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Abstract

Synovium-derived mesenchymal stromal cell (Sy-MSC) is a newer member of the mesenchymal stromal cell families. The
first successful demonstration of the mesenchymal stromal cell from the human synovial membrane was done in 2001 and
since then its potential role for musculoskeletal regeneration has been keenly documented. The regenerative effects of Sy-
MSCs are through paracrine signaling, direct cell-cell interactions, and extracellular vehicles. Sy-MSCs possess superior
chondrogenicity than other sources of mesenchymal stromal cells. This article aims to outline the advancement of synovium-
derived mesenchymal stromal cells along with a specific insight into the application for managing osteoarthritis knee.
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Introduction

Osteoarthritis (OA) of the knee is a chronic degenerative
condition of the articular cartilage which is associated with
varying degrees of inflammatory synovitis and cartilage
destruction of the joint [1]. The articular cartilage is avas-
cular and aneural structure and hence the healing process is
poor and results in fibrous tissue. OA knee primarily affects
the elderly population which is a major cause of disability
in older adults worldwide [2].

In India, the prevalence of osteoarthritis knee ranges
from 22 to 39% with female preponderance [3]. The robust
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increase in the prevalence of OA knee is due to obesity and
a sedentary lifestyle. Various modalities of treatment for car-
tilage rejuvenation are autologous chondrocyte implantation,
microfracture, stem cell culture, and implantation as a part
of regenerative orthobiologics [4].

Mesenchymal stromal cells (MSCs) are a rich cell source
for regenerative medicine particularly in knee osteoarthritis
for cartilage regeneration [5, 6]. MSCs are harvested from
various tissues such as bone marrow, adipose tissues, skel-
etal muscles, placenta, umbilical cord, dental pulp, and syn-
ovium [7, 8]. Among these, the MSCs harvested from the
synovial tissues had the greatest potential for differentiation
into chondrogenic cells and their proliferation [9]. Analysis
of cells harvested from fibrous and adipose synovium had a
similar self-renewal and differentiation capability. Further-
more, in-vivo study demonstrated the differentiation of syno-
vial MSCs into cartilage appropriate to the microenviron-
ment for the repair of cartilage defects in rabbit knees [10].

Mesenchymal stromal cells are multipotent stem cells
present in various sites of the body. They have direct and
indirect mechanisms in their chondrogenic activity. They
act as a stimulus to induce the differentiation of chondro-
progenitors to convert into chondrocytes by growth factor
secretion such as FGF and TGF-f [11]. They also reduce
inflammatory joint disease progression by promoting T-cell
class switch from pro to anti-inflammatory Th2 subtype.
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A popular treatment option to treat OA is orthobiologic
therapies. More trials are needed to determine the best OA
treatments among MSCs of bone marrow, adipose tissue,
placenta, and synovium, even though the present research
investigating their efficacy is informatory. This article throws
light on the synovium-derived mesenchymal stromal cells
(Sy-MSCs) in the cartilage regeneration in OA knees.

Cellular Therapy in OA Knee

Due to the robust development in the fields of regenerative
and translational medicine, the usage of biological products
to treat diseases has been of prime importance. Biocellular
regenerative medicine aims to regenerate all cells and tissues
and exert regenerative homeostasis in the local microenvi-
ronment. Cellular therapy is defined as the transplantation
of either autologous or allogenic cells or modified cells to
replace and regenerate the damaged tissues in a given area of
interest. On par with cellular therapy, numerous researchers
have demonstrated the usage of cellular elements in osteo-
arthritis in the past 2 decades.

Due to the intrinsic inability of cartilage to repair, the
usage of biological products has become robust among
practicing orthopedic surgeons and regenerative experts.
Evidence on varied sources of mesenchymal stromal cells
(MSC) for the management of osteoarthritis knees is avail-
able. The most common explored cellular source is bone
marrow-derived MSCs (BM-MSCs) (bone marrow aspirate
concentrate) followed by adipose-derived MSCs (ASCs)
(adipose stromal cells, stromal vascular fraction, microvas-
cular fragments, microfat, nanofat, and secretomes), and
placenta-derived MSCs (P-MSCs) for cartilage regeneration.

