hypertension Gemcitabine Cancer No
Hypertension Phenytoin Seizure Yes36

Hypertension Simvastatin Hyperlipidemia Yes37

Hypertension Dexamethasone Inflammation No
Hypertension Atorvastatin Hyperlipidemia Yes38

Hypertension Fluorouracil Cancer Yes34

Hypertension Escitalopram Depression No41

Hypertension Estradiol Menopause Yes39

Hypertension Sertraline Depression No41

Hypertension Ipratropium Asthma No
Hypertension Celecoxib Pain No
Hypertension Fluoxetine Depression No41

Hypertension Fexofenadine Allergic Rhinitis No42

See also Supplementary Tables 1 and 2.
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treatment groups, a common study design used in randomized
clinical trials. To adjust for this potential bias, we used an SCCS
study design (Fig. 2a), where individuals serve as their own
controls, as it is believed to be robust to confounding29. We were
able to use the SCCS design, as the two biomarkers we chose had
efficacy measures (i.e., LDL-C and SBP measurements) that
would be expected to occur soon after drug exposure. When
future users apply our approach to validate repurposing candi-
dates for diseases with delayed clinical endpoints (e.g., cancer and
myocardial infarction), other approaches such as a retrospective
cohort design may be more appropriate (Supplementary Table 3).

Looking forward, larger datasets from more diverse
populations50 would enable researchers to uncover potential
ancestry-selective drug effects. In this study, both the S-PrediXcan
models and GWAS summary statistics were from cohorts com-
posed primarily of European ancestry individuals. As a result, we
may have missed drug repurposing candidates that would be
effective in individuals of non-European ancestry. When genomic
and clinical data from more diverse populations are made pub-
licly available, our approach to identifying and validating drug
repurposing candidates may improve. In the future, our approach
can potentially be used to validate drug repurposing candidates
for diseases with no effective treatments, like Alzheimer’s disease.
In fact, while this manuscript was under review, a study was
published that used EHRs to validate one drug repurposing
candidate, bumetanide, for treating APOE4-related Alzheimer’s
disease51.

In summary, we developed a high-throughput approach to
identify drug repurposing candidates using gene expression sig-
natures and to validate candidates using clinical EHR data. Our
results suggest that the increasing amount of publicly available
molecular and clinical data can be leveraged for drug repurposing
studies.

Methods
This study was conducted under all relevant ethical regulations with approval from
the Vanderbilt University Medical Center Institutional Review Board (#180455)
under a waiver of informed consent. Patients were not directly contacted for
the study.

Computation of disease gene expression signatures. We used disease gene
expression signatures to represent the molecular state for the two diseases of
interest, hyperlipidemia and hypertension (step 1 in Fig. 1a). Disease gene
expression signatures were computed using the differentially expressed genes
(DEGs) from individuals with the disease of interest compared to individuals
without. To compute disease gene expression signatures, we used publicly available
gene expression data52,53 imputed by S-PrediXcan;11,12 this method imputes
genome-wide DEGs for a disease of interest using GWAS summary statistics for
the disease of interest. S-PrediXcan was trained using data from the Genotype-
Tissue Expression (GTEx) project54, which contains genotypes linked to RNA-seq
data for 49 human tissues.

For hyperlipidemia, we computed the disease gene expression signatures using
DEGs imputed using the whole blood elastic net model (Column “tissue” =
“TW_Whole_Blood_Elastic_Net_0.5”)55 and GWAS summary statistics from the
Global Lipids Genetics Consortium with 188,577 European ancestry individuals
(Column “phenotype” = “GLGC_Mc_LDL”)24. We downloaded the
hyperlipidemia DEGs file from “https://s3.amazonaws.com/imlab-open/Data/
MetaXcan/results/metaxcan_results_database_v0.1.tar.gz”. For hypertension, we
computed the disease gene expression signatures using DEGs imputed using an
aggregate tissue model and GWAS summary statistics from a UK Biobank study
with 340,159 European ancestry individuals (Column “phenotype” = “Systolic
blood pressure, automated reading”)25,56. We downloaded the hypertension DEGs
file (“smultixcan_4080_raw_ccn30.tsv.gz”) from “https://uchicago.box.com/shared/
static/vket4ickq7qt3sj8dy3mv8zsr1our3xd.gz”.

