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PGC-1a inhibits the NLRP3 inflammasome via preserving
mitochondrial viability to protect kidney fibrosis
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The NLRP3 inflammasome is activated by mitochondrial damage and contributes to kidney fibrosis. However, it is unknown

whether PGC-1q, a key mitochondrial biogenesis regulator, modulates NLRP3 inflammasome in kidney injury. Primary renal tubular
epithelial cells (RTECs) were isolated from C57BL/6 mice. The NLRP3 inflammasome, mitochondrial dynamics and morphology,
oxidative stress, and cell injury markers were examined in RTECs treated by TGF-B1 with or without Ppargcia plasmid, PGC-1a
activator (metformin), and siPGC-1a. In vivo, adenine-fed and unilateral ureteral obstruction (UUO) mice were treated with
metformin. In vitro, TGF-B1 treatment to RTECs suppressed the expressions of PGC-1a and mitochondrial dynamic-related genes.
The NLRP3 inflammasome was also activated and the expression of fibrotic and cell injury markers was increased. PGC-1a induction
with the plasmid and metformin improved mitochondrial dynamics and morphology and attenuated the NLRP3 inflammasome and
cell injury. The opposite changes were observed by siPGC-1a. The oxidative stress levels, which are inducers of the NLRP3
inflammasome, were increased and the expression of TNFAIP3, a negative regulator of NLRP3 inflammasome regulated by PGC-1aq,
was decreased by TGF-1 and siPGC-1a. However, PGC-1a restoration reversed these alterations. In vivo, adenine-fed and UUO mice

models showed suppression of PGC-1a and TNFAIP3 and dysregulated mitochondrial dynamics. Moreover, the activation of
oxidative stress and NLRP3 inflammasome, and kidney fibrosis were increased in these mice. However, these changes were
significantly reversed by metformin. This study demonstrated that kidney injury was ameliorated by PGC-1a-induced inactivation of
the NLRP3 inflammasome via modulation of mitochondrial viability and dynamics.
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INTRODUCTION

Chronic kidney disease (CKD) is a global health problem and its
prevalence has been increasing worldwide [1-3]. Patients with
CKD have an increased risk for progression to end-stage kidney
disease and mortality [4, 5]. It is therefore important to find
effective therapeutic targets to prevent the progression of CKD.
Renal tubulointerstitial inflammation and fibrosis are key patho-
logical hallmarks in the progression of CKD [6-8]. Renal tubular
epithelial cells (RTECs) are essential for maintaining fluid and
electrolyte homeostasis and account for 90% of the kidney mass.
RTECs secure abundant mitochondria and have high levels of
peroxisomal proliferator-activated receptor-a (PPARa) and perox-
isomal proliferator-y coactivator-1a (PGC-1a) to fulfill their
metabolic and functional energy demands [9]. Growing evidence
suggests that mitochondrial dysfunction, characterized by a
decline in number and the depolarization, swelling, and disruption
of cristae, greatly contributes to kidney fibrosis [10, 11]. Damaged
mitochondria do not efficiently produce adenosine triphosphate

(ATP) and release excessive reactive oxygen species (ROS) and
mitochondrial DNA (mtDNA), which consequently trigger down-
stream inflammatory responses and lead to cell death and tubular
injury.

NOD-like receptor family-pyrin domain-containing 3 (NLRP3) is
involved in various host innate immune responses to microbial
and nonmicrobial stimuli [12, 13]. Several pathogens and
endogenous danger signals released from damaged and dying
cells activate the NLRP3 and lead to form a protein complex
termed “inflammasome” [14]. The NLRP3 inflammasome then
induces auto-process and activation of caspase-1, which results in
cleavage of pro-cytokines to mature IL-1B and IL-18. Recently, the
NLRP3 inflammasome has been implicated in the pathogenesis of
kidney injury and fibrosis [15-17]. In various animal models of
kidney disease, the NLRP3 inflammasome pathway is activated
and its final products, IL-1B and IL-18, can cause kidney tubule
injury [16-19]. Interestingly, renal intrinsic cells such as RTECs and
podocytes express NLRP3, suggesting the potential role of NLRP3
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inflammasome signaling on cellular injury [20, 21]. Moreover,
recent studies have demonstrated the potential interaction
between mitochondrial dysfunction and NLRP3 inflammasome
activation in renal tubular injury models [22-24]. However, it is
unknown whether PGC-1a, a key mitochondrial biogenesis
regulator, can regulate the NLRP3 pathway via modulating
mitochondrial dynamics.

Thus, we investigated the role of PGC-1a in the regulation of the
NLRP3 inflammasome activation in RTECs. In particular, we
examined whether altered mitochondrial viability and dynamics
induced by activation or suppression of PGC-1a can regulate the
NLRP3 inflammasome pathway, and thus affect kidney injury.