Various studies have proved the efficacy, functional out-
come, and safety regarding the usage of either BM-MSCs,
ASCs, and P-MSCs for the management of osteoarthritis
knees. A meta-analysis by Jeyaraman et al. demonstrated
the superiority of ASCs in terms of the efficacy and safety
profile in the management of osteoarthritis knees than BM-
MSCs [12]. Due to the advancing age in the elderly popula-
tion the yield of harvested MSCs from bone marrow sources
is limited [13]. But considering the availability, sources of
ASCs are 500 times more than that of BM-MSCs [14]. BM-
MSC:s have greater cartilage regeneration potential than AD-
MSCs but due to the presence of various biological micro-
molecules and cytokines in the stromal vascular fraction
from AD-MSCs, the cartilage regeneration can be accen-
tuated [15]. Soltani et al. demonstrated that a single intra-
articular injection of allogenic P-MSCs resulted in a better
functional and clinical outcome at the end of the 6 months
follow-up period [16]. Hsu et al. reported higher concentra-
tions of glycosaminoglycan secretion with human P-MSCs
which appear to be the better agent for chondrogenesis than
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human BM-MSCs. They concluded that the usage of a 3D
culture system for P-MSCs would revolutionize cartilage tis-
sue bioengineering [17].

The unexplored or minimally explored cellular source for
cartilage regeneration is synovium-derived mesenchymal
stromal cells (Sy-MSCs). In 2001, De Bari et al. demon-
strated successful extraction of MSCs from human synovial
membrane [18]. The synovial membrane is a specialized
connective tissue composed of a double-layered membrane
lining the synovial joints and tendon sheaths. The outer layer
of the synovial membrane is composed of fibrous, adipose,
and areolar components, and the inner layer is composed
of sheets of cells (type A macrophage-like synoviocytes
and type B fibroblast-like synoviocytes). The components
of fibrous and adipose elements give rise to mesenchymal
stromal cells named fibrous-synovial MSCs and adipose-
synovial MSCs, respectively. Type A cells show positive
expression for CD-68 and CD-14. They exhibit a rich expres-
sion of collagen III, V, and VI. Type B cells exhibit positive
expression for CD-44 and VCAM-1 adhesion molecule [19].

Characterization of Sy-MSCs

Like BM-MSCs and ASCs, Sy-MSCs exhibit multipotent
cellular efficacy and regenerative potential in both in-vivo
and in-vitro. The benefits of MSCs transplantation depend
on the viability and biological properties like controlled pro-
liferation and differentiation, anti-apoptosis, anti-inflamma-
tory, and immunomodulatory effects [20, 21]. The regen-
erative effects of Sy-MSCs are through paracrine signaling,
direct cell-cell interactions, and extracellular vehicles [22].
The properties of various sources of MSCs are compared
in Table 1.

Sy-MSCs have been revealed to be a multipotent cell
source similar to BM-MSCs [23]. Sy-MSCs exhibit osteo-
genesis, chondrogenesis, and adipogenesis under lineage-
specific culture medium [18, 24]. Due to the intrinsic ability
for limited senescence, Sy-MSCs can be expanded in greater
numbers in monolayer culture in-vitro. Human Sy-MSCs
maintain the proliferative ability even after the 10th pas-
sage and maintain a linear curve in population doubling
capacity. In a pre-clinical study with a rat model, Sy-MSCs
exhibit higher CFU, proliferation, and chondrogenic differ-
entiation kinetics and safety than the other sources of MSCs.
The higher proliferative potential of Sy-MSCs is due to the
telomerase activity which is usually undetectable in the
somatic cells [25, 26].