Previous studies used various approaches to compute disease gene expression
signatures57, and two of these approaches were used in this study. The first
approach employed the widely used false discovery rate (FDR) metric with a cutoff
of q < 0.0558 to compute the gene expression signatures for hyperlipidemia
(Supplementary Data 3) and hypertension (Supplementary Data 5). The second
approach was motivated by the algorithm used in So et al.13, as this was the first
study to use S-PrediXcan imputed gene expression data to identify drug
repurposing candidates. So et al. computed13 disease gene expression signatures

using the K-most up- or downregulated genes, with K= 50, 100, 250, and 500. We
selected the lower bound (K= 50), as we assumed that around 100 genes were
sufficient to represent the molecular states for our diseases of interest. For
hyperlipidemia, we ranked genes (by Z scores) from the most upregulated to the
most downregulated genes. From this sorted list of DEGs, we computed the K= 50
hyperlipidemia gene expression signature by selecting the top fifty most up- and
downregulated genes, for a total of 100 genes (Supplementary Data 2). For
hypertension, we used expression values for genes that overlapped with those in the
file, “suppl_table_S1-significant_gene_trait_associations.xlsx” (Column “trait” =
“4080_raw-Systolic_blood_pressure_automated_reading”)52. The selected genes
were predicted to be the most likely causal genes for SBP variation52. From this
gene list, we computed the K= 50 hypertension gene expression signature, which
was composed of 53 upregulated and 48 downregulated genes, for a total of 101
genes (Supplementary Data 4).

Validation of disease gene expression signatures. To evaluate the robustness of
the disease gene expression signatures, we queried the Drug-Gene Interaction
Database (DGIdb)59. The DGIdb query allowed us to examine whether the disease-
associated gene expression changes predicted by S-PrediXcan agreed with apriori
expectations. For example, we expected apriori that in hyperlipidemia’s gene
expression signature, PCSK926 would be upregulated and LDLR27 would be
downregulated.

Using gene expression to find drug repurposing candidates. Next, we searched
for drugs that reversed the S-PrediXcan imputed disease gene expression signatures
(step 2 in Fig. 1a). To accomplish this, we queried the iLINCS database18. iLINCS
hosts gene expression data from drug perturbation experiments. These in vitro
experiments use a variety of cell types including human cancer cell lines19 and
primary rat hepatocytes60. At the time of the study, iLINCS contained expression
measurements for 74,201 genes from perturbation experiments of 21,299 small
molecules18.

For both hyperlipidemia and hypertension, we uploaded their disease gene
expression signatures to the iLINCS web portal. We used the default parameters in
iLINCS to identify promising drug repurposing candidates. We matched disease
and drug-gene expression signatures using either a weighted Pearson correlation18

or moderated Z scores19. Promising drug repurposing candidates were those with
perturbations that reversed the S-PrediXcan imputed disease gene expression
signature (i.e., had a negative correlation coefficient or concordance value) with a
P < 0.05 for hyperlipidemia and P < 0.001 for hypertension (Fig. 1b).

For hyperlipidemia, we obtained drug repurposing candidates from the
DrugMatrix dataset. DrugMatrix contains DEGs values for ~13,000 genes60. We
used this set of drugs for hyperlipidemia because it contained data from primary
liver tissue, a major tissue for regulating LDL-C levels. For hypertension, we
obtained drug repurposing candidates from the Library of Integrated Network-
based Cellular Signatures (LINCS) chemical perturbagen experiments. The LINCS
dataset contains drug-gene expression signatures from the L1000 project19, derived
mainly from in vitro human cancer cell line experiments. For hypertension, we
selected drugs from the LINCS data and not from DrugMatrix (as was done for
hyperlipidemia), because the top-ranked drugs in DrugMatrix were identified using
data from perturbation experiments that used tissues not known to be major
participants in regulating blood pressure.

Both hyperlipidemia and hypertension had two lists of drug repurposing
candidates, one list generated using the K= 50 gene expression signature and
another generated using the FDR gene expression signature. The lists were
combined to create one iLINCS drug repurposing candidate list for each disease
(Supplementary Data 6–7).

Selecting drug candidates for clinical validation studies. From the iLINCS lists,
we first mapped drug repurposing candidates to their bioactive ingredients in
RxNorm. RxNorm is a standardized terminology linking drugs to concepts, which
are unique terms that represent therapeutically equivalent medications61. Second,
we excluded non-prescription drugs using the RxNorm CVF flag, 4096. Third, we
excluded drugs with <20 individuals in the final cohort, both to ensure individual
privacy (in the reporting of individual demographics) and for inadequate statistical
power concerns (Supplementary Fig. 2).