METHODS

Cell cultures, treatment of TGF-B1, PGC-1a activator, and
transfection to primary RTECs

RTECs were isolated from C57BL/6 mice. A concise method is described in
Supplementary Methods. Subconfluent RTECs were FBS-restricted for 24 h,
and then the medium was replaced with 1% FBS DMEM medium for the
control group and the same medium with TGF-B1 (5 ng/ml) (R&D Systems,
Minneapolis, MN, USA) for the TGF-B1 group. RTECs were harvested for
RNA and protein analyses at 48 h after media changes. PGC-1a activator,
metformin (1 mM) was treated for both control and TGF-B1 groups. Drug
doses were determined based on our prior tests. Furthermore, the cells
were also transfected with Ppargcia plasmid (1 pug) (Addgene, Cambridge,
MA, USA) and Ppargcla small interfering RNA (siRNA), using Lipofectamine
2000 and Plus reagents (Invitrogen, Carlsbad, CA, USA). Next, 6 h after
transfection, media were changed to serum-free media, and the cells were
incubated for an additional 48 h. To inhibit Drp1 expression, we knock-
down Drpl1 gene with lentivirus containing Drp1 targeting short hairpin
RNA (shRNA) to infect RTECs (kindly gifted from Dr. Yu J, Yonsei University
College of Medicine) [25]. To further explore the relationship between
NLRP3 inflammasome and mitochondrial injury, we also obtained RTECs
from Nirp3 knockout mice (kindly gifted from Dr. Yu J, Yonsei University
College of Medicine).

Animal study and treatment

Male C57BL/6 mice (6 weeks old, initial weight 20 g) were purchased from
The Jackson Laboratory (Bar Harbor, ME, USA). The animals were
maintained in a temperature-controlled room (22°C) in a 12 h light/dark
cycle. All the animals were randomly assigned. One week after arrival,
animals were divided into two groups and fed with either a normal diet
(ND; n =10) or 0.2% adenine diet (Ade; n = 10) for up to 4 weeks. Both ND
and Ade groups were also daily treated with an intraperitoneal injection of
metformin (250 mg/kg), one week before the diet start. After 4 weeks of
ND or Ade, animals were sacrificed and the kidneys were extracted while
anesthetized with Zoletil (10 mg/kg) (Virbac, Carros, France). A concise
method for preparation of unilateral ureter obstruction (UUO) mice is
described in Supplementary Methods. Kidney samples were then
immediately frozen in liquid nitrogen and stored at —80 °C until use.

Real-time quantitative polymerase chain reaction, western
blot analyses

The transcript levels of genes including Ppargcia, NLRP3 inflammasome
pathway, mitochondrial dynamics, tumor necrosis factor a-induced protein
3 (TNFAIP3), oxidative stress marker, and profibrotic markers were
compared by quantitative polymerase chain reaction (qPCR). The primer
sequences used in this study were described in Supplementary Table 1.
More detailed methods are described in Supplementary Methods. Protein
expression levels of the PGC-1a, NLRP3 inflammasome pathway, TNFAIP3,
oxidative stress marker, and profibrotic markers were examined with
Western blot analyses. Detailed methods and information on antibodies
are separately described in Supplementary Methods.

Assay of NLRP3 inflammasome assembly

To determine the oligomerization of apoptosis-associated speck-like
protein containing a caspase recruitment domain (ASC), a disuccinimidyl
suberate (DSS) (Gibco, Thermo Fisher Scientificc Waltham, MA, USA)-
mediated cross-linking assay was performed as described previously [26].
In brief, RTECs and cells from kidney tissue samples were pelleted by
centrifugation and lysed in 0.5 ml lysis buffer containing 20 mM Hepes-
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KOH, pH7.5, 150 mM KCl, 1% NP40, 0.1 mM PMSF and protease inhibitor
cocktail on ice. The cell lysates were centrifuged at 6000 rpm at 4 °C for
10 min. The pellets were washed twice with PBS and then resuspended in
500 ul PBS. The resuspended pellets were cross-linked with fresh DSS
(2mM) for 30 min, and then pelleted by centrifugation at 6000 rpm for
10 min. The cross-linked pellets were resuspended in 30 pyl SDS sample
buffer and fractionated on 12% SDS polyacrylamide gel followed by
immunoblotting with ASC antibody (Cell Signaling Technology, MA, USA).

Measurement of oxidative stress levels

Oxidative stress (malondialdehyde [MDA]) levels were measured in RTECs
and kidney tissues using an MDA assay kit (Abcam, Cambridge, MA, USA).
10 mg of RTECs were homogenized on ice in 300 pl of MDA lysis buffer
(Abcam, Cambridge, MA, USA), then centrifuged (13,000 x g, 10 min) to
remove insoluble materials. 10 ml of plasma were mixed with 500 pl of
42 mM H,S0,4 and 125 pl of phosphotungstic acid solution at RT for 5 min.
After centrifuging (13,000 x g, 3 min), the pellet was resuspended on ice
with 100 pl of double-distilled H,O. Then, 200 pl of solution and 600 pl of
2-thiobarbituric acid solution were incubated at 95 °C for 60 min before
cooling to RT in the ice bath for 10 min. The intensity of absorbance at
532 nm was proportional to the MDA level.