Sy-MSCs co-cultured along with human serum demon-
strated enhanced proliferation due to the presence of higher
levels of PDGF in human serum which binds to PDGF
receptor found in Sy-MSCs. Inversely, the decreased pro-
liferative capacity of Sy-MSC:s is noted in the presence of
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Table 1 Characteristics of the varied sources of MSC therapy for OA knee

Sources of MSCs  Sources Potency

Significance

Ethical
consid-
eration

Invasiveness

ESCs Inner cell mass Totipotent

BM-MSCs Iliac crest Multipotent

AD-MSCs Abdomen, medial aspect of thigh Multipotent

Sy-MSCs Synovium around knee joint Multipotent

P1-MSCs Amniotic membrane, chorionic

plate, chorionic villi, decidua

Pluripotent

Um-MSCs Umbilical cord, Wharton jelly Pluripotent

AF-MSCs Cytotrophoblast, syncytiotrophoblast Pluripotent

PB-MSCs Circulating mononuclear cells Multipotent

Forms an entire organism and irreversible +

1 Potential to regenerate bone and cartilage;
Easy to isolate stem cells;
No culture required; Auto and allogenic-

1 Potential to regenerate cartilage and soft

+++
stem cells; ? allogenicity

+

ity + +

|
+

tissues;

Complex natured to isolate stem cells; Autolo-

gous+ +;

7?7? Allogenicity
1 Potential to regenerate cartilage than bone;  + +
Culture required for exponentiation; auto and

allogenicity + +

Difficult to isolate inner cell mass; 1 potential ~ + -

to regenerate bone, cartilage and soft tis-
sues; auto and allogenicity + +

Culture required for exponentiation; auto and ~ + -

allogenicity + +

Culture required for exponentiation; auto and ~ + -

allogenicity + +

Enhanced osteogenic and adipogenic potential + -

anti-PDGF antibodies [27, 28]. Shirasawa et al. exhibited
maximal chondrogenic differentiation by inducing Sy-MSCs
with BMP-2, TGF-f, and dexamethasone in pellet culture
than BM-MSCs [29].

Various studies observed tenfold rise in synovial fluid-
derived MSCs (SF-MSCs) in injured or osteoarthritic knees
[30, 31]. These synovial fluid-derived MSCs show similar
characterization to Sy-MSCs. SF-MSCs exhibit more clo-
nogenicity and chondrogenicity and lower adipogenicity
in-vitro than BM-MSCs. The source for SF-MSCs is from
synovial shedding, infrapatellar fat pad, or articular carti-
lage. The number of SF-MSCs increases as the disease pro-
gresses [32].

Genotype and Phenotype

RT-PCR analysis of synovial tissue specimens exhibited the
expression of extracellular matrix molecules, adhesion mol-
ecules, cytopeptides, and transcription factors in Sy-MSCs
[33]. Immunohistochemical analysis of Sy-MSCs showed
similar pattern as shown by BM-MSCs [34]. Sy-MSCs show
positive expression for CD-10, -13, -44, -49a, -73, -90, -105,
-147, and -166, and negative expression for CD-14, -20, -31,
-34, -45, -62e, -68, -113, and -117 [35, 36]. Sy-MSCs show
negative expression for alkaline phosphatase enzyme and
HLA-DR antigens [8].

During the culture of Sy-MSCs, after first passage, immu-
nophenotype exhibits a transformation from CD-34, -45,
-62e, and HLA-DR antigens to CD-73, -90, and -105 which
are expressed in higher quantities [34]. Such immunophe-
notypic transformation renders Sy-MSCs as a multipotent
cellular population. With the higher expression of CD-90
in Sy-MSCs, the chondrogenic potential of Sy-MSCs are
accentuated both in in-vitro and in-vivo [34].

