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Harnessing protein folding neural networks for
peptide–protein docking
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Highly accurate protein structure predictions by deep neural networks such as AlphaFold2

and RoseTTAFold have tremendous impact on structural biology and beyond. Here, we show

that, although these deep learning approaches have originally been developed for the in silico

folding of protein monomers, AlphaFold2 also enables quick and accurate modeling of

peptide–protein interactions. Our simple implementation of AlphaFold2 generates

peptide–protein complex models without requiring multiple sequence alignment information

for the peptide partner, and can handle binding-induced conformational changes of the

receptor. We explore what AlphaFold2 has memorized and learned, and describe specific

examples that highlight differences compared to state-of-the-art peptide docking protocol

PIPER-FlexPepDock. These results show that AlphaFold2 holds great promise for providing

structural insight into a wide range of peptide–protein complexes, serving as a starting point

for the detailed characterization and manipulation of these interactions.
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Peptide–protein interactions are highly abundant in living
cells and are important for many biological processes1. It is
estimated that up to 40% of interactions in cells are medi-

ated by peptide–protein interactions, or peptide-like interaction:2

short segments, isolated or embedded within unstructured regions
that mediate binding to a partner3. In addition, peptides are often
used for biotechnological applications, drug delivery, imaging, as
therapeutic agents, and other applications4,5, by binding proteins
and mediating or blocking interactions.

Determining the 3-dimensional structure of these peptide–-
protein complexes is an important step for their further study.
They can provide the basis to identify hotspot residues that are
crucial for binding6–8, and by mutating these hotspots, the
functional importance of a given interaction can be uncovered9.
They could help to better understand disease-causing mutations
and also serve as a starting point for the design of strong and
stable peptidomimetics10,11.

However, peptide-mediated interactions pose significant chal-
lenges, both for their experimental as well as their computational
characterization: These interactions are in many cases weak,
transient, and considerably influenced by their context, resulting
in often noisy experiments. Widely used structure determination
methods (e.g., X-ray crystallography) are not applicable to many
of these interactions. Computational modeling, and particularly
blind peptide–protein docking12, is hindered by the lack of
known structure for the peptide side, in contrast to classical
domain-domain docking, where the structure of the free indivi-
dual domains is usually defined. In order to succeed in the study
and design of peptide–protein interactions, we must gain a better
understanding of the peptide conformational preferences.

One way to approach this challenge is based on the observa-
tion that a peptide bound conformation is often present in solved
monomer structures13. Based on this finding, we developed the
high-resolution blind peptide docking protocol, PIPER-
FlexPepDock (PFPD)13. First, a representative ensemble of
fragments is extracted from monomer structures using the
Rosetta Fragment Picker14, which takes into account both
sequence and (predicted) secondary structure similarity. Then
this ensemble is rigid-body docked onto the receptor with the
PIPER protocol15, followed by short local refinement by Rosetta
FlexPepDock16, which simultaneously optimizes internal peptide
and rigid-body degrees of freedom. Numerous other peptide
docking approaches have since been developed12,17, many
focusing on efficient low-resolution docking18,19, others lever-
aging information about protein interfaces to find matches for
similar interface patches20–22.

Another way to approach the global peptide docking challenge
is to view the binding of a peptide to its partner as the final step of
protein folding, complementing the receptor surface with a
missing piece23. Indeed, functional proteins can be reconstituted
experimentally from short fragments of the original sequence,
indicating that covalent linkage is not necessarily a prerequisite for
monomer folding24,25. We and others have successfully modeled
peptide–protein interactions using this principle, by finding frag-
ments in monomer structures and on protein-protein interfaces
that could complement structural patches derived from the surface
of a given receptor20–22,26. These concepts lay the groundwork for
novel approaches in peptide–protein docking, where the vast
information inherently stored in folded monomer structures is
efficiently integrated in the search space for peptide docking.

The advances in the field of protein structure prediction in
recent years open up exciting opportunities to fully leverage such
information. The development and application of deep learning
(DL) neural network (NN) architectures to predict monomeric
protein structures provided us with highly accurate computa-
tional models as particularly showcased by the last CASP14

experiment27. AlphaFold2 (AF2) developed by Google Deepmind
was able to generate models of exceptional accuracy, approaching
the resolution of crystallography experiments28. Significantly
improved modeling was also reported for RoseTTAFold, devel-
oped by RosettaCommons, that followed ideas from AF2 and also
implemented fully continuous crosstalk between 1D, 2D and 3D
information29. Most importantly, AF2, as well as RoseTTAFold,
are now freely available to the scientific community30,31, opening
up powerful avenues for protocol development and applications
to many biological systems that were not amenable to structural
characterization in the past. These are truly exciting times!