Isolation of mitochondria

RTECs were fractionated into cytosol and mitochondria by using a
Mitochondria isolation kit (BioVision, Inc. CA, USA) as per the manufac-
turer’s protocol. In short, cells were collected and washed with 10 ml ice-
cold PBS. Cells were centrifuged at 600xg for 5min at 4°C and
resuspended in 1.0 ml of 1x Cytosol Extraction Buffer. Homogenization
was performed on ice and centrifuged at 1200 x g for 10 min at 4°C to
remove nuclei and intact cells. The collected supernatant was centrifuged
at 10,000 x g for 30 min at 4 °C. The resulting pellets were resuspended in
1.0ml of 1x Cytosol Extraction Buffer and centrifuged at 10,000 x g for
30 min at 4°C to obtain mitochondria. The obtained mitochondria were
lysed in 30 pl of Mitochondrial Lysis Buffer and added to 100 ul of enzyme
mixture (included in the isolation kit) with 100 pl absolute ethanol. After
centrifugation, the resulting pellet was mtDNA. The cytosolic mtDNA was
obtained from the supernatant after precipitation with ethanol. The
concentration of mtDNA was determined by gPCR assay.

Assessment for mitochondrial dynamics and function

For visualization of mitochondrial dynamics, immunofluorescent staining for
mitochondria, MitoTracker Deep Red (Gibco, Thermo Fisher Scientific,
Waltham, MA, USA) was used. RTECs were fixed in 4% paraformaldehyde
and blocked in DPBS containing 5% normal rabbit serum and 0.1% Tween-
20. Cells were then stained with anti-mouse NLRP3, MitoTracker, followed by
AlexaFluor594-conjugated goat anti-rabbit antibodies (Jackson ImmunoR-
esearch, West Grove, PA), and finally, slides were mounted with DAPI and
imaged. We next examined mitochondrial structure by standard transmis-
sion electron microscopy. Primary RTECs were fixed with a mixture of 2%
paraformaldehyde and 2.5% glutaraldehyde overnight, washed, dehydrated,
and embedded in a resin according to standard procedures. Mitochondria
were examined under a JEOL 1011 microscope (JEOL, Tokyo, Japan). To
assess mitochondrial respiration rate, a Seahorse Bioscience x24 extra-
cellular flux analyzer was used (Seahorse Bioscience, Billerica, MA, USA). For
measurement of mitochondrial ROS production, cells were resuspended in
Hank’s Balanced Salt Solution after appropriate treatments, and stained with
MitoSOX (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) at 37 °C for
20 min. The fluorescence of the cells was measured by a flow cytometer
(FACSVerse, BD Biosciences, San Jose, CA, USA). To assay mitochondrial
membrane potential, a tetramethylrhodamine ethyl ester (TMRE) Mitochon-
drial Membrane Potential Assay Kit (Abcam, Cambridge, MA, USA) was used.

RESULTS

The alterations in PGC-1a, mitochondrial dynamics, and
NLRP3 inflammasome pathway during kidney injury

First, we examined the expression of PGC-1a, mitochondrial
dynamics, and NLRP3 pathway in RTECs treated with TGF-31. In
these cells, TGF-31 treatment decreased the transcript and protein
levels of Ppargcia (Fig. 1A, B and Supplementary Fig. 1A).
Accordingly, mRNA expression levels of mitofusin (Mfn), a
mitochondrial fusion-related gene, and mitochondrial transcription
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Fig. 1 Changes in PGC-1a, mitochondrial dynamics, and NLRP3 inflammasome pathway in TGF-f31-treated RTECs. A mRNA and B protein

expression levels of PGC-1a were decreased in TGF-B1-treated RTECs. C mRNA expression of mitochondrial dynamic-related genes including
Mfn, Tfam, and Drp1were altered in TGF-p1-treated RTECs. D mRNA and E protein expression levels of the NLRP3 inflammasome pathway were
increased in TGF-f1-treated RTECs. F Concentrations of IL-1f and IL-18 assessed by ELISA were increased in TGF-p1-treated RTECs. G mRNA
and H protein expression levels of fibrotic markers including fibronectin and collagen 1, and apoptotic cell death markers of Bax/bcl-2 and
cleaved caspase-3 were increased in TGF-p1-treated RTECs. Note: *P < 0.05 vs. control. PGC-1a peroxisomal proliferator-y coactivator-1a; NLRP3
NOD-like receptor family, pyrin domain-containing 3; ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain;
RTEC renal tubular epithelial cell; Mfn mitofusin; Tfam mitochondrial transcriptional factor A; Drp1 dynamin-related protein 1; ELISA enzyme-

linked immunosorbent assay.

factor A (Tfam), which represents mitochondrial mass, were
significantly decreased, whereas that of dynamin-related protein
1 (Drp1), a mitochondrial fission-related gene, was increased
compared with control (Fig. 1C). In addition, TGF-f1 treatment
activated NLRP3 inflammasome signaling evidenced by increased
expression levels of NLRP3 inflammasome pathway-related genes
and proteins (Fig. 1D, E and Supplementary Fig. 1B). The
concentrations of IL-1B and IL-18, the final products of the NLRP3
pathway, in TGF-B1-treated cell lysates measured by ELISA were
increased (Fig. 1F). Furthermore, expression levels of fibrotic
markers including fibronectin and collagen 1, and apoptotic cell
death index of Bax/bcl-2 ratio and cleaved caspase-3 were also
increased (Fig. 1G, H and Supplementary Fig. 1C). These findings
were similar in the adenine-induced kidney injury model
(Fig. 2A-H and Supplementary Fig. 1D-F). Thus, during kidney
injury, there are significant alterations in PGC-1a expression and
mitochondrial dynamics, together with activation of the NLRP3
inflammasome pathway.