In mice, Futami et al. observed more than 90% posi-
tive ratios for CD-29 and -44, less than 10% positive ratios
for CD-106, and 50% or more positive ratios for CD-140a
among Sy-MSCs and cells derived from bone marrow and
muscles [37]. Osteogenesis is evidenced by the higher
expression of the mRNA for RNUX2, osteopontin, and
type 1 collagen levels in Sy-MSCs whereas adipogenesis is
expressed by higher levels of the mRNA for Lpl, PPAR-a, C/
EBP-a, and FABP4 levels in Sy-MSCs and the evidence of
chondrogenesis is exhibited by the expression of Sox9, type
II, and type X collagen in in-vitro Sy-MSCs [37].

Immunomodaulation of Sy-MSCs
The immunomodulatory properties of Sy-MSCs enhance
their usage in clinical applications [38, 39]. The pathways

by which the immunomodulatory mechanisms of Sy-MSCs
are regulated through.
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T Lymphocyte System

Sy-MSCs mediate immunoregulation, either produced con-
stitutively by MSCs or released following cross-talk with
target cells. Nitric oxide and indoleamine 2,3-dioxygenase
(IDO), which are only released by Sy-MSCs after trigger-
ing by IFNy produced by target cells [40]. IDO induces the
depletion of tryptophan from the local environment, which
is an essential amino acid for lymphocyte proliferation. Sy-
MSC-derived IDO was reported to be required to inhibit the
proliferation of IFNy-producing TH1 cells and, together with
prostaglandin E2 (PGE2), to block NK-cell activity [40].

Activated CD8+ T lymphocyte by nitric oxide suppresses
the proliferation of cytotoxic T cells, inhibits the produc-
tion of INF-y & TNF-a, and attenuates the cytotoxic effects.
The activated CD4+ T lymphocyte by TGF-, nitric oxide,
hepatocyte growth factor, and PGE2 secreted by Sy-MSCs
enhances lineage-specific differentiation and cellular prolif-
eration [41]. Upon which the immunomodulatory activities
are enhanced via T helper 2 cells through increased IL-4
levels and T regulatory cell through increased TGF-p and
suppressed via T helper 1 cell through increased INF-y lev-
els and T helper 17 cells through increased levels of IL-17A
as shown in Fig. 1 [42].

B Lymphocyte System

Sy-MSCs enhance antibody production through the activa-
tion of B lymphocytes by soluble factors secreted by them
as shown in Fig. 1 [43].

Fig. 1 Immunomodulatory
effects of MSCs via T and

B lymphocyte system. CD
cluster differentiation; /FN-y
interferon-gamma; /L interleu-
kin; TGF-p transforming growth
factor-beta

Synovial Stem Cells

HGF/PEG2/
O tCCL-2/IL-10
PD-1/PD-L1 Q O

CD4+ Cells
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NK Cells

Mesenchymal stromal cells inhibit cytokine production by
NK cells when cultured or co-cultured in the media con-
taining IL-2 or -15 [44]. MSCs hamper NK-cell cytolytic
effects through soluble factors like HLA-G5, PGE2, IDO
system, and also through downregulation of NK receptors
like NKp30, NKp44, or NKG2D. Activated NK cells lyse
MSCs. Upon exposure with INF-y increases MHC-I expres-
sion on MSCs which conversely decreases the susceptibility
to NK-cell-mediated lysis as shown in Fig. 2 [45, 46].

HLA-G5 System

The production of soluble HLA-G5 by Sy-MSCs has been
shown to suppress T-cell proliferation, as well as NK-cell
and T-cell cytotoxicity, and to promote the generation of
regulatory T cells as shown in Fig. 2 [47, 48].