Can such NNs also model peptide–protein interactions, and not
only monomers? If peptide–protein interfaces are indeed abundant
in monomer structures, and if indeed peptide–protein interactions
can be captured as protein folding as stated above, RoseTTAFold
and AF2 should, in principle, also allow for the modeling of
peptide–protein complex structures. Moreover, they could alleviate
the lack of data impairing the ability to fully employ DL for
peptide–protein interactions. We note that both RoseTTAFold and
AF2 NNs were trained on single chain protein structural data, and
both use Multiple Sequence Alignments (MSA) as a critical step in
structure prediction. Prediction of protein-protein complexes was
shown to be possible given an informative MSA27,29,32, and it has
also been explored whether it is indeed necessary to provide paired
sequences for successful extraction of interface information33,34. As
both methods heavily rely on good quality MSA, the main chal-
lenge would be to accurately predict the peptide conformation.
Mainly due to their short length, creating an effective MSA for
these regions is challenging.

Here we present a global peptide–protein docking approach
that incorporates the biological concept of peptide–protein
interactions mimicking protein folding and harnesses NNs
trained to predict monomeric protein structures. We show that
by connecting the peptide to the receptor (e.g., by a poly-glycine
linker), monomer folding NNs generate accurate peptide–protein
complex structures (a similar idea was proposed in parallel by
others35). This is possible thanks to the ability of AF2 to (1)
accurately identify unstructured regions36 and model these as
extended linkers, and (2) predict peptide-receptor complexes
without a multiple sequence alignment for the peptide partner,
as we demonstrate in this study. Best performance is obtained
by combining our linker-based strategy with modeling of
peptide–protein complexes by presenting two separate chains to
AF2. The latter has been implemented for the modeling of homo-
and hetero-multimers in several recent studies on AF236,37.

We perform a short calibration on a small representative,
previously well-studied set of protein-peptide interactions, con-
sisting of peptides with and without known binding motifs13. We
then provide a detailed comparison to the currently top-
performing global peptide docking protocol PFPD13. We then
assess the protocol on an extensive, non-redundant set of curated
peptide–protein complexes consisting of 96 interactions, each
involving a distinct fold. Finally, we explore specific types of
interactions of special interest, including examples in which
peptide binding induces a large conformational change in the
receptor upon binding. The latter are very challenging to model
using docking, but easily amenable to AF2 which models the
complex as a whole. Beyond presenting an approach to dock
peptides, this study provides another view on what AF2 may have
learned beyond memorization.

Results
Adapting NN-based structure prediction to peptide docking.
By adding the peptide sequence via a poly-glycine linker to the
C-terminus of the receptor monomer sequence, we mimicked
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peptide docking as monomer folding. This is based on the
assumption that the NN should identify the poly-glycine segment
as non-relevant and use it merely as a connector (Fig. 1a). In
contrast to AF2, a similar tactic using RoseTTAFold did not
succeed but rather attempted to fold the polyglycine into a
globular structure or create various loops with intra-loop inter-
actions (Supplementary Figure 1). This can be explained by the
fact that RoseTTAFold was not trained to identify unstructured
regions29, in contrast to AF2 where these regions were not
removed before training. We, therefore, proceeded only with AF2
for NN-based peptide docking.

AF2 predicts peptide–protein structures at high accuracy. We
evaluated the feasibility of our approach on a set of peptide–protein
complexes described in a previous study (26 complexes, 12 of which
have an experimentally characterized peptide binding motif, termed
motif and non-motif sets)13. Figure 1a shows an example of accu-
rate modeling, and another example where AF2 fails. The failure is
easily identified by the poly-glycine linker “throwing” the peptide
segment into space. Overall, AF2 models 75% of the interactions in
the motif set within an impressive 1.5 Å RMSD, while performance
is inferior for the non-motif set (36% within 2.5 Å RMSD) (Fig. 1b,
upper left panel; RMSD calculated over the peptide interface residue
backbone/heavy atoms. upper right panel: corresponding RMS
values calculated over the whole interface after its alignment, cor-
responding to the CAPRI Irms measure, see Supplementary Fig. 2
and Methods for details).

We were able to obtain these results after only minor
optimization of the default AF2 monomer structure prediction
protocol for peptide docking (see Methods). Most importantly, we
also modeled the interaction with separate chains, as has already
been suggested for protein docking33,34,37. This implementation
provided complementary results (see Supplementary Fig. 3; results
are detailed in Supplementary Data 1). We, therefore, merged both
approaches and assessed performance based on the best RMSD
model among 10 generated models (i.e., five linked and five separate
chain models). Besides the type of linkage, we evaluated several
other parameters that could affect performance (see Supplementary
Fig. 4). Increasing the number of recycles from 3 to 9 resulted in
slightly better performance. Therefore we continued using 9 recycles
for subsequent runs.

Our results demonstrate that even without any dedicated
training, AF2 predicts accurate models at a good resolution for a
high fraction of interfaces. This prediction is possible despite the
lack of informative MSAs for the peptide partner, and therefore of
corresponding co-evolutionary signals between the peptide and
the receptor. This lack is expected as we provide an input that is
fragmented, i.e. an artificial fusion or a segment too short to yield
significant alignments.