PGC-1a restores impaired mitochondrial dynamics and
morphology during kidney injury

Next, we examined whether PGC-1q, a key regulator of mitochon-
drial biogenesis, could attenuate mitochondrial dynamics during
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kidney injury. To modulate Ppargcia expression, we additionally
used Ppargcla plasmid, siRNA against Ppargcla (siPGC-1a), and
metformin, an indirect activator of PGC-1a. As expected, the
impaired mitochondrial dynamic-related genes were restored by
overexpression of Ppargcia. In contrast, knock-down of Ppargcia
with siPGC-1a decreased the expression of Mfn and Tfam, but
increased the expression of Drp1 (Fig. 3A-C and Supplementary Fig.
2A, B). These findings were corroborated by additional experiments
with metformin (Fig. 3D-F and Supplementary Fig. 2C, D). Such
improvements led to the recovery of mitochondrial function.
Restoration of PGC-1a with Ppargcia plasmid and metformin
significantly improved the decreased mitochondrial membrane
potential and the decreased oxygen consumption rate in RTECs
treated with TGF-B1 (Supplementary Fig. 3A-D). In concordance
with changes in PGC-1q, the expression of phospho-AMP-activated
protein kinase (p-AMPK) was decreased in TGF-B-treated cells,
whereas metformin treatment recovered these expressions (Fig. 3F
and Supplementary Fig. 2E). However, metformin did not increase
the mRNA and protein expression levels of PGC-1a in RTECs with
silencing Ppargcia. These findings suggest that AMPK mediates the
effect of metformin and PGC-1a is a downstream effector of AMPK
(Supplementary Fig. 2F, G, J). The beneficial effects of metformin on
mitochondrial dynamics were also abrogated by silencing Ppargcia
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Fig. 2 Changes in PGC-1a, mitochondrial dynamics, and NLRP3 inflammasome pathway in adenine-fed mice. A mRNA and B protein
expression levels of PGC-1a were decreased in adenine-fed mice. C mRNA expression of mitochondrial dynamic-related genes including Mfn,
Tfam, and Drplwere altered in adenine-fed mice. D mRNA and E protein expression levels of the NLRP3 inflammasome pathway were
increased in adenine-fed mice. F Concentrations of IL-1p and IL-18 assessed by ELISA were increased in adenine-fed mice. G mRNA and
H protein expression levels of fibrotic markers including fibronectin and collagen 1, and apoptotic cell death markers of Bax/bcl-2 and cleaved
caspase-3 were increased in adenine-fed mice. Note: *P < 0.05 vs. control. PGC-1a peroxisomal proliferator-y coactivator-1a; NLRP3 NOD-like
receptor family, pyrin domain-containing 3; ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; ELISA

enzyme-linked immunosorbent assay; Ade adenine.

(Supplementary Fig. 2H-J). In vivo, treatment with metformin also
restored the transcript level of Ppargcla and reversed the altered
expression of mitochondrial dynamic-related genes in adenine-fed
and UUO mice (Fig. 3G-I and Supplementary Fig. 2K, L, 4A-E). The
AMPK activity by metformin was also confirmed in vitro in the
adenine-fed model (Fig. 31 and Supplementary Fig. 2M). Electron
microscopy examination also confirmed the loss of mitochondria
integrity in RTECs of adenine-fed and UUO mice. However, these
were significantly improved by metformin (Fig. 3J and Supplemen-
tary Fig. 4F). These findings suggest that PGC-1a restores the
impaired dynamics, morphology, and functions in mitochondria
during kidney injury.

The mitochondrial damage can lead to kidney cell death and
fibrosis. We observed elevated expression levels of fibrotic
markers including fibronectin and collagen 1, and apoptotic cell
death index of Bax/bcl-2 ratio and cleaved caspase-3 in RTECs
after TGF-B1 treatment. These increased expressions of cell death
markers were attenuated by overexpression of PGC-1a and
metformin, whereas exacerbated by siPGC-1a (Fig. 4A-D and
Supplementary Fig. 5A, B). In accordance with these findings, the
expression levels of fibrotic markers and apoptotic cell death
index were significantly increased in adenine-fed and UUO mice.
In contrast, metformin reversed all these expressions (Fig. 4E, F

SPRINGER NATURE

and Supplementary Fig. 5C, 6A, B). Masson'’s trichrome staining
also confirmed the improved fibrosis by metformin (Fig. 4G).
Notably, the augmented cell death markers and NLRP3 signaling
in RTECs treated with TGF-B were reversed by Z-Asp-2,6-
dichlorobenzoyloxymethylketone (Enzo Life Science, Farmingdale,
NY, USA), a pan-caspase inhibitor, suggesting that TGF-B-induced
injury is likely to be mediated by mitochondrial damage and early
apoptosis (Supplementary Fig. 7A-D). These findings together
suggest that activation of PGC-1a attenuates mitochondrial
damage and decreases cell death and kidney fibrosis.