Harvesting and Delivery Methods
of Sy-MSCs

Synovial stromal cells can be harvested from the synovial
lining of knee [49], hip [50], or shoulder [51] joints. Fer-
nandes et al. harvested synovial stromal cells arthroscopi-
cally from the knee through the anterolateral portal and
processed them further to expand the cells for further dif-
ferentiation and clinical applications [52].
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Fig.2 Immunomodulatory effects of MSCs via NK cell and HLA-G5
system. MSCs mesenchymal stem cells; NK cell natural killer cell;
DC dendritic cell; /DO indoleamine-pyrrole 2,3-dioxygenase; HGF
hepatocyte growth factor; PGE2 prostaglandin E2; sHLA-G5 soluble
human leukocyte antigen G5

Li et al. [53] studied the feasibility of harvesting syno-
vial stromal cells from arthroscopic flushing fluid from
the knee joint for cartilage regeneration. Sy-MSCs were
expanded in-vitro and induced for chondrogenic differen-
tiation. These cells were delivered by xenogenic injection
of MSC encapsulated by loading them into cross-linking

Fig.3 Steps involved in Sy-
MSC therapy for osteoarthritis
knee

OSTEOARTHRITIS
KNEE

polyPEGDA/HA hydrogel into full-thickness cartilage
defects in cartilage groove. They observed a reduction in
the defect area at the end of 2 months.

Researchers demonstrated that the repair of torn menis-
cus upon the suspension of Sy-MSCs on meniscus for
10 min. They further observed that the number of cells
adhered to the pathological site underwent dynamic mor-
phological changes over 24 h. These cells showed micro-
spikes and pseudopodia for better adhesion onto the patho-
logical meniscus [54].

Shimomura et al. [55] obtained Sy-MSCs arthroscopi-
cally and expanded in-vitro before transplantation to
symptomatic chondral knee lesions. The intervention was
delivered in two-stages, stage-I arthroscopic evaluation
and synovial tissue biopsy from the anterior aspect of the
knee followed by administration of the cultured Sy-MSCs
after 4 weeks upon making a tissue-engineered construct
of the size of the chondral lesion identified initially. All
five patients achieved full defect filling at 48 weeks which
was demonstrated by MRI during the follow-up. These
cases showed no adverse events. Chondrogenesis was
demonstrated histologically. Functionally these patients
showed full clinical improvement by 24 months.

The evidence stated that the infrapatellar fat pad plays
a major in the progression of the OA knee [56—-58]. Tar-
geting infrapatellar fat pad tissue with synovial stromal
cells may reduce inflammation and fibrosis across the knee
joint and proceeds with cartilage repair and regeneration
[59-61]. The various steps involving Sy-MSC therapy for
osteoarthritis knee are shown in Fig. 3.
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Chondrogenicity of Sy-MSCs

The mesenchymal stromal cells possess the ability to dif-
ferentiate into trilineage namely osteogenesis, chondrogen-
esis, and adipogenesis. Sy-MSCs possess superior chondro-
genicity than other sources of mesenchymal stromal cells
which were evidenced by (1) the origin of synoviocytes and
chondrocytes from common progenitor pool [62], (2) the
higher expression of CD-44 (hyaluronic acid receptor) and
uridine diphosphoglucose dehydrogenase (UDPGD) [62],
(3) formation of a continuous layer of the synovial mem-
brane in the area of partial-thickness defects of the cartilage
[63] (4) chondrocyte-like cells are present in synovial pan-
nus in rheumatoid arthritis [64], and (5) the expression of
type 1, 10, & 11 collagen, cartilage oligomeric matrix pro-
tein (COMP), SOX-9, and aggrecan in the synovial tissues
[65]. Hence, Sy-MSCs have a greater proliferative effect in
cartilage regeneration [19]. Besides cartilage regeneration,
various studies demonstrated the regenerative potential of
Sy-MSCs in terms of the tendon, ligament, muscle, and bone
regeneration [66, 67].