Performance for the motif set is notably better compared to
PFPD (where we select the best RMSD model among the top 10
cluster centers, as reported previously13), while PFPD performs
slightly better for interactions with no reported motif (the non-
motif set) (Fig. 1b). Importantly, PFPD and AF2 results fail on
different examples (Fig. 1c), indicating that a future combination
of the two approaches may boost performance even further.

In contrast to PFPD, using AF2 for peptide docking includes
modeling of both the peptide and the receptor. The performance
calculated over the full interface (i.e., interface residues of both
peptide and receptor, Fig. 1b, right) is similar to the one of the
peptide, thanks to highly accurate modeling of the individual
receptor as well as the peptide structures (Fig. 1d). A non-trivial
insight is that accurate modeling of the individual peptide or
receptor structures does not necessarily result in the accurate
modeling of the interaction (Supplementary Fig. 5).

We assessed the generality of our approach on a large, non-
redundant set of 96 complexes that we curated for this purpose
(the Large Non-Redundant, LNR, set; see Methods). Modeling of
this set reveals that almost 50% of the interactions are modeled
within 2.5 Å and about 60% are modeled within 5.0 Å RMSD, a
performance slightly better than the non-motif set, but inferior
to the motif set, as might be expected (Fig. 1b, upper panel).
When calculated overall atoms of peptide interface residues, 37%
of the interactions are modeled within 2.5 Å RMSD (Fig. 1b,
lower panel).

Motifs are well modeled and can be identified by high pLDDT.
Given the particularly good performance of AF2 for interactions
of proteins with peptides containing a known binding motif
(Fig. 1b, blue lines), could we infer the position of a motif based
on our predictions? Fig. 2a shows heatmaps reflecting per resi-
due RMSD, together with information about motif residues for
the motif set. In most of the complexes, motif residues show
considerably lower RMSD values. For some of the peptides in
the non-motif set (Fig. 2b), we could identify a similar pattern.
For example, we found that the interaction between yeast
MAPK Fus3 bound to a peptide derived from MAPKK Ste7 (pdb
2b9h), has a known binding motif38 that was not annotated in
our previous study13.

Quite a few longer stretches of amino acids are modeled with
low RMSD values (Supplementary Fig. 6), providing a good
starting point to look for such new motifs. Unfortunately,
however, in a real world scenario the peptide structure and the
corresponding RMSD values of the models are not known.
Luckily, for each model AF2 provides as output also a residue-
level confidence estimate, pLDDT (predicted Local Distance
Difference Test39). Inspection of the corresponding heatmaps
shows considerable correlation between the two measures (Fig. 2a,
b), as was shown previously for AF2 predictions28. A plot of
RMSD and pLDDT values for all peptides predicted in this study
reveals that this is a general feature: pLDDT values above 0.7
consistently represent accurate predictions within 2.5 Å RMSD,
while values below predominantly reflect worse predictions
(Fig. 2c; 75% of residues with pLDDT > 0.7 are modeled
accurately, while only 8% of the accurate predictions are missed).
Average pLDDT>0.7 (calculated over peptide residues) is also
predominantly associated with high DockQ40 values (>0.6)
representing medium-to high quality models (This association
is stronger than that of normalized Buried Surface Area of
models; Supplementary Fig. 7). This suggests that AF2 predic-
tions may be used to reliably identify correct models, and more
importantly, previously unidentified motifs.

AF2 models identify many interface hotspots. In addition to
the identification of the main binding determinants of the
peptide, peptide–protein docking aims to provide information
about the binding pocket on the receptor. Many receptor
interface residues are indeed identified by the AF2 models
(Fig. 3a). For the motif set, AF2 provides comparable, although
slightly lower recovery of receptor interface residues to PFPD,
however for the non-motif-set the recovery rate is significantly
lower. Detailed inspection reveals that PFPD can model a less
accurate peptide conformation into the correct binding site (see
also Fig. 1c, left), resulting in overall better recovery of the
binding site, as also reported previously41. In turn, AF2 usually
generates accurate models once a binding site is identified, but
these do not necessarily cover the full site. Still, in most cases
AF2 finds at least one residue in the receptor binding site,
providing a good starting point for further examination of the
predictions using low throughput experiments6.
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Fig. 1 AF2 can be adapted to accurately model many peptide–protein interactions. a Concept of peptide–protein docking with a poly-glycine linker,
successfully identified as unstructured region and modeled as a circle, placing the peptide at its correct position (left; example PDB ID 1ssh63), or out in
space (right; example PDB ID 2orz64). The native peptide is shown in black. b Cumulative performance of AF2 and PFPD (dashed lines) on motif (12
complexes, blue), non-motif (14 complexes, red), and LNR (96 complexes, AF2 only, yellow) sets, as measured over the interface residues of the peptide
(Left - Peptide interface: after aligning the receptor) or the full interface (Right - CAPRI Irms: after aligning the whole interface. See also Supplementary
Fig. 2). c Correlation between performance of AF2 and PFPD for the motif and non-motif PFPD sets. Triangles indicate values over 15.0 Å RMSD. Left: PDB
ID 2b9h38, interaction between MAPK Fus3 and a peptide derived from MAPKK Ste7, where PFPD positions the peptide within the pocket, but in a flipped
orientation (N-termini are indicated by spheres). Right: PDB ID 1awr65, interaction between CypA and a HIV-1 Gag polyprotein derived peptide, where AF2
models the peptide within the pocket but in a wrong position. Shown are the peptide structures generated by the linker model (cyan, blue) or PFPD
(magenta), and the crystal structure (black). d Overall assessment of performance measured for the individual partners (after aligning each separately).
Source data are provided as a Source Data file.
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Encouraged by the identification of peptide motifs and the
binding pocket residues (Figs. 2a and 3a), we next investigated
how well interface hotspots are recovered in AF2 models. For this,
we performed computational alanine scanning, both on models
and native structures (Fig. 3b), using Rosetta alanine scanning6.
This simulates a real world scenario where a model would be used
for interface hotspot detection, compared to the ground truth