Identifying known FDA-approved drugs for target diseases. To identify known
FDA-approved drugs for hypertension and hyperlipidemia, we used the MEDi-
cation Indication high-precision subset (MEDI-HPS) knowledge base62. MEDI-
HPS links drug ingredients to diseases represented as International Classification of
Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. To identify
drug ingredients approved for treating hyperlipidemia, we used ICD-9-CM codes
272.0 “Pure hypercholesterolemia”, 272.2 “Mixed hyperlipidemia”, and 272.4
“Other and unspecified hyperlipidemia”. To identify drug ingredients approved for
treating hypertension, we used the ICD-9-CM code, 401.9 “Hypertension NOS”.
We then manually reviewed the drug lists and added drugs that were approved
after MEDI-HPS was released (e.g., PCSK9 antibodies for hyperlipidemia).
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Clinical validation: EHR database and cohort description. To validate the drug
repurposing candidates identified by gene expression signature matching, we
quantified their efficacy on treating the diseases of interest; the clinical validation
studies were conducted in the VUMC SD28, a de-identified copy of VUMC’s EHR
(step 3 in Fig. 1a). The SD has longitudinal clinical data for >3.2 million individuals
including billing codes, lab values, and medication exposure information. The SD is
organized using the OMOP CDM46. For this study, VUMC SD data between 1995
and 2021 were used.

We validated drug repurposing candidates using clinical EHR data with an
SCCS study design29 (Fig. 2a). Using SCCS allowed us to reduce the potential for
false-positive therapeutic effects due to confounder bias. We designed the SCCS
study by creating an observation window with two periods: baseline and treatment.
The index date was the first date of exposure to the drug repurposing candidate of
interest. The baseline period started before the index date and ended on the index
date, with a maximum length of one year. The treatment period began after the
index date and ended on the last date of exposure to the drug repurposing
candidate, with a minimum length of thirty days (an induction period) and a
maximum length of 1 year.

For each drug repurposing candidate, we identified a cohort of adults (≥18 years
and <90 years) who were exposed to the drug repurposing candidate in the
outpatient setting (Fig. 2b). Individuals were excluded if they did not have one or
more outpatient biomarker measurements for the disease of interest, during both
baseline and treatment periods. Individuals were also excluded if they were exposed
to known FDA-approved drugs for the disease of interest. However, if the drug
repurposing candidate being tested was a known FDA-approved drug for the
disease of interest, then individuals were kept in the final cohort if they were solely
excluded due to exposure to the drug repurposing candidate being tested. For
instance, individuals exposed to simvastatin (a known lipid-lowering drug) were
excluded in the analysis to clinically validate valproate as a drug repurposing
candidate for hyperlipidemia; however, the same simvastatin-exposed individuals
were not excluded in the study to validate simvastatin as a drug repurposing
candidate for hyperlipidemia.

For the clinical validation studies, we report demographic statistics stratified by
drug repurposing candidates. For gender and ethnicity, reported statistics are
counts and percent of subgroups. We suppressed values if there were less than
twenty individuals in the subgroup due to individual privacy concerns
(Supplementary Data 9). For age and Elixhauser comorbidity index63,64, reported
statistics are median and interquartile range (IQR) in the baseline and treatment
periods; P values are from Wilcoxon signed-rank tests to identify statistically
significant differences between baseline and treatment periods, with P < 0.05
considered statistically significant (Supplementary Data 10). For each Elixhauser
comorbidity, reported are the number of individuals and percent of cohort with the
comorbidity of interest in the baseline and treatment periods; P values are from
McNemar’s tests to identify statistically significant differences between baseline and
treatment periods, with P < 0.05 considered statistically significant. Elixhauser
comorbidity counts were computed using ICD-9-CM and/or ICD-10-CM codes
extracted from the start of the observation period to the end of baseline and
treatment periods, respectively. We removed Elixhauser comorbidity statistics if
there were less than twenty individuals in the subgroup due to individual privacy
concerns (Supplementary Data 11).

Clinical validation: biomarkers and drug efficacy. For hyperlipidemia, we
clinically validated drug repurposing candidates using LDL-C as the biomarker. For
the hypertension clinical validation study, we selected SBP as the biomarker. We
chose to use LDL-C and SBP because they are measurements commonly collected
for tracking disease progression and are important for predicting the risk of car-
diovascular disease65. Further, we only used biomarker measurements taken in the
outpatient setting, as inpatient biomarkers can be substantially altered by the acute
disease processes related to inpatient admissions, and these altered biomarker
measurements can confound the results of the clinical validation study.