Intracellular Signaling in Chondrogenic
Differentiation

Various researchers have demonstrated the chondrogenic
differentiation of MSCs in-vitro with the addition of
external biological micromolecules such as growth fac-
tors (FGF, PDGF, TGF-f, EGF), bone morphogenetic pro-
teins (BMPs), hedgehog, and Wnt glycoproteins. TGF-3

Fig.4 Factors involved in selec-

tive chondrogenic differentiation

of Sy-MSCs. ERK extracellular
signal-regulated kinase; IGF

insulin-like growth factor; BMP

bone morphogenic protein,

TGF-f transforming growth

factor-beta; SOX SRY-related

HMG box; RUNX runt-related

transcription factor; MAPKS Syovki
mitogen-activated protein MSCs
kinase; COL collagen; PTHrP

parathormone related peptide;

FGF fibroblast growth factor

p
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superfamily (TGF-pB2 and TGF-f3) has been demonstrated
to be the potential inducer of chondrocytes in-vitro [68].
Among BMPs, BMP-2 and -7 are the potential inducers
for chondrogenesis and extracellular matrix synthesis,
respectively. The molecular interactions between ERK1/2
and SOX-9 stimulate chondrogenic differentiation of
MSCs [62, 69]. To avoid the formation of fibrous carti-
lage, PTHrP or FGF-2 downregulates Col10al and Col2al
during chondrogenesis and increases the deposition of type
2 collagen in the cartilage as shown in Fig. 4 [70].

SOX-9 expression helps in the survival and mainte-
nance of chondrocytes in-vitro and in-vivo, expands ECM
production and intracellular signaling among chondrocytes
[71]. SOX-9 acts as a link protein for L-SOX-5 and SOX-6
transcription factors in maintaining chondrogenesis and
also helps in the expression of chondrogenesis regulatory
pathways (Wnt, Notch, and hedgehog signaling mecha-
nisms) [72]. The other transcriptional factors that help in
maintaining chondrogenesis are Runx2, Barx2, Nkx3.2/
Bapx1, Msx1 and 2, f-catenin, Smads, Lefl, AP-1, and
AP-2 [68, 73]. Apart from these transcriptional factors, the
composition of extracellular matrix maintains chondrocyte
morphology, phenotype, and genotype, differentiation, and
maturation [74]. Among the various intracellular signals,
Ser/Thr protein kinases, and Ser/Thr phosphoprotein phos-
phatases were the key regulators of chondrogenesis [75].
p38 and ERK1/2 are the key mitogen-activated protein
kinases (MAPKs) that regulate chondrocyte signaling
involved in the translation of extracellular stimulus into
chondrocyte responses and gene expression for chondro-
cyte differentiation and proliferation [76].
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In-Vitro Chondrogenicity by Sy-MSCs

The source of MSCs differs in tissue differentiation and
multipotent ability to obtain the tissue of interest [23, 26].
The murine MSCs derived from various sources exhibited
that Sy-MSCs demonstrated a greater amount of cartilage
matrix production in in-vitro pellet culture [26]. When
matched with BM-MSCs, Sy-MSCs derived cartilage pel-
lets were significantly larger [29]. De Bari et al. reported
chondrogenic capability of Sy-MSCs was higher than
periosteum-derived MSCs in-vitro [77].

The greater regenerative and chondrogenic potential
was exhibited by MSCs derived from fibrous and adipose
synovium. Though the amount of nucleated cell popula-
tion was higher in fibrous synovium, MSCs from adipose
synovium have more chondrogenic potential and acces-
sibility to extract MSCs [78]. Koga et al. demonstrated
an enormous cartilage matrix production after 4 weeks by
synovium and bone marrow-derived MSCs when admixed
with collagen gel transplanted into rabbit cartilage defects
[79].

The fate of cellular therapy depends on specific
cell—cell and cell-matrix interactions, which are controlled
by extracellular and intracellular signaling molecules [80].
The components of culture media used for in-vitro chon-
drogenesis by Sy-MSCs include dexamethasone, ascorbic
acid, ITS + premix, proline, sodium pyruvate, and TGF-f
growth factor [18, 23]. TGF-f superfamily is known to
stimulate chondrogenesis differentiation of MSCs. Due to
the presence of TGF-f receptors, they undergo dimeri-
zation and phosphorylation-dependent signaling events,
which are transduced by smad and non-smad pathways to
the nucleus. In the nucleus, SOX-9 gets activated to induce
the chondrogenic gene expression [80, 81].