based on the crystal structure (assuming optimal performance of
the alanine scanning protocol). Correlation is very strong for
accurate models (within 2.5 Å RMSD: Spearman’s ρ= 0.76 and
0.65, for the LNR set peptide and receptor residues, respectively;
all with p values ≪10−40), but also significant overall (corre-
sponding Spearman’s ρ= 0.51 and 0.34, Fig. 3b and green dots
therein). Hotspots are well recapitulated (see Supplementary
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Data 2), featuring only few false positives (i.e., wrong hot-
spot predictions; upper left quarter of plots in Fig. 3b), however
more false negatives (i.e. missed interface hotspots, lower right
quarter of plots therein). Many of them are associated with
inaccurate structures, in particular peptides modeled into space
(maroon dots on the horizontal 0 value line in Fig. 3b), but also
well-modeled structures can miss hotspots identified with the
native structure. Thus, while it has been discussed that AF2 is not
to be used for the modeling of structural effects of point
mutations in the query sequence42, models can still be the basis
for alanine scanning and other structure-based characterizations.

Peptide sequence plays a crucial role in successful docking. To
better understand AF2 dependency on peptide sequence, we
tested an extreme case, in which the whole peptide sequence is
replaced by poly-alanine. Performance was dramatically reduced,
in particular, when a conserved motif was removed (Fig. 3c). It is
noteworthy that a few complexes in each of the datasets were still
modeled within 2.5 Å RMSD. But overall, without any informa-
tion about the peptide sequence, AF2 is not able to successfully
model the peptide–protein complex structure.

AF2 models binding-induced conformational changes. One of
the most challenging tasks in protein docking is the modeling of
conformational changes that occur upon binding. Given the
success of AF2 in modeling both receptor and peptide con-
formation (Fig. 1d), we hypothesized that these cases would
particularly benefit from this approach that models peptide
binding as part of the folding process. Figure 4 shows examples,
in which a C-terminal helix positioned in the binding site is
removed to make place for the peptide (Fig. 4a), or a beta hairpin
loop becomes disordered upon peptide binding (Fig. 4b). In both
cases, AF2 correctly predicts the complex structure. When using
AF2 to model the free receptor, it also recovered the bound
conformation (rather than the free, unbound structure of the
receptor). This indicates that the bound conformation was
learned, and AF2 predicts the bound conformation by default,
even without the presence of the peptide (for these examples). In
general, AF2 will tend to clearly favor one conformation. Mod-
eling proteins with multiple conformations has been reported to
be a challenging task for AF2, only possible by downsampling the
MSA and introducing templates43.

What has AF2 learned? In order to unravel the secrets of
AF2 success for peptide–protein docking, we performed addi-
tional analyses that shed light on the determining features of the
peptide and receptor that make this success possible. Can the high
performance be attributed mainly to memorization, or has it
actually learned basic features?

On the peptide side, we showed that peptide sequence is crucial
for successful modeling of interactions to a receptor (Fig. 3c).
Additional peptide features that could affect the quality of AF2
peptide-receptor models include the peptide length and second-
ary structure. Peptide length seems to have little effect on

AF2 success (Fig. 5a, Supplementary Fig. 8a), as has already been
shown35. This is in contrast to its effect observed on peptide
docking with PFPD13. Regarding secondary structure, helical
peptides are particularly well modeled (Fig. 5b, Supplementary
Fig. 8b). This indicates that AF2 is biased towards helical
structures, as was reported for other NNs44, possibly due to its
over-representation in the learning set.