We defined a drug repurposing candidate’s efficacy as the difference in median
biomarker measurements taken before (baseline period) and after drug exposure
(treatment period) (Fig. 2a). A repurposing candidate’s efficacy value was adjusted
for confounding factors (see explanation of linear mixed model in the next section).
We only used treatment period biomarker measurements taken after a 30-day
induction period to allow each repurposing candidate to reach steady-state drug
concentration. We removed median biomarker measurement outliers (defined as
1.5x interquartile range, outside the first and third quartiles) prior to statistical
analysis. We used the magnitude of biomarker reduction to quantify a drug’s
efficacy. For instance, in the hyperlipidemia study, drug A was more effective than
drug B, if drug A-exposed individuals experienced larger reductions in LDL-C
compared to drug B-exposed individuals.

Clinical validation: statistical analysis. In the clinical validation studies, the null
hypothesis was that individuals exposed to the drug repurposing candidate did not
experience changes in the biomarker between the baseline and treatment periods. The
alternative hypothesis was that individuals exposed to the drug repurposing candidate
experienced changes in their biomarkers between the baseline and treatment periods.
For each biomarker, we report the mean and SD of the median measurements during
both baseline and treatment periods (Supplementary Data 12).

To determine whether individuals exposed to a drug repurposing candidate
experienced significant biomarker changes, we used a linear mixed model66,67. For each
drug repurposing candidate, we report the treatment effect as a point estimate (i.e.,
mean difference between median biomarker measurements from the baseline and
treatment periods) with 95% CI and associated P-value from the linear mixed model
(Supplementary Data 13). The treatment effect estimates were adjusted for age, gender,
ethnicity, and disease comorbidity as seen in the following linear mixed model equation:

biomarkerVal � β0 þ β1drugExposureþ β2Ageþ β3Genderþ β4Ethnicity

þ β5Comorbidity þ ð1jIndividualÞ ð1Þ

In this model, the variables drugExposure, Age, Gender, Ethnicity, and
Comorbidity are treated as fixed effects, with a random intercept for each
individual. In this paired study, each individual appears twice, once for the baseline
period and a second time for the treatment period. During the baseline period, the
continuous response variable, biomarkerVal, is the median of the biomarker
measurements collected during the baseline period; the binary variable,
drugExposure is set to “0” indicating that the individual was not exposed to the
drug; the continuous variable Age is the individual’s normalized age at the end of
the baseline period; the binary variable Gender is set to “1” if the individual is
female and “0” otherwise; the binary variable Ethnicity is set to “1” if the individual
is not white and “0” otherwise; the continuous variable Comorbidity is the
individual’s normalized Elixhauser comorbidity index computed using ICD-9-CM
and/or ICD-10-CM codes entered in the individual’s medical record beginning
from the start of the observation period to the end of the baseline period.

During the treatment period, biomarkerVal is the median of the biomarker
measurements collected during the treatment period; drugExposure is set to “1”
indicating that the individual was exposed to the drug; Age is the individual’s age at
the end of the treatment period; Gender and Ethnicity are equal to the individual’s
baseline values (i.e., are time-invariant variables); Comorbidity is the individual’s
normalized Elixhauser comorbidity index computed using ICD-9-CM and/or ICD-
10-CM codes entered in the individual’s medical record beginning from the start of
the observation period to the end of the treatment period. Each drug’s treatment
effect estimate and the associated P-value is represented by β1.

A drug was deemed to have a statistically significant therapeutic effect if it had a
negative point estimate (i.e., β1 < 0; exposure resulted in lower biomarker
measurements in the treatment period, compared to baseline) with P < 0.05. We
report both the number of drugs with P < 0.05 and the number of drugs with P
values that crossed Bonferroni correction (0.05/84= 5.95 × 10-4 for hyperlipidemia;
0.05/94= 5.32 × 10−4 for hypertension) to adjust for multiple testing.