Researchers studied the usage of TGF-p superfamily
and BMPs in Sy-MSCs induced chondrogenesis. TGF-f1
induced chondrogenesis in the presence of Sy-MSCs pel-
lets obtained from a rabbit model and dexamethasone [82].
Both Sy-MSCs pellets and TGF- B1 induced chondrogenic
explant showed positive expression for collagen type II,
which is an essential marker for chondrogenesis [82]. Shi-
rasawa et al. demonstrated improved chondrogenesis with
the combination of TGF- B3, dexamethasone, and BMP-2
with Sy-MSCs pellets [29].

A superior chondrogenic differentiation of Sy-MSCs
has been observed with the simultaneous application of
TGF-B1 and IGF-1 [83]. Along with chondrogenic dif-
ferentiation, the higher amounts of glycosaminoglycan
production were observed when Sy-MSCs were seeded
along with 3D polyglycolic acid scaffolds and simultane-
ous application of TGF-B1 and IGF-1 [84]. Shintani et al.
demonstrated the superior potential of BMP-2 and -7 in the

induction of chondrogenesis than TGF-1 [85]. A higher
dose of BMP-7 in the presence of TGF-p1 demonstrated
the enhanced chondrogenesis by Sy-MSCs [81]. Research
is still going on to observe the appropriate concentrations
of various growth factors for chondrogenesis by Sy-MSCs.
The summary of the studies on in-vitro chondrogenicity
by Sy-MSCs is given in Table 2.

In-Vivo Chondrogenicity by Sy-MSCs

Considering the common developmental lineage of the syno-
vial membrane and articular cartilage, Sy-MSCs exhibit a
greater capacity to accentuate chondrogenesis when applied
to osteoarthritis models in animals. Ozeki et al. [49] in their
study showed that Sy-MSCs halted the progression of col-
lagenase-induced osteoarthritis in a rat model. They also
evaluated the number of injections of Sy-MSCs needed for
the management of osteoarthritis in their murine model.
They have shown that the injected Sy-MSCs upregulated
the expression of genes related to the chondroprotection
such as PRG-4, BMP-2, and BMP-6 over 50-folds. Apart
from chondroprotection, they also noted enhanced expres-
sion of TSG-6 responsible for immune-modulation and halt
the inflammatory cascade [49].

Schmal et al. [86] compared the ability of the allogenic
Sy-MSC:s to repair the osteochondral lesions in the rabbit
femur. They noted improved macroscopic regeneration in
the Sy-MSC group compared to the controls. Pei et al. [87]
in their study confirmed smooth hyaline cartilage from the
regenerated cartilage after following it up for 6 months.
Li et al. [88] qualified the cartilage quality of the osteo-
chondral lesions repaired through Sy-MSCs in rabbit knees
revealed greater tissue quality in the treated animals. Sev-
eral studies investigated the effects of scaffolds in mediat-
ing the action of Sy-MSCs. Lee et al. [89] in their study
investigated platelet-rich plasma to deliver the Sy-MSCs to
regenerate full-thickness chondral lesions. The treated group
showed significant microscopic and macroscopic scores at
6 months follow-up. Shimomura et al. [90] combined Sy-
MSCs with hydroxyapatite (HA) and implanted them into
full-thickness cartilage lesions in rabbits. They demonstrated
that compared to the control group where only HA was used,
subjects with Sy-MSCs and HA showed faster integration
and improved osteochondral appearance while the controls
demonstrated osteoarthritis-like features at 6-month follow-
up. Various studies utilized porcine models to evaluate the
porcine Sy-MSCs and found them effective in regenerating
partial and full-thickness chondral lesions with improved
ICRS score and macroscopic appearance [91].