Could AF2 have copied the peptide–protein complex structures
from templates in the training set? Although the training set and
learning protocol of AF2 were carried out on single chains28,
there may be cases in which the peptide complex structure was
nonetheless learned as part of the chain, as in the case of a
synthetic fusion of segments, uncleaved pro-proteins, or single
chains with residues located within the binding site (e.g., their
own tails). We found only 13 possible such examples in the LNR
set (see Methods), among them five with precise recapitulation of
the interaction (i.e., 5% of the LNR set). For these five, highly
accurate models were generated (within 1.5 Å RMSD, see
Supplementary Data 3). Success in these cases could be a result
of the direct memorization of precisely those structures. For the
remaining eight, half are successfully modeled, reflecting
performance similar to the overall set (see Fig. 5c for specific
examples). We conclude that at most a few cases of successful
modeling could result from direct memorization. In fact, we note
that even if the solved structure is provided as an additional input
(for the trained NNs model1 and model2; see Methods), it is
rarely used, and only in a few cases does this improve modeling
(Supplementary Data 4).

We used the same approach to model an additional set of
peptide–protein interactions that we had removed from our LNR
set, due to the context in the solved structure that could prohibit
accurate modeling of the complex. This includes post-translational
modifications (PTMs) of peptides or receptor interface residues,
additional ligands at the interface that contribute to peptide
binding, or crystal contacts that significantly affect the peptide
conformation (see Methods). This type of information was not
directly included in the training or inference pipeline of AF2, and
is not provided as input. Surprisingly, modeling performance for
interactions that include PTMs or a ligand at the interface is
comparable to that of the LNR set (Fig. 5d). AF2 succeeds in
modeling over 35% of these complexes within 2.5 Å, despite
training only on single chains, canonical amino acids and without
bound ligands. We believe this could be attributed to learning the
structures as they occur in the PDB database, emphasizing that
while AF2 may be optimal for structural modeling, it lacks a more
intricate understanding of the details of biophysics underlying
some of the peptide–protein interactions.

To summarize, we show here that AF2 can model not only
monomer structures but also many of the interactions between
peptides and protein receptors. This is true in particular when a
peptide binding motif is available, and even in challenging
cases where the monomer changes its conformation upon
peptide binding. We also highlight some limits of AF2,
and details not learned that need to be completed using
complementary approaches.

Fig. 2 Accurate modeling results in identification of motif residues and correlates with high pLDDT values. a Heatmaps of per residue RMSD (shades of
green) for peptide–protein interactions with known motifs (motif set), with the top bar highlighting the motif region in dark blue, followed by corresponding
pLDDT heatmaps (shades of brown). Each row corresponds to the network parameters used to generate the model (1 through 5). b Heatmaps for the non-
motif set. Note 2b9h, for which reinspection of the literature reveals a motif. c Scatterplots of pLDDT vs. RMSD values for the different datasets,
representing peptide per residue values of the AF2 models. For the LNR set, clusters of points are represented by hexagonal bins, colored in shades of
yellow according to the number of residues in the cluster. The number of observations in each subsection is noted therein. The motif set is shown in shades
of blue and the non-motif set in shades of red. Models with linker are represented by dark colored “x” and models with no linker (separate chains) are
represented with pale “+”. Source data are provided as a Source Data file.
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Discussion
In this study we have applied the AF2 protein structure prediction
protocol to predict peptide–protein complex structures. Without
any further training, and only minor optimization of the runtime
parameters, we were able to reach an accuracy comparable to that
of state-of-the-art protocol specifically developed for the task of
peptide docking (Fig. 1).

AF2 has many advantages: it is much faster than established
protocols such as PFPD (around 20min for five models––when using

the MMSeqs2 server45 for MSA generation, which is the bottleneck of
the protocol–vs. a couple of hours for docking with PFPD), with no
significant trade-off between model quality and runtime. An addi-
tional advantage is that AF2 only requires sequences as inputs; no
structural information is needed. Finally, for AF2 predictions, clear
failures are often easily identified as structures in which the peptide
does not interact with the receptor, but rather points out into space.

AF2 has also disadvantages: The diversity of interfaces is
usually low, in line with observations that such models quickly
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Fig. 3 Recovery of peptide–protein interface characteristics by AF2 models. a AF2 models identify a significant fraction of the receptor binding pocket
residues, even though coverage is reduced compared to PFPD models. Box-and-whisker plots are shown for motif (n= 12, blue) and non-motif (n= 14, red)
sets, with median as center line, quartiles as box limits, and lower/upper whiskers extending to the maximum/minimum data points within the interquartile
range, respectively. b Computational alanine scanning recovers well-predicted interface hotspots, mostly for accurate models (within 2.5 Å RMSD):
Comparison of computational Rosetta alanine scanning results applied to the best model vs. the native structure. The vertical and horizontal lines represent
the threshold ΔΔG= 1.5 kcal/mol used to define interface hotspots. The different colors represent distinct bins of RMSD (of the model used for
alanine scanning). The number of residues in each quadrant is indicated (counts from models below 2.5 Å are shown in parentheses). c Performance is
significantly reduced if the peptide sequence is changed to poly-alanine, both for motif and non-motif sets. Source data are provided as a Source Data file.
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converge on a minimum46. While this characteristic is often
advantageous for reducing false positives, it does not allow for
wide sampling of conformational space and assessment of the
energy landscape (as is possible with other protocols, e.g., PFPD),
even though this could be addressed by increasing the seed
number (which did not contribute to improved performance in
the present study, see Supplementary Fig. 4).