External replication of clinical validation studies. To validate the findings from
the VUMC SD, we performed external clinical validation studies using the NIH All
of Us Research Program database20,21 (step 4 in Fig. 1a). The All of Us Research
Program database is a unique resource with health data from a diverse group of
participants, with >50% of participants as members of racial and ethnic minorities,
and >80% from underrepresented groups in biomedical research. As of March
2021, the dataset contains >370,000 participants and EHRs for >236,000 partici-
pants with diverse backgrounds. Analyses were performed in the All of Us dataset
v4, during the beta testing phase of the program, which began in May 202021. For
this study, All of Us data between 1991–2020 were used. We tested all drugs with
statistically significant therapeutic effects (i.e., decreased LDL-C or SBP measure-
ments at P < 0.05) in the VUMC SD clinical validation studies.

Results reported are in compliance with the All of Us Data and Statistics
Dissemination Policy disallowing disclosure of group counts under 20 to protect
participant privacy.

Review of evidence to support novel repurposing candidates. We used multiple
databases (SIDER34, DEB236, and TWOSIDES68), the literature, and domain-
expert review (S.N. and C.M.S.) to confirm the therapeutic effects in the VUMC SD
clinical validation study, for drugs not FDA-approved for the diseases of interest.
SIDER is a resource linking drugs to side effects, extracted from drug labels34.
DEB236 is a resource linking drugs to their indications and side effects; it was
derived from five publicly available sources including SIDER, MEDLINE, and
DrugBank. TWOSIDES is a resource containing statistics for potential drug-drug
interactions derived from the FDA adverse event reporting system68.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The S-PrediXcan generated DEGs file for hyperlipidemia can be found at “https://s3.
amazonaws.com/imlab-open/Data/MetaXcan/results/metaxcan_results_database_v0.
1.tar.gz” and for hypertension can be found at “https://uchicago.box.com/shared/static/
vket4ickq7qt3sj8dy3mv8zsr1our3xd.gz”.

All requests for SD data are reviewed by Vanderbilt University Medical Center to
determine whether the request is subject to any intellectual property or confidentiality
obligations. Data are available through restricted access for approved studies and
researchers who agree to conditions of use, such as but not limited to securely storing
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data and only using it for approved purposes. Any such data and materials that are
approved will be released via a Data Use Agreement. The initial request can be sent to the
corresponding author, and the applicants will be contacted within two weeks.
De-identified data are available on the researcher workbench of the All of Us Research

Program located at https://workbench.researchallofus.org. Our All of Us workspace can
be shared to any All of Us researchers by contacting W-Q.W.
Links for databases and datasets used in this study: iLINCS: http://www.ilincs.org/

ilincs/; SIDER: http://sideeffects.embl.de/; DEB2: https://www.vumc.org/cpm/deb2;
TWOSIDES: https://github.com/tatonetti-lab/nsides-release; DGIdb: https://
www.dgidb.org/; MEDI-HPS: https://www.vumc.org/wei-lab/medi; All of Us: https://
www.researchallofus.org/.

Code availability
To obtain disease gene expression signatures, we used DEGs imputed using the
MetaXcan python package (https://github.com/hakyimlab/MetaXcan). Hyperlipidemia
disease gene expression signature was generated using S-PrediXcan from MetaXcan
v0.5.0. Hypertension gene expression signature was generated using S-MultiXcan from
MetaXcan v0.6.0.
Analyses were conducted using R version 4.0.5. R packages used were janitor_2.1.0,

broom_0.7.9, vroom_1.5.4, forcats_0.5.1, stringr_1.4.0, dplyr_1.0.7, purrr_0.3.4,
readr_2.0.0, tidyr_1.1.3, tibble_3.1.3, ggplot2_3.3.5, tidyverse_1.3.1, lubridate_1.7.10,
glue_1.4.2, lme4_1.1-27.1, lmerTest_3.1-3, comorbidity_0.6.0.9000, ddiwas_0.1, and
DrugRepurposingToolKit_0.2.1.
The software used to extract EHR data, data processing, and data analysis can be found

at https://github.com/pwatrick/DrugRepurposingToolKit or https://doi.org/10.5281/
zenodo.5747805. An example for matching disease and drug-gene expression signatures
can be found at https://pwatrick.github.io/DrugRepurposingToolKit/articles/
gene_expression_signature_matching_example.html. An example for performing a
clinical validation study in the NIH All of Us Research Program database can be found at
https://pwatrick.github.io/DrugRepurposingToolKit/articles/all_of_us_example.html.
For data cleaning and processing, this package leverages datasets and functions from the
ddiwas69 and comorbidity70 R packages.
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