PGC-1a modulates NLRP3 inflammasome signaling pathway

We then further explored the relationship between PGC-1a and
NLRP3 inflammasome pathway in mediating kidney injury. When
overexpression of PGC-1a was induced using Ppargcla plasmid
transfection, the expression levels of NLRP3, ASC, IL-1(3, and IL-18
were diminished in TGF-B1-treated RTECs (Fig. 5A, B and
Supplementary Fig. 8A). The concentrations of IL-1 and IL-18 in
TGF-B1-treated cell lysates measured by ELISA were also
decreased after Ppargcla plasmid transfection (Fig. 5C). Treatment
with metformin yielded a similar finding (Fig. 5D, E and
Supplementary Fig. 8B). However, knock-down of Ppargcia
resulted in elevated expression levels of NLRP3 inflammasome

Cell Death and Disease (2022)13:31



B.Y. Nam et al.

A Ppargc1a B Mfn Tfam
500 1.5 * ok 157 —
* ek —
-
400 =
3 £ o] H s
I3 o 1.0 & o 1.0 F
E 300 £ 5 E
g 2 - 2 2
= s =
5 200 % - Bos %
2 100 4 4 4
0 e L e S 0.0
& & & S & & S O O & N N N O & N N
& & & Ff P& s Ll L’ LS
& g € & € ¢ L T8 TR
Con TGF-B Con TGF-§ Con TGF-
C con TGF- D
PGC-1a siPGC-1a Con

PGC-1a siPGC-1a

Mfn2

m

86kDa

42kDa

N
o

Relative mRNA
[
o

0.0

F Con TGF-p
1.4 Mfn 1.5 Tfam 25 Drp1 Con Met Con Met
* Fk * Jok * ok
90kDa
g 121 ut s 0] 2 < 20
 1.01
@ 1.0 [ o
s : 2 2
& 0.8 ? & € s
ﬁ Mfn2 86kDa
Y x > > NI I P 65kDa
oo‘«‘x ‘}o« é?;x“p & x“g& é%x & ooox‘g ,\GQ o
S & N 3
G H | Con Ade
Tfam Con Met Con Met
1.51 yf"** 1.59 PR = ———
TR —_
< < <
E £ £ £
1 p = =] =]
< S 0.5 S 0.5 =
x © e [ 86kDa
P S e P e S a2 S P SR %
> 4 > 4 & @ & @
© Y'b ° ?'b & V'b & Y'b

Con + Met

pathway-related genes and proteins (Fig. 5A, B and Supplemen-
tary Fig. 8A). Moreover, the activation of the NLRP3 inflammasome
signaling pathway in adenine-fed and UUO mice was concomi-
tantly decreased by metformin (Fig. 5F, G and Supplementary Fig.
6C, D, 8C). The concentrations of IL-1f and IL-18 in RTECs and the
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kidney tissue lysates were significantly decreased by metformin
treatment measured by ELISA (Fig. 5H).

Given the ability of PGC-1a to regulate mitochondrial dynamics,
we then tested the role of Drp1 in NLRP3 inflammasome
activation. The NLRP3 inflammasome signaling was significantly

SPRINGER NATURE
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Fig.3 PGC-1a restores impaired mitochondrial dynamics and morphology during kidney injury. A mRNA expression level of Ppargcia was
modulated by Ppargcia plasmid transfection and siPGC-1a in TGF-f1-treated RTECs. B mRNA expression levels of mitochondrial dynamic-
related genes were restored by overexpression of Ppargcia with plasmid transfection, whereas reversed by siPGC-1a in TGF-31-treated RTECs.
C Protein expression levels of PGC-1a and mitochondrial dynamics were modulated by Ppargcia plasmid transfection and siPGC-1a in TGF-B1-
treated RTECs. D mRNA expression levels of Ppargcia were increased by metformin in TGF-p1-treated RTECs. E mRNA expression levels of
mitochondrial dynamic-related genes were restored by metformin in TGF-f1-treated RTECs. F Protein expression levels of p-AMPK, PGC-1q,
and mitochondrial dynamics were restored by metformin in TGF-1-treated RTECs. G mRNA expression levels of Ppargcla were increased by
metformin in adenine-fed mice. H mRNA expression levels of mitochondrial dynamic-related genes were restored in adenine-fed mice with
metformin. | Protein expression levels of p-AMPK, PGC-1a, and mitochondrial dynamics was restored in adenine-fed mice with metformin.
J Transmission electron microscopy images of RTECs from adenine-fed mice showed restoration of mitochondrial structures with metformin.
Note: *P < 0.05 vs. control; **P < 0.05 vs. TGF-f1-treated RTECs or adenine-fed mice. p-AMPK phospho-AMP-activated protein kinase; PGC-1a,
peroxisomal proliferator-y coactivator-1a; RTEC renal tubular epithelial cell; Met metformin; Mfn mitofusin; Tfam mitochondrial transcriptional
factor A; Drp1 dynamin-related protein 1; Ade adenine; Met metformin.
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reduced by the knockdown of Drp1. However, in RTECs with both

suggest a possible bidirectional relationship between mitochon-
knockdown of Ppargcia and Drp1, the expression levels of NLRP3

drial damage and NLRP3 signaling.