AF2 can predict peptide–protein complexes even though it was
only trained on monomer chains. Could the success of AF2
peptide docking still be due to some memorization of interfaces?
Our results suggest that this is not the case. First of all, even when
the monomer structures are modeled at high precision (Fig. 1d),
this does not necessarily guarantee high-resolution models of the
interaction (Supplementary Fig. 3). Moreover, only very few
monomer structures are available that accurately cover the
interface and could serve for memorization (5% of the LNR set,
Fig. 5c and Supplementary Data 3), and even when the crystal
structure is provided as input, it is not necessarily used, or helpful
(Supplementary Data 4). Still, AF2 succeeds in peptide docking,
indicating that the underlying principles for peptide–protein
interactions were well captured and learned - again supporting
the view of peptide–protein docking as a protein folding problem.

The ultimate way to assess memorization of existing structures
is to assess performance only on structures not included in the
training set of AF2 (i.e. structures published after 4/2018).

Reassuringly, models of this subset (10/96 structures) are mod-
eled at similar, or even better precision: six out of these complexes
are modeled within 2.5 Å, four of these even within an impressive
1.0 Å RMSD. However, this set includes only one interaction
involving a new ECOD domain. While AF2 failed for this com-
plex, no general conclusion can be made based on one example.
However, the important measures of success are the recapitula-
tion of the interface between the peptide and receptor, and AF2
was not trained on that.

To conclude, although remarkable for a method that was not
trained for the task, the performance of AF2 is not good enough
to assume some hidden overfitting during the training process
that we are not aware of. On the other hand, our analysis of
complexes harboring PTMs or bound ligands also resulted in a
similar performance which indicates that memorization is indeed
present in the network. This also points us to challenges ahead
that will need to be addressed to further improve peptide docking
using AF2.

A significant advantage of this protocol lies in its potential to
also model considerable conformational changes of the receptor
upon binding. This is due to folding both the receptor and the
peptide simultaneously. This would be of special importance in
cases where binding induces conformational changes to the
receptor (Fig. 4). This is also an advantage over template-based
methods - AF2 can dock peptides to proteins for which close

Fig. 4 AF2 modeling of interactions involving significant changes in receptor conformation. a Estrogen receptor alpha - peptide derived from nuclear
receptor cofactor 2 (PDB ID 2b1z66). Left: In the free receptor conformation (PDB ID 3ert67) the C-terminal helix occupies the peptide binding site. Shown
are the solved crystal structures of the unbound (blue) and bound conformation (receptor in white, peptide in green). Right: AF2 models the correct
receptor conformation, and positions the peptide accurately in the binding site (RMSD < 1.0 Å). Shown are the AF2 model (unbound receptor: maroon,
bound receptor: pale pink, peptide: magenta), compared to bound conformation (white). b EphB4 receptor––ephrin-B2 antagonist (PDB ID 2bba68). Left: In
the free receptor conformation (PDB ID 3etp69) the J–K loop forms a β-hairpin. Right: Upon peptide binding, this hairpin becomes disordered and assumes
a flexible loop conformation, which is recovered in the AF2 model. Coloring as in a.
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homologues are not available in the PDB. It is yet to be assessed
whether AF2 can dock a peptide to a receptor if only the unbound
conformation of the complex was available during training.

A surprising feature is the ability of AF2 to model
peptide–protein complex structures without available MSA
information for the peptide. This is particularly surprising since
the cornerstone for accurate AF2 predictions is learning residue
conservation and co-evolution through contextual processing of
MSAs, and benchmarked performance was shown to drop sig-
nificantly with a decrease in the number of effective alignments
for a query28. The impressive success for peptide docking, albeit
completely lacking MSA coverage for the peptide side (in the
context of the complex as modeled in this study), is non-trivial.
This is yet another indication that the essence of peptide binding
can be implicitly captured as an extension of folding.

Short linear motifs play an important part in binding partner
and substrate recognition between proteins47. For most interac-
tions in the motif set, per residue RMSD, and more importantly
for prediction, pLDDT values, correctly identify the motif resi-
dues within a peptide (Fig. 2). This is important, since in high-
throughput experiments such as beads or phage display48,49, a
longer stretch of binding peptides is detected, without informa-
tion about the exact location of the motif within, and often
without information about their binding site on the receptor
structure. Using AF2 for docking these peptides can be a rapid
way to process these results and identify previously unknown
motif instances together with their probable binding site and

conformation, e.g., using pLDDT for motif identification and
computational alanine scanning for characterization of the
receptor binding site. In turn, for peptides without resolved
binding motifs, for which AF2 currently does not perform as well,
it might be interesting to investigate how inclusion of local MSA
information extracted from the MSA of the full source protein
could impact the overall accuracy of the complex.