With regards to human Sy-MSCs, Li et al. [53] utilized
Sy-MSCs from arthroscopic washing fluid and studied
their effect on murine models, and found superior results
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in repairing the chondral lesions compared to the controls
or untreated groups. Shimomura et al. [55] performed
autologous in-vitro cultured Sy-MSC transplantation
obtained from an arthroscopic biopsy in 5 patients with a
1.5-3 cm? chondral lesion. All the patients demonstrated
full defect filling at 48 weeks assessed by MRI without
any adverse events. Tissue integration and chondrogenesis
were also assessed histologically and found to be strongly
stained for Sekiya et al. [92] used Sy-MSC transplantation
for symptomatic femoral condyle chondral lesions in ten
patients and noted significant improvement on MRI scores
post-intervention. Histological evaluation showed hyaline
cartilage and fibrous cartilage without any deterioration in
the Tegner Activity Level Scale [93-96]. Summary of the
studies on in-vitro chondrogenicity by Sy-MSCs is given
in Table 3.

Engineered Chondrogenesis

The concept of “Engineered Chondrogenesis” came into
existence to redifferentiate the de-differentiated chondro-
cytes in 3D culture systems [97]. Once de-differentiated
chondrocytes are cultured in 3D culture systems, it is pos-
sible to recover the phenotypic and metabolic properties
of chondrocytes. The limitations of 3D culture systems
are due to the size of the tissue mass. 3D scaffolds either
natural or synthetic that are made up of Sy-MSCs admixed
with fibrin gel when cultured with chondrogenic media
display a higher expression of cartilaginous characteristics
with the expression of Sy-MSCs derived exosomes, pro-
teins for type 2 collagen, aggrecan, and genes for SOX-9
expression [98].

The long-term benefits of 3D scaffolds are questionable,
though the results of 3D scaffolds are encouraging. To over-
come the potential risks, tissue-engineered constructs (TEC)
composed of porcine Sy-MSCs and relevant ECMs gener-
ated in-vitro have been developed [99]. TEC cultured in a
chondrogenic rich medium exhibits the higher expression

of chondrogenic markers and their genes. TEC with human
Sy-MSCs along with chondrogenic medium expressed the
chondrogenic markers to a similar level as seen in TEC with
porcine Sy-MSCs. With the presence of ascorbic acid, sig-
nificant improvement in the mechanical strength of TEC is
noted [100]. The adherence of more than 60% of cells was
observed when Sy-MSCs were suspended on a rabbit car-
tilage defect. This phenomenon explains the direct adher-
ence of Sy-MSC:s to cartilage defects with minimal invasion
and without the usage of periosteal coverage and scaffolds
[101]. When physiological hydrostatic pressure is applied
to Sy-MSCs in-vitro, it displays a significant expression of
chondrogenic markers [102].

Future Perspectives

Kohno et al. [94] have shown that cellular yield and
chondrogenic potential of Sy-MSCs were comparable in
patients with rheumatoid arthritis and osteoarthritis and
hence the indications for regenerative medicine using pri-
mary autologous Sy-MSCs are expanding. Overcoming
the horizons of cellular therapy, exosomes derived from
the Sy-MSC are being tried for their therapeutic potential
in osteoarthritis. Zhu et al. [96] in their study showed the
chondrocyte migration and proliferation when stimulated
with Sy-MSC-derived exosomes. Being an inexhaustible
autologous source, Sy-MSC-derived exosomes represent
the future in the management of osteoarthritis and diseases
of a similar kind.

Conclusion

Sy-MSCs demonstrates their regenerative mechanisms
through paracrine signaling, direct cell—cell interactions, and
extracellular vehicles. Sy-MSCs have been shown to possess
superior chondrogenicity than other sources of mesenchymal
stromal cells. Hence, Sy-MSCs remain a potential source of
MSCs in the management of cartilage loss in osteoarthritis.

@ Springer
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