inflammasome components were not decreased compared with
those in TGF-B1-treated cells. In RTECs with Ppargcla over-
expression and Drp1 knock-down, NLRP3 inflammasome signaling
was less activated (Supplementary Fig. 9A, B). These findings
suggest that Drp1 can partly mediate NLRP3 inflammasome
activation, but other actions of PGC-1a are involved in the
regulation of the NLRP3 signaling pathway.

We further examined whether a feedback signal from the
NLRP3 inflammasome exists. To this end, we obtained RTECs by
primary culture from Nirp3 knockout mice. In these cells treated
with TGF-f1, there was less activation of NLRP3 signaling than in
counterpart cells, which led to the improvements in mitochondrial
dynamics (Supplementary Fig. 10A-E). Accordingly, there were
concomitant improvements in fibrotic changes and cell death in
the absence of Nlrp3 (Supplementary Fig. 10F, G). These findings

SPRINGER NATURE

Oligomerization of NLRP3 with the adapter protein, ASC, is a key
step of inflammasome complex formation. Thus, we examined
whether the assembly of NLRP3 inflammasome is affected by PGC-
1a. In TGF-B1-treated RTECs, ASC binding to NLRP3 was observed.
This oligomerization was significantly decreased by overexpres-
sion of PGC-1a or metformin, whereas the binding was restored
by siPGC-1a (Fig. 6A-C). In adenine-fed mice, NLRP3 oligomeriza-
tion and activation were confirmed by ASC binding to NLRP3 and
this was abolished by metformin (Fig. 6D, E).

Finally, we further examined mitochondrial contents and
concomitant change in NLRP3 expression. Confocal microscopy
examination revealed that there was a reciprocal change in
MitoTracker Red intensity and NLRP3 expression in RTECs with or
without PGC-1a. TGF-f1 decreased the staining intensity of
MitoTracker and these were restored by PGC-1a overexpression
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Fig. 5 PGC-1a modulates the NLRP3 inflammasome signaling pathway. A mRNA and B protein expression levels of NLRP3 inflammasome
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and metformin. Conversely, the increased expression of NLRP3 in
TGF-B1-treated RTECs was reduced by PGC-1a overexpression and
metformin. However, siPGC-1a reversed these findings (Fig. 7). In
aggregate, these findings indicate that the assembly of the NLRP3
inflammasome complex was induced during kidney injury, and
the activation of this pathway was attenuated by PGC-1a.

PGC-1a orchestrates the release of mtDNA, oxidative stress,
and TNFAIP3 to regulate NLRP3 inflammasome

To further clarify the mechanistic link between PGC-1a and NLRP3
inflammasome pathway in kidney injury, we first examined the
changes in mtDNA upon cell injury, which is known as a trigger of
NLRP3 inflammasome activation. The mtDNA copy numbers were
decreased in the mitochondrial fraction and increased in the
cytosolic fraction after TGF-B1 treatment, suggesting that mtDNA
was released from the mitochondria into the cytosol. Notably, these
changes were restored after overexpression of Ppargcia (Fig. 8A).

Then, we examined oxidative stress, a positive regulator of
NLRP3 inflammasome. In TGF-31-treated RTECs, oxidative stress
was notably pronounced compared with controls evidenced by
increased MitoSOX staining intensity and increased MDA levels.
Treatment with Ppargcla plasmid and metformin attenuated this
overproduction of mitochondrial ROS. Conversely, Ppargcla
knock-down further increased oxidative stress levels in TGF-f1-
treated RTECs (Fig. 8B-D). Similar to the findings of in vitro study,
MDA levels were significantly increased in adenine-fed and UUO
mice. The enhanced oxidative stress was reduced by metformin
(Fig. 8E and Supplementary Fig. 6E).

Lastly, we further examined TNFAIP3, which is regulated by
PGC-1a and is also known as a negative regulator of NLRP3
inflammasome. TGF-B1 reduced transcript levels of Tnfaip3 and
this decreased expression of Tnfaip3 was restored by restoration of
PGC-1a. In contrast, Ppargcla knock-down resulted in further
decreased expression of Tnfaip3 (Fig. 8F, G and Supplementary
Fig. 8D, E). Moreover, there was a decreased expression of

SPRINGER NATURE

TNFAIP3 in adenine-fed and UUO mice and metformin restored
this expression (Fig. 8H and Supplementary Fig. 6F, 8F). In
aggregate, these findings suggest that PGC-1a can regulate NLRP3
inflammasome via modulation of mtDNA release, mitochondrial
ROS/oxidative stress, and TNFAIP3.