We have presented here a straightforward adjustment of AF2 for
peptide docking. Further fine-tuning will without a doubt improve
the protocol and expose new features that contribute to successful
modeling. Parameters to calibrate include more sophisticated
approaches to MSA generation which might result in improved
docking and better motif detection, as indicated previously34. In
addition, the very recent publication of AlphaFold-Multimer may
supply another avenue for peptide–protein docking50. Finally, the
partial orthogonality of performance of AF2 and PFPD (Fig. 1c)
bears promise for improved peptide–protein docking by combining
these approaches.

To summarize, on the conceptual side, the fact that AF2 was
trained and tested on monomeric structures, but can be suc-
cessfully applied to model peptide–protein interactions, reinforces
our view of peptide-receptor binding as complementation of the
final structure of a monomer. On the practical side, the experi-
ments reported here and elsewhere pave the way towards exciting
avenues for peptide–protein docking and the study of peptide-
mediated interactions in general. We believe that by using such
approaches, many of the long existing obstacles of the field could
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Fig. 5 Analysis of potential factors influencing AF2 peptide docking performance. a Peptide length does not affect docking performance: successful
models are generated for long as well as short peptides (See Supplementary Fig. 8A for the distribution of peptide lengths in the LNR dataset). Values over
20 Å are indicated by triangles. b Alpha helical peptides are modeled particularly well. Cumulative plot of performance according to the secondary
structure of the peptide. (See Supplementary Fig. 8b for the corresponding distribution of secondary structures). Helical, beta strand, and coiled peptides
are colored in pink, blue and gray, respectively. c Examples of potential memorization by AF2 from similar monomer structures: Left: Highly accurate
prediction where a precise coverage of the structure of the peptide-receptor interface is available (native PDB ID 1ssc70 and memorized PDB ID 1a5p71).
Center: Inaccurate template but successful modeling (native PDB ID 3ayu72 and memorized PDB ID 5ue473). Right: Inaccurate template and failed model
(native PDB ID 2x7274 and memorized PDB ID 5dgy75). In the latter two cases the model is most probably not built based on the inaccurate template.
For all panels, the native receptor is shown in white, and native peptide in black, the memorized peptide in blue, and the modeled peptide in green.
d Cumulative plot of performance on a set of peptide-receptor complex structures that were excluded due to post-translational modifications or bound
ligands that influence the peptide structure: AF2 modeling is not dramatically impaired. The LNR set is shown in yellow, and the PTM+ LIG set is shown in
black. Source data are provided as a Source Data file.
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be overcome, allowing the study of many more biological systems
at high structural resolution.

Methods
Structural modeling with AF2. Modeling was performed using the publicly
available AF2 repository28, with each of the five trained model parameters. The
input included the query sequence and MSA from MMseqs251, without using any
templates (unless otherwise noted). No additional refinement was performed on
the models.

Both MSA generation and AF2 predictions were run using the code of
ColabFold, a publicly available Jupyter notebook30, slightly modified for local batch
runs, on a local GPU cluster. The modifications did not affect running parameters,
only the mode of providing input data was changed.

Sequence collection and formatting. The sequences of the receptor and peptide to
be modeled were extracted from the SEQRES lines of the PDB files, to account for
the expressed construct rather than the structure resolved in the PDB. Unknown
residues and terminal modifications were removed. Then, the sequences of each pair
were concatenated with a linker of 30 glycine residues (for the runs containing
linkers), in the order of (N-terminus)receptor-linker-peptide(C-terminus).

Optimization of running parameters. We inspected the contribution of several
input parameters to the performance of AF2. Four factors were evaluated (the first
option stated was our starting default): poly-Gly linker or separate chains, number
of recycles (three or nine), the use of environmental sequences (yes/no), drop-out
(no/yes), and the number of seeds (one or five). For every complex in the motif and
non-motif sets, 2*2*2*2*5*5= 400 models were generated.

Modeling of Poly-A-receptor interactions. Poly-A peptide docking was carried
out on the motif and non-motif datasets, by mutating the peptide residues to
Alanine (in the query sequence), keeping the original peptide length for each
structure. The models were then generated as described above.

Template-based modeling. As AF2 can read in templates based on HHSearch
results, we created an alignment file for every complex, providing the receptor and
peptide chains as separate hits, with perfectly matching alignments. By providing
the path of the directory containing all the mmCIF files for these structures, AF2
was able to parse and process these templates. Since out of the five trained models,
only model 1 and 2 can use templates, these predictions were only run using these
models, with the previously selected configuration (recycles= 9, no drop-out, with
environmental sequences, one seed, both with poly-Gly linkers and separate
chains).

Structure datasets compiled and used in this study
Generating a comprehensive set of peptide–protein complexes. For robust assessment
of a modeling protocol, it is important to generate a non-biased, non-redundant
dataset. For ease of curation and initial analysis, the PDB was queried for entries
with two chains only, and filtered for those having possible protein-peptide
interactions according to the following criteria: 1. One chain must be over 30
amino acids long, and one chain must contain between four and 25 amino acids
(with at least three amino acids resolved in the solved structure). 2. The peptide
chain must have at least two residues within 4 Å distance from the protein chain.
This yielded a total of 16,931 structures belonging to 1102 ECOD domains52. Once
possible interactions were identified, the following filters were applied: 1. Remove
structures with peptide residues annotated as UNK, 2. PDB-range and seq-range
fields must agree on the indices of the receptor domain according to ECOD
annotation, 3. Apply symmetry operations (from the PDB entry) on the asym-
metric unit and check for possible crystal contacts that may affect the bound
conformation of the peptide. Remove cases where at least 20% of the peptide
residues are in contact with symmetry mates. Structures from ECOD families
represented in the motif and non-motif sets were removed. The resulting list was
manually validated, and structures were set aside that contain a peptide con-
formation that might be influenced by context not included in the input (e.g.,
structures containing ligands in the vicinity of the peptide binding site or peptides
with modified residues, such as PTMs). The final list after filtering and manual
validation consists of 96 peptide–protein complexes (Large, Non-Redundant: LNR
set), and 13 interactions involving PTMs or bound ligands (PTM+ LIG set,
evaluated separately in Fig. 5d). See Supplementary Data 1 for the full datasets.

Identifying monomers resembling peptide–protein interaction. Monomer chains that
could have been used to memorize peptide–protein interactions were detected by
employing two orthogonal approaches: (1) Based on UniProt annotations: We
extracted UniProt chain annotations from the SIFTS database53 for all the mem-
bers of each ECOD family with a representative structure in the dataset, and
examined structures with more than 1 UniProt annotation per single chain. (2)
Based on structural analysis: all members of the relevant ECOD family were

superimposed, and occupancy of the pocket corresponding to the peptide binding
site by the receptor monomer was detected. For both approaches, a list of candi-
dates was assembled and manually filtered to verify mimicking interactions.

Comparison to PIPER-FlexPepDock. Complexes of the motif and non-motif sets
were modeled using PFPD with default settings, as was benchmarked13. For each
complex, top 10 cluster representatives by FlexPepDock reweighted score were
selected for comparison with AF2. Note, that for this assessment, we used the
PFPD set (26 complexes) consisting of two subsets, one with and one without
reported motifs (motif and non-motif sets), as described therein.

Analysis of models
RMSD calculations. Backbone and all-atom RMSDs of the peptide interface resi-
dues (rmsBB_if, rmsALL_if) and the whole interface (rmsBB_allIF, rmsALL_allIF)
were calculated using Rosetta FlexPepDock (release 2020.2816), after aligning the
receptor (the interface is defined as Cβ atoms within 8.0 Å distance across the
interface). We also report the slightly different CAPRI interface metrics: (Irms and
Lrms)54, which are calculated over both peptide and receptor interface residues,
after aligning the said residues of the native and model structures (see Supple-
mentary Fig. 2). RMSD values for the individual peptide and receptor structure
were calculated using PyMOL python API (v2.2.0), using the align command,
without any cycles and rejection of atoms.

The following command was used for rescoring models and calculating RMSD
values:

> FlexPepDocking.linuxgccrelease -native ${complex}
_native.pdb \ -flexpep_score_only \ -out:file:score_only
${complex}.score.sc \ -s ${complex}*_models.pdb

By-residue RMSD calculations. Model complexes (protein-peptide) were aligned to
the native complex as described in the previous paragraph. All-atom RMSD was
computed using BioPandas python module55 for each peptide residue pair (model-
native), skipping residues that were unresolved in the native structure. Atoms
lacking in the models (such as OXT) were also ignored.

By-residue LDDT predictions. We extracted the per residue LDDT prediction values
from the b-factor column of the structural models output by AF228.

Binding pocket calculations. Binding pockets on the receptor were defined as those
residues that have at least one backbone atom located within 8.0 Å to a peptide
backbone atom. The calculations were performed with a PyMOL script56.

Computational alanine scanning. Alanine scanning was performed using the
Robetta alanine scanning implementation6.

DockQ and buried surface area calculation. The DockQ model quality metric was
computed with the default settings and parameters, using a two-chain configura-
tion (receptor: A, peptide: B)40.

Buried surface area was computed using the Rosetta Interface Analyzer57 in
default settings, with no additional configurations. The metric presented in
Supplementary Fig. 7 is “dSASA_int” (solvent accessible area buried at the
interface, in square Ångstroms) normalized for each pdb to the maximal value of
its models.

Visualization. Visualizations were performed with custom R and Python scripts,
using packages ComplexHeatmap58, ggplot259, matplotlib60, and PupillometryR61.
To visualize structures, we used PyMOL56.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All source data are provided with this paper. These data, as well as models generated in
this study, are available at https://github.com/Furman-Lab/Peptide_docking_with_
AF2_and_RosettAfold62. PDB entries used in this study and their corresponding
hyperlinks are listed in Supplementary Data 5. Source data are provided with this paper.

Code availability
The code for processing, analyzing and visualizing the results is available at: https://
github.com/Furman-Lab/Peptide_docking_with_AF2_and_RosettAfold62.
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