DISCUSSION

The present study showed that PGC-1a mitigated mitochondrial
damage and oxidative stress levels, restored mitochondrial
integrity and TNFAIP3, and attenuated the activation of the
NLRP3 inflammasome pathway in the TGF-f-treated RTECs and
animal models of kidney injury. These improvements concomi-
tantly resulted in decreased cell injury and fibrosis. A schematic
figure showing the potential mechanism on the regulation of
NLRP3 inflammasome by PGC-1a is presented in Supplementary
Fig. 11. The findings of this study unravel the role of PGC-1a in the
regulation of the NLRP3 inflammasome signaling via modulating
mitochondrial viability and dynamics and also suggest a possible
therapeutic potential of PGC-1a for kidney injury.

The NLRP3 inflammasome has been implicated in the
pathogenesis of cellular injury, inflammation, and fibrosis in
various kidney injury models [15-19, 27-29]. In agreement with
previous studies, we showed that the expression levels of NLRP3
inflammasome pathways including NLRP3, ASC, IL-1(3, and IL-18
were increased along with elevated expression levels of cellular
injury markers in TGF-B1-treated RTECs and animal models with
adenine diet and UUO. Several damage-associated molecular
patterns (DAMPs) released during renal tubular cell injury are
suggested to activate the NLRP3 inflammasome [27, 30-371.
Notably, kidney intrinsic cells express components of the NLRP3
inflammasome pathway [38], and activation of this signaling can
contribute to kidney injury [15, 29]. However, it is uncertain how
NLRP3 is activated in these cells. In this study, we particularly
focused on regulators of mitochondrial biogenesis because
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dysregulated mitochondria can trigger the activation of the NLRP3
inflammasome pathway [39, 40].

Given abundant mitochondrial contents found in the kidney,
growing attention has been paid to PGC-1a in the kidney disease
research field. In the kidney, PGC-1a expression is localized to the
cortex and outer medulla, corresponding to regions of high
mitochondrial activity [41]. As damaged mitochondria are
apparently observed in various forms of kidney injury, several
studies have demonstrated the crucial protective role of PGC-1a
against kidney disease models [41-43]. Furthermore, there has
been accumulating evidence that loss of PGC-1a contributes to
the development of renal fibrosis and subsequent CKD [9, 44, 45].
In the Notch-induced kidney injury model, PGC-1a also protected
tubule injury and ameliorated fibrosis [9]. Here, we demonstrated
the role of PGC-1a in preventing kidney injury in light of the
regulation of the NLRP3 inflammasome pathway. The over-
expression of PGC-1a with plasmid and metformin attenuated
TGF-B1-induced cell damage as well as activation of the NLRP3
inflammasome. These results were consistent with adenine-fed
and UUO mice models. Conversely, down-regulation of PGC-1a
augmented the activation of NLRP3 inflammasome and cellular
injury.

To date, few studies have examined the relationship between
PGC-1a and NLRP3. In a study by Diao et al. [46], severe burn
injury-induced endoplasmic reticulum stress in hepatocytes
activated NLRP3 inflammasome. Interestingly, activation of
hepatic NLRP3 inflammasome was in parallel with inhibition of
PGC-1a. They further examined the upstream regulators of PGC-1a
such as protein kinase A catalyst, AMPK, and sirtuin-1, all of which
were significantly decreased after burn injury. They suggested that
the lack of PGC-1a may play an important role in the metabolic
derangement and contributes to the activation of the NLRP3
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inflammasome pathway. However, this study did not clarify how
PGC-1a is involved in the NLRP3 pathway.

In this study, we demonstrated several mechanisms that PGC-1a
regulates the NLRP3 inflammasome pathway in the kidney. Given
that PGC-1a plays a key role in regulating mitochondrial
biogenesis and mitochondrial dynamics and dysregulated mito-
chondria trigger the NLRP3 pathway, it can be presumed that
PGC-1a could regulate the NLRP3 inflammasome pathway via
modulating mitochondrial viability. As shown in our experiments,
the expression levels of mitochondrial dynamic-related genes
were dysregulated in TGF-B1-treated RTECs. These changes were
restored by overexpression of PGC-1a and metformin, while
down-regulation of PGC-1a aggravated this dysregulation. The
structural improvement of TGF-B1-induced mitochondria damage
by PGC-1a was also observed by MitoTracker staining and electron
microscopy. The functional assay of mitochondria showed that
restoration of PGC-1a significantly improved the reduced mito-
chondrial membrane potential and the decreased oxygen
consumption rate in TGF-B1-treated RTECs. Finally, we showed
the release of mtDNA to the cytosol from the mitochondrial
fraction in TGF-B1-treated RTECs. This release of mtDNA was
prevented by Ppargcia overexpression. It should be noted that
mitochondria-driven mtDNA is known to activate NLRP3 inflam-
masome [39, 47]. These findings together suggest that dysregu-
lated mitochondrial dynamics contribute to the activation of
NLRP3 inflammasome and consequent renal tubulointerstitial
inflammation and fibrosis. However, there may be a reciprocal
interaction between mitochondrial injury and NLRP3 inflamma-
some. A previous study by Yu et al. demonstrated that NLRP3
inflammasome activation caused mitochondrial damage via
multiple pathways [39]. Similarly, we also showed that silencing
NLRP3 attenuated the activation of the NLRP3 signaling pathway
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and led to improvements in mitochondrial dynamics. These
findings indicate the possibility of bidirectional interaction
between NLRP3 and mitochondria.

PGC-1a also has critical roles in essential metabolic processes
such as fatty acid oxidation, oxidative phosphorylation, and ROS
detoxification [48-50]. In addition, several NLRP3-activating stimuli
are associated with ROS production [32]. Thus, regulation of
oxidative stress levels by PGC-1a can affect NLRP3 inflammasome
activation. Recently, mitochondrial ROS production has been
described to trigger activation of NLRP3 inflammasome during
renal tubulointerstitial fibrosis. Zhuang et al. [22] reported that
mitochondrial-derived oxidative stress mediated albumin-induced
mitochondrial dysfunction and subsequent renal tubular injury.
Furthermore, NLRP3 inflammasome was activated in the kidney by
albumin overload, which was entirely abolished by MnTBAP, a
mitochondrial ROS scavenger. In line with these findings, we
showed that enhanced oxidative stress was associated with the
activation of the NLRP3 inflammasome pathway during kidney
injury. This increased oxidative stress level was attenuated by
overexpression of Ppargcla and metformin, whereas augmented
after down-regulation of Ppargcia. The reduction of oxidative
stress levels by metformin was also confirmed in two different
animal models. Taken together, enhanced oxidative stress levels
including mitochondrial ROS production by PGC-1a deficiency can
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result in the activation of NLRP3 inflammasome and consequent
renal tubulointerstitial inflammation and fibrosis.

TNFAIP3 is known to be directly regulated by PGC-1a and it has
a role in inactivating the NLRP3 inflammasome pathway in
inflammatory cells such as macrophage. Kang et al. [51] showed
that dysfunctional telomeres cause macrophage mitochondrial
distress, metabolic imbalance, and hyperactivation of the NLRP3
inflammasome. They identified the PGC-1a/TNFAIP3 axis as a
mechanism responsible for the homeostatic role of the telomere,
and the disturbance in this axis led to inflammatory Terc/~
macrophages and severe bacterial pneumonia in Terc™’~ mice. In
the present study, TGF-1 decreased the transcript level of Tnfaip3
in RTECs. PGC-1a restored these changes, whereas Ppargcla
knock-down further decreased Tnfaip3 level. Interestingly, we
found that both knock-down of Ppargcia and Drpl in TGF-B1-
treated RTECs did not reduce NLRP3 inflammasome activity, while
RTECs with Ppargcia overexpression and Drpl knock-down
exhibited less activation of NLRP3 inflammasome. These findings
suggest that PGC-1Ta can modulate NLRP3 signaling via other
pathways such as TNFAIP3 beyond mitochondrial dynamics.

We used metformin as an indirect activator for PGC-1a. A
pharmacologic dose of metformin can activate AMPK and increase
ATP synthesis in various cells including renal intrinsic cells [52-55].
In this study, we used 1 mM of metformin based on previous
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studies showing that this dose of metformin decreased kidney
fibrosis, ER stress, and activated AMPK activity. In the kidney of
adenine-fed mice and RTECs treated with TGF-f1, the expression
of p-AMPK was decreased. In contrast, metformin treatment
reversed the decreased expression of p-AMPK. These changes
were concordant to PGC-1a. With evidence that metformin
activates the AMPK-PGC-1a axis, clinical studies on the beneficial
effects of metformin against kidney injury are emerging. In a post-
hoc analysis of the Trial to Reduce Cardiovascular Events with
Aranesp Therapy (TREAT), metformin use was independently
associated with a 23% lower risk of the kidney disease composite
outcome [56]. In addition, a recent observational study by Kwon
et al. showed that metformin use was associated with a
significantly lower risk of end-stage kidney failure among 10,426
patients with type 2 diabetes [57]. The ability of metformin to
activate AMPK has recently gained attention in polycystic kidney
disease because this action of metformin decreased cell prolifera-
tion via inhibition of the mammalian target of rapamycin pathway
and cyclic AMP levels in preclinical studies [58, 59]. Nevertheless,
the use of metformin in advanced CKD carries a risk of lactic
acidosis [60]. Thus, future trials should weigh the beneficial effects
of metformin against lactic acidosis.

In conclusion, we demonstrated the role of PGC-1a in the
regulation of the NLRP3 inflammasome activation via modulating
mitochondrial dynamics and viability, and TNFAIP3 during kidney
injury. These results suggest that inhibition of NLRP3 inflamma-
some by PGC-1a can be a future therapeutic target against CKD.
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The data supporting the findings of the present study are available from the
corresponding author upon reasonable request.
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